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Abstract: The rise of big data has resulted in the proliferation of numerous heterogeneous data stores.
Even though multiple models are used for integrating these data, combining such huge amounts of
data into a single model remains challenging. There is a need in the database management archives to
manage such huge volumes of data without any particular structure which comes from unconnected
and unrelated sources. These data are growing in size and thus demand special attention. The speed
with which these data are growing as well as the varied data types involved and stored in scientific
archives is posing further challenges. Astronomy is also increasingly becoming a science which is
now based on a lot of data processing and involves assorted data. These data are now stored in
domain-specific archives. Many astronomical studies are producing large-scale archives of data and
these archives are then published in the form of data repositories. These mainly consist of images and
text without any structure in addition to data with some structure such as relations with key values.
When the archives are published as remote data repositories, it is challenging work to organize the
data against their increased diversity and to meet the information demands of users. To address
this problem, polystore systems present a new model of data integration and have been proposed to
access unrelated data repositories using an uniform single query language. This article highlights the
polystore system for integrating large-scale heterogeneous data in the astronomy domain.

Keywords: big data; data integretion; astronomy; polystore

1. Introduction

Due to the abundance of data sources, the amount of data available for analysis is
increasing rapidly, and there has been a great deal of research into how to manage heteroge-
neous data. Big data refers to large or complex information that cannot be processed using
traditional methods. For a long time, people have been storing and accessing huge amounts
of data for analytics [1]. In today’s world, big data, comprising both structured as well as
unstructured data, is available. Databases and spreadsheets that have been used in the past
include structured data that are often numerical. An unstructured data set is a collection
of unrelated pieces of information that does not follow a predetermined structure. It is
common practice to store and process large amounts of data using specialized computer
databases and applications [2].

The Semantic Web, often known as the Web of Data, is based on the concept of
Linked Data [3]. The Semantic Web’s emphasis on Linked Data’s best practices for creating
meaningful links between resources will benefit humans and robots. It is a collection of
design concepts for sharing machine-readable and cross-referenced data [4]. Linked Data
is a collection of best practices for publishing and interconnecting structured data on the
Internet. Uniform Resource Identifiers (URIs, a common means of identifying concepts
or entities), Hypertext Transfer Protocol (HTTP, a protocol used to retrieve resources or
descriptions of resources, which is fundamental and universal) and Resource Description
Framework (RDF, a data model based on graphs to organize data describing things in the
world by structuring and linking it) are some technologies that support Linked Data [5].
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Linked Data is a way to identify entities or concepts in the world and retrieve resources or
descriptions of resources [6]. Open-linked data are known as linked open data (LOD) [7].
The Tim Berners-Lee definition of linked open data compared to linked data is the most
precise: “Linked Open Data is Linked Data provided under an open license that does not
hinder its free usage” [6].

The current model that focuses on data integration is open data integration. This
feature is coherent worldwide discovery, or data influenced by the need for data analysis.
The latest integration techniques require extensive data analysis to pinpoint the data to be
used for extracting information with respect to big data [8]. Stores with copious amounts of
varied data sets containing diverse data, called data lakes, may contain data in raw format,
or may be organized into rich data schemas. The challenge presented to scientists is to
match the pace of growth of data repositories and archives [9]. Other problems arise when
storing heterogeneous data in native data stores and creating a communication protocol in
data stores to query for information retrieval.

Celestial phenomena that arise outside our atmosphere are studied by astronomers
in their quest to better understand the universe. Similar to other scientific disciplines,
astronomy deals with data tsunamis that require new methods and techniques for conduct-
ing scientific research [10]. Advances in telescopes, detector technology, and exponential
increases in processing power have led to an avalanche of data in astronomy and other
data-heavy sciences such as physics, biology, and geology. This data avalanche is expected
to continue for several years. An efficient federation of database technologies is required
to properly handle this avalanche and process enormous amounts of data. Ultimately,
data-mining tools for analysis are crucial for extracting knowledge from enormous data
volumes. In Section 3, we discuss mining in astronomy in detail [11].

