
Reducing False Positive Cases in OpenCV based Non-Native GUI
Element Recognition Used in Mobile Game Software Testing

Masato Yamamoto
University of Aizu

Aizu-Wakamatsu, Japan
s1220105@u-aizu.ac.jp

Evgeny Pyshkin
University of Aizu

Aizu-Wakamatsu, Japan
pyshe@u-aizu.ac.jp

Maxim Mozgovoy
University of Aizu

Aizu-Wakamatsu, Japan
mozgovoy@u-aizu.ac.jp

ABSTRACT
This paper is aimed at improving mobile game non-native GUI
testing. We follow an approach to use OpenCV image recognition
algorithms for detecting and accessing the hand-drawn GUI ele-
ments on the screen, in order to interact with them from within
automated test scripts. In the previous work, we experienced the
problem that some tests fail not due to the defects of the tested
software itself, but because of the false positive results of template
matching. It means that the high scores are sometimes elicited for
the best match, though the requested GUI element is actually not
present on the screen. In this contribution we investigate the pos-
sibilities of image filtering in order to reduce the number of such
false positive cases. We describe our experiments with two algo-
rithms supported by OpenCV library, a selection of GUI elements
and mobile game scenes, and a number of image filtering methods.
We demonstrate that using Canny edge detection filters can sig-
nificantly improve the accuracy of recognizing false positive cases
without affecting the true positive situations. Our conclusions can
be helpful for improving hand-drawn GUI based mobile software
testing reliability.

CCS CONCEPTS
• Human-centered computing → Empirical studies in ubiq-
uitous andmobile computing; • Software and its engineering
→ Software testing and debugging; • Computing methodologies
→ Image processing;

KEYWORDS
Software testing, non-native GUI, image recognition, false positive

ACM Reference Format:
Masato Yamamoto, Evgeny Pyshkin, and Maxim Mozgovoy. 2018. Reducing
False Positive Cases in OpenCV based Non-Native GUI Element Recognition
Used in Mobile Game Software Testing. In Proceedings of The 3rd Interna-
tional Conference on Applications in Information Technology (ICAIT-2018).
ACM, New York, NY, USA, Article 4, 5 pages.

1 INTRODUCTION
Many mobile applications (for example, mobile games) are based
on non-native graphical user interface (GUI). The GUI elements in

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICAIT-2018, November 2018, University of Aizu, Japan
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6516-1.

such applications may be hand-drawn. That is why they could not
be as easily accessed from the test scripts as regular GUI controls
which rely on native GUI components supported by an underlying
operating system. Native GUI testing procedures and pitfalls (in-
cluding mobile GUI testing) have been described in many tutorials
and reports [2, 5, 7, 9].

In the case of non-native GUI, the problem of GUI element iden-
tification cannot be solved by finding a perfect match of a bitmap
image inside a game scene, because of the following reasons:

• Onscreen objects may be rendered differently due to the
device characteristics and/or rendering quality settings;

• Device screens have different resolutions and significantly
vary in dimensions, hence we need to scale patterns, which
might cause distortions;

• Onscreen objects can be overlapping, therefore some part of
the image might be “hidden”.

Thus, the only feasible solution is to rely on approximate match-
ing. In a number of related studies, the authors discuss the pro-
cess of image matching with the use of OpenCV 1 library (and its
matchTemplate() method) [6, 8, 11]. In [12] the authors reported
the problem of false positive cases, when matching high scores are
sometimes elicited even if there is no template image existing in
the source image.

In our work we particularly address the extensive software test-
ing process in the Unity based mobile game “World of Tennis: Roar-
ing ’20s” 2 which serves as a good example of mobile application
with rich hand-drawn UI using a large diversity of UI elements,
game scenes and characters. Figure 1 illustrates an example of suc-
cessful recognition of the template image within the game scene.
Such a case is frequent in the process of testing, when, before pro-
ceeding with different GUI tests, we need to check whether the
screen is oriented in desired position (not rotated).

However, we realized that some tests fail after false positive
template detection (as Figure 2 shows), neither due to the defects
of the tests, nor the tested software itself. The standard OpenCV
pattern matching algorithms might yield the score, which is unac-
ceptably high for a GUI element that, in fact, is not present on the
screen. Thus, there is an interesting question on how to struggle
with such false positive cases affecting the reliability of mobile
software testing automation process.