The goal of this research is to survey big data archives in time-domain astronomy and
find a solution to efficiently manage large repositories of data. Modern astronomical studies
are heavily focused on undertaking large sky surveys and archiving the results. Prototypes
and demonstrations of the classification and mining of distributed data are necessary to
investigate user interfaces and interaction models. For instance, AstroDAS [12] is a system
in which scientists can record and share their assertions regarding the data integration
process. Web services, linked databases and grids need to be investigated to dispense the
method of mapping entities obtained from their research over accepted scientific databases.
The identification of similar celestial objects within the present network of diverse catalogs
is what astronomers want to share in the future.

The rest of the manuscript is as follows: We discuss big data in the astronomical
domain in Section 2, Section 3 explores time domain astronomy, and Section 4 analyzes
astronomical data mining. In Section 5, we explore Scientific Archive Services and Query
Languages, Section 6 emphasizes the polystore system, Section 7 deals with the challenge
of the future management of astronomical big open-linked data, and Section 8 presents the
summary and conclusions.

2. Big Data in Astronomical Domain

The term “big data” refers to the huge amount of data that can be found in various
forms and formats. Traditional relational data are not the only source of unstructured
data, which are continuously expanding [13]. It is typical for big data to be available from
various sources. Data derived from machines, for example, grows exponentially and holds
a wealth of information that will be uncovered in the future. However, even though the
data gathered by humans are more textual, valuable insights can still be retrieved from
them [14].

For computer scientists interested in astronomy, most surveys make their entire data
collection and any derived parameters readily available online, in the form of enormous
databases. In today’s world, data are becoming increasingly large, unstructured, and fast-
moving, making traditional data management methods ineffective. Over a billion stars
have been studied, millions of objects have their spectra taken, and hundreds of new planets
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are still being identified. The Sloan Digital Sky Survey (SDSS) [15] is one of the largest
astronomical surveys. More than 200 million galaxies and more stars have been discovered
in the almost a million field images capture by the SDSS telescope per night. Future surveys
are expected to yield significantly more information. The Legacy Survey of Space and Time
(LSST), now known as the Vera C. Rubin Observatory, is another prospective future survey
that will offer wide-field images of the sky and expose galaxies that are currently too faint
to be noticed.

The Four Vs of Big Data

The four Vs of big data (volume, velocity, variety, and value) are the pillars of this
concept [16]. They are explained as follows:

(i) Volume: The quantity of data is known as the volume. The data are described
in terms of terabytes, petabytes, and even exabytes. Consequently, the collection,
cleaning, curation, integration, storage, processing, indexing, search, sharing, trans-
fer, mining, analysis, and visualization of large amounts of data are complicated
by the quantity of data [10]. There are too many data for current technology to
handle them effectively. There is an avalanche of data in astronomy generated by a
number of earth- and space-based broad astronomical observations.

(ii) Variety: Variety is an indicator of data complexity. Structured, semi-structured,
unstructured, and mixed data are all types of data [17]. Images, spectra, time
series, and simulations constitute a large amount of astronomical data. Catalogs
and databases contain the vast majority of information. This complicates data
integration from different telescopes and projects because the data are stored in
different formats. The high dimensionality problem is exacerbated because each
piece of data has thousands or more features.

(iii) Velocity: The term “velocity” represents the rate of creation, communication,
and analysis of data. For ten years, The Rubin Observatory Legacy Survey of Space
and Time (LSST) [18] generated one Sloan Digital Sky Survey (SDSS) [15] of data
volume one night [19]. It is necessary to analyze data in a bundle, stream, near-
instantaneous, or instantaneous setting. The LSST expects to discover a thousand
additional supernova explosions every night for the next ten years. Scientists have
a significant challenge in determining how to mine, correctly identify, and target
supernova prospects in ten years.

(iv) Value: Discovering new and unusual astronomical objects and events is a challenge
that has inspired and exhilarated scientists. Therefore, spotting a new pattern or
law in the data distribution is valuable. The term “value” refers to the enormous
value of the data [10].

Optical time-domain astronomy is nearing a tipping point in terms of the data rate
and volume. By 2023, the amount of data is expected to grow by a factor of three. As the
number of recognized sources increases, it is necessary to create efficient and well-designed
databases. To successfully manage these data, highly efficient machine learning algorithms
for categorizing source types are required [20].

3. Time-Domain Astronomy

Time-domain astronomy focuses on studying systems that change over time. In recent
years, large-scale surveys of the sky have made it more important to study this topic because
it is possible to detect changes that were previously too small to detect [21]. Time-domain
astronomy is a branch of astronomy and astrophysics that explores lifetime evolution and
changes in a wide variety of cosmic objects, particularly when these changes occur on short
cosmic time scales (hours or days to a year) [22]. Novae, supernovae, gamma-ray bursts,
active galactic nuclei, binary stars, and pulsars are the specific objects of interest. These
are appropriately referred to as transients because the electromagnetic signature radiated
by an event such as an explosion is transient. It briefly appears as a flash in the sky before
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fading away gradually. By capturing these electromagnetic signatures, astronomers can
learn about cosmic objects and the physical processes that govern their evolution [23].

Sequences of observations or data points grouped chronologically are called “time
series” [24]. It is not typical for researchers in fields such as meteorology, electroencephalog-
raphy, and financial markets to use time series in their work. Many characteristics of
time series data can be observed, such as their non-isolated generation, their temporal
variation, and the presence of a trend or cyclic components. Multiple goals can be achieved
by studying time series data, such as gaining insight into the mechanism that generates the
data or predicting future outcomes and behaviors [25].

To depict the brightness change of an object over time in time-domain astronomy,
light curves [26] are commonly used to represent data collected by telescopes (for a visual
representation). Based on the variability features of light curves, astronomical objects can be
categorized into several groups (quasars, long-period variables, and eclipsing binaries) and
consequently can be researched in-depth. There are a variety of approaches for classifying
data into groups based on light-curve data, the most common of which is the use of
machine learning algorithms to extract features from the light-curve data and then arrange
the features into categories. Variability classes can be characterized and differentiated
using these light-curve traits. There are a wide variety of features, including simple
statistical properties, such as the mean or standard deviation to more complicated time
series properties, such as autocorrelation function. Machine learning and other algorithms
can use these properties to distinguish between different types of light curves [25].

Science Project and Virtual Observatory in the Era of Big Data in Astronomy

Many scientific operations, including astronomy, have become data-intensive in the
age of big data and archives. The rapid advancement of technology, particularly in com-
puter hardware (with low-cost, high-capacity storage, and processing) and microelectronic
(such as: charge-coupled devices (CCD)) devices [27], has revolutionized the majority
of natural science through an explosion in the number of measurements and simulation
data [28].

Astronomers use a blink comparator to compare two-night sky images and identify
differences. It was possible to “blink” back and forth between two images of the same part
of the sky obtained at various points in time using this technique. Asteroids and comets
could be differentiated into images taken a few day apart since they would appear to
oscillate between two positions. On the contrary, all the other stars stood still. Photographs
separated by a longer period of time can be used to discover stars with large proper motion
and distinguish binary stars from optical doubles, and variable stars [29]. Clyde Tombaugh
used the blink comparator to discover Pluto. On loan from the Lowell Observatory and on
display in the Museum of Washington is DC’s Exploring the Planets Gallery [30].

Modern astronomy has come a long way since Galileo made his initial views of
stars in 1609 with his refracting telescope [31]. Astronomy advanced significantly in the
first decade of the 1600s with the discovery of an optical telescope and its use to study
the night sky. Global astronomical research projects aim to meet the data volume and
computational challenges associated with tackling the main research problems. The virtual
observatory has been proposed as the response of the astronomical community to the
challenges passed by the new massive and complex data sets [32]. The following examples
of astronomical projects are data-intensive, and require a virtual observatory for worldwide
scientific collaboration.

Using a 7.2 square degree camera mounted on the Palomar Samuel Oschin 48-inch
(1.2 m) Schmidt telescope, Palomar Transient Factory (PTF) has been in service since
2009 [33,34]. These telescopes observe the night sky in the visible and infrared spectra. It
is a fully automated, wide-field survey aimed at the systematic exploration of the opti-
cal transient sky [35]. Two automatic reduction pipelines received data from the camera.
Lawrence Berkeley National Laboratory (LBNL) [36] runs a near-real-time image subtrac-
tion pipeline to recognize optical transients minutes after the images are recorded. To arrive
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at a collection of probabilistic claims concerning the scientific classification of the transients,
the output of this pipeline is submitted to UC Berkeley, where a source classifier analyzes
it [33].