In this research, we study two possible algorithms supported by
OpenCV and investigate the possibilities of template and source
image pre-processing aimed at reducing the number of false positive
GUI element recognition cases.
1OpenCV – an open source image processing library that we use here for template
matching [1]
2http://worldoftennis.com/

http://worldoftennis.com/


ICAIT-2018, November 2018, University of Aizu, Japan M. Yamamoto, E. Pyshkin, and M. Mozgovoy

Figure 1: True positive case: reported score is 0.99 (normal high score for the element existing on the screen)

Figure 2: False positive case: reported score is 0.93 (unacceptably high score for the element which is actually absent on the
screen)

2 OUR APPROACH
In this section, we describe an approach to decrease the number of
false positive cases reported in test scripts using GUI element pat-
tern matching. Our hypothesis is that some image transformations
of both the source image (game screenshot) and the pattern can be
helpful in order to reduce the number of false positive cases.

2.1 Pattern Matching Methods
Our experiments runwith two patternmatchingmethods supported
by OpenCV [1, 3] used for recognizing game objects and hand-
drawn Unity GUI elements in plain graphical data.

The firstmethod used in our experiments is TM_CCORR_NORMED
which is the normalized version of the correlation matching method
that multiplicatively matches a template against the image and then
maximizes the matched area. Namely, for the source image I , in
which we expect to find a match to the template image T :, the re-
sult matrix of locations R(x ,y) can be described by the following
equation:

R(x ,y) =

∑
x ′,y′ ((T (x ′,y′) · I (x + x ′,y + y′))√∑

x ′,y′ T (x ′,y′)2 ·
∑
x ′,y′ I (x + x ′,y + y′)2

(1)

The second method TM_CCOEFF_NORMED is the normalized
version of the correlation coefficient matching method that matches
a template against the image relative to their means and generates a

matching score ranging from …1 (complete mismatch) to 1 (perfect
match):

R(x ,y) =

∑
x ′,y′ ((T ′(x ′,y′) · I ′(x + x ′,y + y′))√∑

x ′,y′ T ′(x ′,y′)2 ·
∑
x ′,y′ I ′(x + x ′,y + y′)2

(2)

In equation 2:
T ′(x ′,y′) = T (x ′,y′) − 1

w ·h ·
∑
x ′′,y′′ T (x ′′,y′′)

I ′(x+x ′,y+y′) = I (x+x ′,y+y′)− 1
w ·h ·

∑
x ′′,y′′ I (x + x ′′,y + y′′)

2.2 Organization of Experiments
We use filtered dataset for both source images and template images.
As filters, we use 4 types of transformations: gray scaled images,
edge detection, edge detection of the gray scaled images, and Canny
edge detection [4]. We can transform the images by using any
appropriate software. In our experiments, we use ImageMagic 3.
Here is the list of command samples that can be used in order to
proceed with a desired filtering in ImageMagic:
convert input.png -type GrayScale output.png
convert input.png -edge 1 output.png
convert input.png -colorspace Gray -edge 1 output.png
convert input.png -canny 0x1+10%+30% output.png

Figure 3 shows the results of such transformation for a selected
template image.
3ImageMagick – an open source software for image manipulation citeimagemagic



Reducing False Positive Cases. . . ICAIT-2018, November 2018, University of Aizu, Japan

Figure 3: Template filtering.

Figure 4: Source images used for experiments (club views from tennis game scenes).

Figure 5: Template images (UI element fragments).

Figure 4 demonstrates 10 mobile game screenshots selected as
source images (these images are, in fact, different tennis game club
views used in test suite). As templates, there are 10 fragments cut
from the source images, as well as one more image, which is not
present in any of source images (see Figure 5). Thus, we try the
possible combinations of 10 screenshots (as source images) and
11 templates, investigated against 2 pattern matching algorithms
and 5 different filtering methods (including 4 above mentioned
transformations and the case when there is no filter applied).