The images were also entered into a database at the Infrared Processing and Anal-
ysis Center (IPAC) within a few days of capture. Calibration and object detection are
performed on each incoming frame before they are combined into a database. Using the
P48 photometric follow-up telescope, the P60 automatically generates colors and light
curves for intriguing transients [37]. Fifteen more telescopes were used for photometric and
spectroscopic follow-ups as part of the PTF cooperation. The coordination of observations
and reporting is handled by an automated system that collects data from the Berkeley
classification engine and distribute it to various follow-up facilities [33].

The intermediate Palomar Transient Factory (iPTF) [38], which began operation in 2012,
is the successor of the PTF. The image processing and differencing pipeline innovations
have made it possible to receive transient candidates significantly faster (from 30–60 min
to 10 min in iPTF) than before [38,39]. The PTF/iPTF generated 1 gigabyte data per
90 s, and which was approximately 0.05 petabytes per year. The iPTF has conducted
a series of fast-cadence studies to identify and characterize young supernovae and rapidly
changing transients. A follow-up study is needed to gather more information on the
detected transients, such as ultraviolet–optical–infrared light curves and hues, spectroscopic
categorization, X-ray and radio observations for non-thermal emission, and a complete
multi-wavelength follow-up survey [39].

After years of development, the Zwicky Transient Facility (ZTF) was launched in 2018
with the largest instantaneous field of view for any camera on a telescope with an aperture
bigger than 0.5 m using a 48-inch Schmidt Telescope [40]. The ZTF observing system
provides high-speed, wide-field-of-view, multi-band optical imagery for time-domain
astrophysics analysis [20,41]. The work of ZTF expands our understanding of the temporal
and dynamic sky. This category includes Near-Earth Asteroids (NEAs), unusual and rapidly
developing flux transients, and all sorts of galactic variable sources. Managing data are
transferred from the P48, raw data ingestion, all processing pipelines, long-term archiving
and curation of data products, user interfaces for data retrieval and access management,
near-real-time distribution of flux-transient alerts and potentially new solar system objects
(SSOs), generation of quality assurance (QA) metrics for the project, analysis and trending,
and maintenance of all software, hardware fundamental areas of ZTF [42].

Astronomical observatories in the modern era are building work on the Legacy Survey
of Space and Time (LSST), which is now taking place in conjunction with the Vera C.
Rubin Observatory. Images and data items of approximately 500 petabytes are sent via
the LSST [18]. The Rubin Observatory includes an 8.4-m primary mirror, the world’s
largest digital camera, a complex data processing system, and an online education platform.
The 8.4-m Simonyi Survey Telescope, which boasts a unique three-mirror construction and
an incredibly wide field of vision, takes only three nights to survey the entire sky [43].
LSST will shed light on the unseen components of the universe by tracking the motion of
billions of galaxies and analyzing how they distort space and time. For example, variable
stars, supernovas, and black holes will be studied in unprecedented detail owing to the
LSST. New classes of transient occurrences were discovered. The telescope will reveal the
motions of millions of stars and provide a three-dimensional image of our galaxy, which
is 1000 times larger than that of earlier surveys. Over 90% of the potentially hazardous
asteroids larger than 140 m in diameter were investigated using LSST. Beyond Neptune, it
should be able to pick up an additional 40,000 bodies [44].

4. Astronomical Data Mining

Due to the rapid development in data volume from various sky surveys, data reposi-
tories have grown in size from gigabytes to terabytes and petabytes, as discussed briefly in
Section 2. The term “big data analysis” refers to analyzing large amounts of data. Astron-
omy is now a data-intensive science and is expected to become even more data-intensive in
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the next decade. Clustering and classification problems have traditionally been the norm
for astronomers. For astronomers who use observational (experimental) methods to gather
data on celestial objects and then analyze that data to determine the objects’ physical prop-
erties and the underlying physics that underlies those properties, this is especially true [45].
Data mining is a collection of techniques used to reduce, improve, and clean a large amount
of data. These techniques include summarization, classification, regression, clustering,
association, time series analysis, and outlier/anomaly identification. The most important
source of astronomical data is the systematic observation of the sky over a wide range of
wavelengths. Scientific data mining has ensured the effectiveness and completeness of these
data, leading to new astronomical research. In addition, numerous simulations generate
large amounts of data [14]. Distributed data mining (DDM) is becoming more common as
astronomical data sets (from many large sky surveys) grow too large to be downloaded
to a single location for analysis. The discovery of hidden knowledge in geographically
distributed heterogeneous databases is made possible by DDM algorithms [45].

Knowledge discovery in databases (KDD) is the primary emphasis of the data mining
overview. However, the concept of a database encompasses machine-readable astronomical
information [46]. The KDD focuses on extracting knowledge (high-level information) from
low-level data (usually stored in large databases). KDD involves many steps such as data
preparation and cleaning, data selection, sampling, preprocessing and transformation,
data mining to extract patterns and models, interpretation and evaluation of extracted
information, and evaluation, rendering, or use of the final extracted knowledge. However,
it is important to keep in mind that data mining is only one part of the KDD process [47].
Many terms are related to data mining, and we begin by introducing some of them:

• Data Collection: All actions necessary to gather the desired data in digital form were
included in data collection. As a part of the research process, data collection methods
include acquiring fresh observations, querying existing databases, and completing
data mergers (data fusion). An enormous cross-matching dataset can introduce con-
fusing matches, discrepancies in the point spread function (object resolution) inside or
between data sets, adequate processing time, and data transit needs. A few arcseconds
of astrometric tolerance are typically utilized when each database item lacks exact
identification [48]. If the researcher chooses a method of collecting data based on
a legitimate premise, he or she must weigh the method’s strengths and weaknesses
when analyzing their results. In qualitative research, it is critical that participants be
recruited in a transparent manner [49].

• Processing of data: Data preprocessing, such as sample cuts in database searches,
may be required during the data collection process. It is essential to use caution when
preprocessing data because the input data can significantly affect many data mining
approaches. For a specific algorithm, preprocessing can be divided into two types:
procedures that make it meaningful for reading and processes that alter the data in
some manner [48]. Data preprocessing includes the preparation and transformation
of data so that it may be used in the mining process. Data preprocessing attempts to
minimize data size, identify the relationships between data, normalize data, remove
outliers, and extract characteristics from the data. Numerous methods have been
proposed, such as cleaning, integration, transformation, and reduction of data sets [50].

• Selection of Attributes: Some properties of an object are not necessary for its proper
functioning. To maximize performance, it is possible to use all the qualities of the object.
Several low-density habitats and gaps have been created because of this. It is difficult to
extract new ideas from data. As a result, dimension reduction is essential for retaining
as much information as possible while using fewer attributes. Several algorithms
are hampered by the presence of unnecessary, redundant, or otherwise unimportant
features [48]. Filters and wrappers are prominent phrases used to describe the nature
of the metric used to evaluate the value of attributes in a categorization. The accuracy
estimates produced by the real target learning method are used by wrappers to
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evaluate attributes. Filters, on the other hand, work independently of any learning
process and use generic properties of the data to evaluate attributes [51].

• Use of Machine Learning Algorithms: Machine learning algorithms are usually clas-
sified into supervised, semi-supervised, and unsupervised methods. Semi-supervised
approaches use two sets of objects for which the target property, such as classification,
is known with confidence. The algorithm was trained on these objects and then ap-
plied to others without the target characteristics. The test set included these additional
items. In most astronomy cases, a photometric sample of objects can predict qualities
that ordinarily require a spectroscopic sample. The parameter space spanned by the
input attributes must span the time for which the algorithm is employed. This may
appear restricted initially, but may often be overcome by merging data sets [48]. The re-
search, development, and validation of algorithms for web service-based (possibly
grid-based or peer-to-peer) classification and mining of distributed data are required.
A combined text-numeric data mining algorithm may be the most effective, and thus
has to be explored for these algorithms to be successful [45].