For visualizing the experimental results in a way shown in Fig-
ures 1, 2 and 6, we developed a tool displaying the template image,
source image, their relative paths in the system, pattern matching
method used, and the best match score. The region corresponding
to the best match score is shown by a red bordered frame within
the area of the source image.



ICAIT-2018, November 2018, University of Aizu, Japan M. Yamamoto, E. Pyshkin, and M. Mozgovoy

Table 1: Score Distribution (TM_CCORR_NORMED, True positive cases)

Filters
Score ranges

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
No filter 0 0 0 0 0 0 1 1 8 0
Grayed 0 0 0 0 0 0 0 0 7 3
Edge detection 0 0 0 0 0 0 1 1 8 0
Grayed Edge detection 0 0 0 0 0 0 1 1 8 0
Canny 0 0 0 0 0 0 1 1 8 0

Table 2: Score Distribution (TM_CCOEFF_NORMED, True positive cases)

Filters
Score ranges

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
No filter 0 0 0 0 0 1 0 1 8 0
Grayed 0 0 0 0 0 1 1 0 5 3
Edge detection 0 0 0 0 0 1 0 1 8 0
Grayed Edge detection 0 0 0 0 0 1 0 1 8 0
Canny 0 0 0 0 0 1 0 1 8 0

Table 3: Score Distribution (TM_CCORR_NORMED, False positive cases)

Filters
Score ranges

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
No filter 0 0 0 0 0 0 0 19 81 0
Grayed 0 0 0 0 0 0 0 10 81 0
Edge detection 7 84 8 1 0 0 1 1 8 0
Grayed Edge detection 14 80 6 0 0 0 1 1 8 0
Canny 89 10 1 0 0 0 1 1 8 0

Table 4: Score Distribution (TM_CCOEFF_NORMED, False positive cases)

Filters
Score ranges

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
No filter 0 14 19 32 22 13 0 0 0 0
Grayed 0 15 18 32 23 12 0 0 0 0
Edge detection 87 12 1 0 0 0 0 0 0 0
Grayed Edge detection 92 8 0 0 0 0 0 0 0 0
Canny 95 5 0 0 0 0 0 0 0 0

2.3 Results
Tables 1–4 list the experimental results for the earlier described
combinations. Each cell in the tables reports the number of tests
for a filtering method (table row) with the pattern match score
within the corresponding interval (table column). The first column
indicates the score interval from 0.0 to 0.1, the second column
corresponds to the scores greater than 0.1 but less or equal than
0.2, the third column serves the scores greater that 0.2 but less or
equal than 0.3, and so on.

From Tables 1–2 we can see that image transformations do not
affect significantly the true positive cases: all 10 tests (for each
algorithm) corresponding to the possible cases, where the template
image can be found in the source images, have the scores, which
are high enough.

The tests of the situations corresponding to the case, where the
template images do not exist in the source images, are much more
interesting. Our dataset (11 templates against 10 screenshots) gives
us 100 false positive tests for each algorithm (let us remind that 10



Reducing False Positive Cases. . . ICAIT-2018, November 2018, University of Aizu, Japan

Figure 6: Struggling with false positive case: reported score is 0.10 (satisfactory low score for the element which actually absent
on the screen)

combinations of the total number of 110 experiments serve true
positive cases).

From Table 3 we can observe that for the TM_CCORR_NORMED
algorithm, there is large number of tests, where the best match
score is greater than 0.8, despite actually the template does not
belong to any of dataset screenshots.

The TM_CCOEFF_NORMED algorithm (Table 4) works better,
but still there is a number of tests, where the best match score are
not as low as we could expect for the elements which are actually
not on the screen (for example, in 13 tests the scores are higher
than 0.5).

Experiments with grayed images do not show any significant
improvement. However, the scores go to the lower ranges if we
use edge detection filters. Canny edge detection algorithm gives
the most promising results for both TM_CCORR_NORMED and
TM_CCOEFF_NORMED algorithms:

For TM_CCORR_NORMED with Canny edge detection filter, 89%
of tests have the scores less or equal than 0.1; 100% of test have the
scores less or equal than 0.3.

For TM_CCORR_NORMED 95% of tests have the scores less or
equal than 0.1; 100% of test have the scores less or equal than 0.2.