We explored the vast survey databases produced by numerous NASA missions while
discussing the possibility of distributed data mining to assist astronomical research. GALEX
conducts all-sky surveys in the near-UV and far-UV regions at various depths. Large-scale
infrared surveys are being carried out by the Spitzer Space Telescope, which includes
areas of the sky that have already been extensively investigated by the Hubble Space
Telescope (optical), Chandra X-ray Observatory, and other observatories [52]. The WISE
mission, launched in 2009, conducted an infrared survey of the sky. Millions of stars and
galaxies in the near-infrared region have been cataloged by the 2-Micron All-Sky Survey
(2MASS). Numerous classes of astrophysical specimens can be studied with the using these
wavebands [45].

5. Scientific Archives Services

The archives listed below are examples of time-domain astronomy. They map a large
portion of the sky from a variety of observatories. Transient occurrences from more than
a century of observations can be detected, owing to their extensive data library and more
current images.

(i) SIMBAD (Set of Identification, Measurements, and Bibliography for Astronom-
ical Data): SIMBAD [53,54] is the principal database for astronomical object iden-
tification and bibliography. e Centre de Donn´ees astronomiques de Strasbourg
(CDS) developed and maintained the SIMBAD. Many astronomical objects are
included in the database, bibliography, and selected observational measurements.
Priority is given to catalogs and tables that span a wide range of wavelengths and
serve large-scale research efforts. Meanwhile, systematic scanning of the bibli-
ography provides an overview of current astronomical studies, including their
diversity and broader trends. The World Wide Web (WWW) interface for Simbad
is available at: http://simbad.u-strasbg.fr/Simbad (accessed on 1 June 2022).

(ii) SMOKA (Subaru-Mitaka-Okayama-Kiso-Archive): Multiple telescope data can
be found in the SMOKA [55] science archive system. More than 20 million astro-
nomical images are currently stored on the server, totaling more than 150 gigabytes.
Additionally, the search interface can be used to perform searches based on various
search restrictions and flexible image transport system (FITS)-Header keyword
values for specific data sets. Data from telescopes and observatories from Subaru
(Subaru), OAO (Okayama), Kiso (Kiso) and MITSuME (MITSuME) instruments
and reduction tools can be accessed via the search interface.

(iii) IRSA (NASA/IPAC Infrared Science Archive): Several National Aeronautics and
Space Act (NASA) [56] programs are supported by the Infrared Processing and
Analysis Center (IPAC) [57], including Spitzer, the (NEO)WISE and 2MASS satel-
lites, and the IRAS. IPAC also manages NASA’s data archives. The IRSA also
provides access to data from ESA missions, including Herschel and Planck, in col-
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laboration with NASA. IRTF and SOFIA data will soon be archived at IRSA. IPAC’s
non-NASA or non-infrared initiatives, such as the Palomar Transient Factory (PTF),
Zwicky Transient Facility (ZTF), and Vera C. Rubin Observatory (VCRO), benefit
from IPAC’s archiving technology (formerly known as LSST) [58]. One petabyte of
data from more than 15 projects can be found at IRSA. More than 100 billion astro-
nomical measurements can be accessed through IRSA, including all-sky coverage.

An important aspect of astronomical research is the design, implementation, and archiv-
ing of large-scale surveys. Projects such as the LSST and PTF are expected to yield huge
catalogs of stars and galaxies in the future. By integrating and cross-correlating data across
these various survey dimensions in a virtual collection, these catalogs will dramatically
boost science returns and enable new discoveries. A new paradigm for informatics is re-
quired to mine the riches of this data loop, which will require distributed database queries
and data mining across virtual tables of decentralized, linked, and integrated sky survey
catalogs. The problems that this subject presents are challenging, as they are in the majority
of today’s fields that produce large amounts of data at rapid rates [45].

Data from numerous celestial bodies can only be accessed by astronomers using
query tools. Images and image-related information are the most frequently researched
topics on the internet. Depending on these conditions, the user may have a wide range
of requirements. Querying a single or group of items may be desired by users to retrieve
information. To obtain precise information in the astronomical domain, users must develop
extensive programs or formulate intricate queries. However, this has also resulted in
a wide range of data storage interfaces and the loss of a uniform programming paradigm.
Consequently, it is extremely difficult for a user to design applications that employ several
data stores. Heterogeneous data sources, such as relational database management systems
(RDBMS) or extensible markup language (XML), and database management system (DBMS)
databases, have been studied extensively in the context of multi-database systems for many
years in the astronomical domain [59].

It is possible to access numerous data stores in the cloud using state-of-the-art multi-
database query processing systems. However, cloud operations differ when accessing
data sources over a wide area network or the Internet. First, there are a variety of queries,
including web data integration queries, such as those from price comparison sites, which
can access many similar web data sources. By contrast, cloud data integration queries must
access several different data stores. The users must be granted permission to access each
data store. There are only a limited number of locations where mediators and data source
wrappers can be placed [59].

For decades, large-scale data management has relied on parallel DBMS. In addition
to typical relational DBMSs such as MySQL and Oracle, new data stores based on the
(atomicity, consistency, isolation, durability (ACID)) [60] principles have recently been
proposed to handle huge amounts of data. Large-scale data storage and warehousing
systems such as Megastore, Mesa, and Spanner, have been developed with SQL-based query
languages in mind. In addition, NewSQL databases are built for high-throughput online
transaction processing (OLTP) while retaining ACID features. Many big data applications
do not require rigorous ACID compliance and prioritize performance over consistency and
reliability [61].

A wide variety of databases, data, and storage options are available to businesses
today. The incompatibility of systems or the difficulty of developing new connectors and
translators between them can impede the development of analytics and applications that
work across these modalities [62]. This has led to the development of specialized multistore
systems (also known as polystores) that enable integrated access to a number of cloud
data stores via one or more query languages. It is difficult to evaluate different multistore
systems because of their varied goals, topologies, and query processing methodologies [59].
Thus, the database community has come up with “Polystores” as a solution to the huge
amount of data [63].
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6. Polystores

A polystore system is a DBMS constructed on top of numerous integrated heteroge-
neous storage engines [64]. In federated databases, polystore manages various data models
in many stores. It offers a single query language that can be used in various data models.
Because they are built using numerous heterogeneous and interconnected storage engines,
polystore data management systems may work with various databases. It is possible to
query various data models consistently with polystores. Polystores are required to quickly
and efficiently manage information across multiple data models. Therefore, polystores
are utilized for huge datasets or data models to handle data management solutions [63].
The polystore system is depicted in Figure 1.

Figure 1. Polystore System.

6.1. Existing Architecture of a Polystore Database System

The MIT BigDAWG (Big Data Analytics Working Group) Architecture contains a query
mechanism for enormous multiple data sets in the MIMIC II medical domain. It comprises
four layers: Database and Storage Engines, Islands, Middleware, API, and Applications.
The initial releases of BigDAWG supported the open-source database engines PostgreSQL
(SQL), Apache Accumulo (NoSQL), and SciDB (NEWSQL). Additionally, relational, array,
and text islands were also supported. Figure 2 illustrates the architecture of the BigDAWG.
The client is connected to the API through the middleware. The middleware receives
a client query and passes it to the appropriate execution island(s). Shim translates and
passes queries from each island to an appropriate database. Casts are used to migrate data
across heterogeneous databases [65].
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Figure 2. BigDAWG Architecture [63].

6.2. Major BigDAWG Components

The middleware or API comprises four parts: planner, monitor, executor, and migrator.
The planner element parses the entering query into an array of objects and creates query
plan trees. Additionally, the planner component highlights potential data engines for
each group of objects. These trees are then communicated to the monitor elements, which
identify the optimal tree for each object group. The trees are then sent to the executor
elements that assemble the collection of objects necessary to execute the query. Depending
on the requirements of the query plan, the executor element can use the migrator element to
move objects across islands and engines [65]. The components of BigDAWG are illustrated
in Figure 3.

Figure 3. BigDAWG Components [63].