It means that the score for the best match is very low, so the
probability to experience the false positive template recognition re-
sult can be significantly reduced without affecting the true positive
cases.

Figure 6 illustrates the situation with the same input template
and the source image as in Figure 2, but with using Canny edge
detection algorithm: the best match has the score 0.1, which could
not lead to the false positive UI element detection.

3 CONCLUSION
Our preliminary experiments described in this work show that us-
ing transformed images does not significantly improve recognition
of UI elements in the case when an element is present on the screen.
However, such transformations may be useful in struggling with
the cases of false positive UI element detection.

Despite pattern matching issues are not frequently discussed
within the context of software testing, the interest of researchers
and software practitioners to this topic is increasing [10].

We believe that for software applications based on non-native
GUI (and particularly, for mobile applications), improving image
recognition algorithms can make the software tests more reliable
and help to avoid or minimize manual work of test engineers, nec-
essary in order to fix the bugs conditioned by the low accuracy of
hand-drawn UI element recognition.

ACKNOWLEDGMENTS
The authors would like to thank Prof. Vitaly Klyuev for his valuable
comments and helpful suggestions.

REFERENCES
[1] [n. d.]. OpenCV, Template Matching. https://docs.opencv.org/2.4/doc/tutorials/

imgproc/histograms/template_matching/template_matching.html Accessed:
May 12, 2018.

[2] Emil Borjesson and Robert Feldt. 2012. Automated system testing using visual
gui testing tools: A comparative study in industry. In Software Testing, Verification
and Validation (ICST), 2012 IEEE Fifth International Conference on. IEEE, 350–359.

[3] Gary Bradski and Adrian Kaehler. 2008. Learning OpenCV: Computer vision with
the OpenCV library. O’Reilly Media, Inc.

[4] John Canny. 1987. A computational approach to edge detection. In Readings in
Computer Vision. Elsevier, 184–203.

[5] André MP Grilo, Ana CR Paiva, and João Pascoal Faria. 2010. Reverse engineering
of GUI models for testing. In Information Systems and Technologies (CISTI), 2010
5th Iberian Conference on. IEEE, 1–6.

[6] Ville-Veikko Helppi. 2016. Using OpenCV and Akaze
for Mobile App and Game Testing. http://bitbar.com/
using-opencv-and-akaze-for-mobile-app-and-game-testing Accessed:
Nov 2, 2016.

[7] Cuixiong Hu and Iulian Neamtiu. 2011. Automating GUI testing for Android
applications. In Proceedings of the 6th International Workshop on Automation of
Software Test. ACM, 77–83.

[8] Szymon Kazmierczak. 2016. Appium with Image Recognition. https://medium.
com/@SimonKaz/appium-with-image-recognition-17a92abaa23d#.oez2f6hnh
Accessed: Nov 2, 2016.

[9] Kanglin Li and Mengqi Wu. 2006. Effective GUI testing automation: Developing an
automated GUI testing tool. John Wiley & Sons.

[10] Inês Coimbra Morgado and Ana CR Paiva. 2017. Mobile GUI testing. Software
Quality Journal (2017), 1–18.

[11] Maxim Mozgovoy and Evgeny Pyshkin. 2017. Unity application testing automa-
tion with appium and image recognition. In International Conference on Tools and
Methods for Program Analysis. Springer, 139–150.

[12] MaximMozgovoy and Evgeny Pyshkin. 2017. Using image recognition for testing
hand-drawn graphic user interfaces. InUBICOMM 2017, The Eleventh International
Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies.
IARIA, 25–28.

https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
http://bitbar.com/using-opencv-and-akaze-for-mobile-app-and-game-testing
http://bitbar.com/using-opencv-and-akaze-for-mobile-app-and-game-testing
https://medium.com/@SimonKaz/appium-with-image-recognition-17a92abaa23d#.oez2f6hnh
https://medium.com/@SimonKaz/appium-with-image-recognition-17a92abaa23d#.oez2f6hnh

	Abstract
	1 Introduction
	2 Our Approach
	2.1 Pattern Matching Methods
	2.2 Organization of Experiments
	2.3 Results

	3 Conclusion
	References