Query Endpoints communicates with users at a fundamental level, accepts queries,
directs them to aggregation middleware, and returns the results. The catalog is a Post-
greSQL engine that stores metadata about other engines, islands, datasets, and connectors.
Interface middleware manages all these components. The initial release relies on Docker to
simplify the installation and startup. The interface middleware can run on a server and
connect to current database engines [63].

7. Challenge of the Future Management in Astronomical Data Archives

The current database management trends require the use of many models and data
repositories. Previous models such as federated database systems (FDBS) and data ware-
houses function well with relational data but are incapable of storing a large variety of data
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types (arrays, graphs, and images). Different data stores that manage various types of data
have their own local languages.

Cooperative but autonomous databases comprise the FDBS [66]. With FDBS, local
databases with decentralized control can gain more control over the information that they
can exchange. Federated query agents (FQA) are used by FDBS to process queries. To store
and execute queries, these agents can serve as intermediaries (mediators) between them.
FDBS data are stored in a relational database, which is a single data model supported by
the system [67].

A data warehouse is a relational database built for analysis rather than for transaction
processing. It normally comprises historical data collected from transactions, but can also
contain data from other sources. It allows a company to combine data from multiple
sources while separating the analytical and transaction workloads. Other programs that
manage the process of obtaining data and distributing it to business users can be found
in a data warehouse environment. A central data store or warehouse controls the data
warehouses [68].

Due to the rise of big data, models such as FDBS and Data Warehouse seem to be
inefficient as they can integrate only databases with a single data model that is no longer
relevant. In addition, the volume and velocity of the data growth cannot be accommodated.
These models also fall short in terms of their cost and performance. It is now safe to
conclude that the numerous methods provided by earlier data integration models for man-
aging heterogeneous data have failed. The database community has become increasingly
interested in managing huge amounts of unstructured data from numerous heterogeneous
data repositories. Due to the development in data size, rate of data incre-mentation, and ap-
pearance of new data types in various scientific data archives, this issue has received
increased attention. The “one size fits all” approach [69] is no longer appropriate for mod-
ern database engineering. The underlying DBMS must also have complete autonomy to
optimize queries. A model that can span heterogeneous data sources using a unified query
language is required. Data virtualization via mediation is essential for meeting these needs.

Polystore can span many data management systems without requiring an underly-
ing data location or storage engines, and it can be queried using a single language [63].
Polystore facilitate many-to-many interactions between information islands and data man-
agement systems across numerous distributed data models and query languages [65].
Polystores also provide seamless access to cloud data stores. The CloudMdsQL Polystore
provides a functional SQL-like query language to access many data sources (relational,
NoSQL, and HDFS) [70].

Polystore systems were recently proposed as a novel data integration approach that
provides integrated access to heterogeneous data stores via a unified single query language.
Moreover, polystore systems eliminate heterogeneity issues by implementing a communi-
cation protocol within the underlying database management systems via islands/shims,
mediation, or APIs. Different types of data, such as text, graph, image, log data, etc., require
different user interfaces. However, polystore helps integrate all these data into a single
query interface so that multiple models can be uniformly spanned.

8. Summary and Conclusions

We discussed all types of data, including big data, astronomical data, open data,
and linked open data. These data are vast, heterogeneous, and complex. We also explored
big data in astronomy and existing archives. In addition, large astronomical archives have
also been investigated. This huge amount of data must be managed efficiently. These data
can also be utilized for data mining to ensure accuracy and completeness. We also reviewed
a few scientific archive services from various observatories, where transient events have
been observed for over a century. Single-data models from the past, such as FDBS and data
warehouses, are inefficient for managing huge volumes of data. Thus, to manage this huge
amount of data with different goals, architectures, and query languages, the concept of
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polystore was elaborated. Polystores utilizes a uniform query language to span several
heterogeneous data models efficiently.

Most single data models or multi-data stores fail to handle huge amounts of data
efficiently. Various scientific projects and scientific archives are available for research.
The huge amount of data available in these resources can be mined, although they cannot
be integrated. Polystores help integrate different types of data and query multiple models
effectively for information retrieval, data visualization, and the development of useful
online applications, thus solving the problem of heterogeneous data integration.
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