
Developing a Mobile System for Natural Language

Grammar Acquisition

Marina Purgina Maxim Mozgovoy Vitaly Klyuev

The University of Aizu

Aizuwakamatsu City, Japan

{d8172102, mozgovoy, vkluev}@u-aizu.ac.jp

Abstract—The architectural and user interface patterns of

mobile applications are well established for most popular

software types. However, it is still challenging to design a mobile

application for a use scenario beyond typical daily tasks. In this

paper, we describe the challenges and design decision of mobile

WordBricks software — a virtual lab-like environment for

natural language grammar acquisition. The flexibility of natural

language grammar and complexity of visual representation of

syntactical word relationships as well as specific pedagogical

requirements required flexible system design decisions. We base

the system on a combination of dynamic GUI elements creation

and XML description of graphical scene contents. The system

was successfully tested in a real classroom environment, and

proved demonstrated high flexibility and maintainability.

Keywords—mobile-assisted language learning, intelligent

systems, virtual labs, Android application

I. INTRODUCTION

Nowadays, computer-assisted language learning (CALL)
instruments are very popular and widespread. It is generally
recognized that the appearance of many tools for language
learning as well as the powerful electronic dictionaries greatly
enriches the practice of teaching and learning [1].

However, most software tools in this area are in fact the
electronic versions of textbooks and the already existing
technologies of language learning. For example, according to
PC Magazine [2] most of popular CALL applications have the
following capabilities: lessons with multimedia content, word-
based memory games, sets of flashcards, online tutoring, and
pronunciation training.

This situation greatly differs from the use of technology
found in STEM (Science, Technology, Engineering,
Mathematics) education. Modern educational software goes far
beyond digitalized learning materials and virtual laboratories
are no longer a novelty [3]. For example, the instruments that
enable users to perform scientific experiments on a computer
screen without necessity to setup a real lab are emerging in the
fields of physics and chemistry: Open Source Physics or
ChemCollective. In programming, there are systems like
Jeliot3 and JFLAP that visualize computer programs and
demonstrate algorithms in the form of easily understandable
interactive animations. These tools were already successfully
tested on several generations of students.

Accordingly, appreciating the positive effects of these
systems on the learning, as well as increasing the motivation of
students, we started to develop WordBricks system [4], which
is an attempt to introduce ‘virtual lab-like experience’ into
language learning.

The system focuses on grammar acquisition, a topic rarely
explored in CALL instruments beyond the level of traditional
quizzes and similar exercises.

The main aim of the software is to let the user to combine
words and phrases into grammatically correct constructions,
thus explore the possibilities of natural language grammar.
This system can be used in two modes. In the free mode,
WordBricks simply gives the user a chance to experiment with
any words and word combinations to see which constructions
are admissible in the target language. In the lesson mode,
WordBricks displays a set of predefined constructions that
have to be combined by the user into correct sentences.

The design of WordBricks was greatly inspired by
Scratch [5], a system for visual programming, aimed at
beginners. In Scratch, individual elements of a computer
program are represented with colorful blocks that can be
connected together if and only if the resulting structure is
syntactically correct.

While developing WordBricks, we concentrated on the
following challenges:

 The system should reliably identify admissible word
combinations and thus serve as a solid aid to the
learners.

 The system should be intuitive and easy to use. It
should be consistent with pedagogical goals. It should
be extensible and adaptable in order to incorporate new
assignments and use cases.

 Due to the growing popularity of mobile platforms and
mobile-assisted language learning (MALL), the system
should be available on a mobile platform, and support
simple over-the-air update capabilities to reflect
changes in course materials.

 The system should be flexible enough to support a large
variety of natural language constructions and thus be
relatively easily adaptable for new natural languages.

In this regard, it should be noted that the current version of
WordBricks is a working prototype with limited functionality.
Nevertheless, preliminary testing of WordBriks in real
classrooms at the University of Aizu showed that the students
who used WordBricks scored higher on the exam tests [7]. The
testing was implemented with the following procedure. Two
sets of pre- and post-tests were used to identify differences of
participants’ English grammar skills. The pre- and post-test
were executed before and after each lesson, covering units 69
and 70 of the course textbook [6] (see Table I).

TABLE I. DESCRIPTIVE STATISTICS OF THE PRE- AND POST-TESTS

Unit Test Group
Number of

participants

Mean

(M)

Standard

deviation

(SD)

69 Pre-test WB 10 15.90 4.43
 Control 11 15.18 5.04

 Post-test WB 10 24.20 4.02

 Control 11 21.00 5.80

70 Pre-test WB 10 4.20 2.57
 Control 11 6.00 2.72

 Post-test WB 10 11.60 2.84

 Control 11 9.18 4.17

Note: WB = WordBricks (experimental) group

 Descriptive statistics of the tests from the chapter 69
indicate that the experimental (WB) group and the control
group had similar mean values in the pre-test. In the post-test,
the WB group performed a little better than the control group.
Unlike chapter 69, WordBricks users scored lower than the
control group in the pre-test of chapter 70. However, they
scored higher than the control group in post-test of chapter 70.

These experiments were performed with small groups of
students, but they met our expectations, so we are planning to
extend classroom evaluation.

II. SYSTEM DESCRIPTION

We designed the architecture of the mobile application by
following the process suggested in [8]. Android was the
operating system of choice for WordBricks due to its wide
availability and openness [9].

A. WordBricks Package Structure

WordBricks is developed using the Java programming
language. It relies on the standard functionality of the Android
framework. Thereby, the application consists of the following
components:

 Java classes that are subclasses of the main Android

SDK classes (View, Activity) and Java classes that
have no Android SDK ancestors, i.e. helper classes for
implementation of the application logic;

 the Android Manifest file;

 application resources and XML definitions of
application GUI layouts;

 exercise descriptions (XML files).

In terms of handling relationships between GUI and a logic
supporting GUI, the application architecture follows Model-
View-ViewModel architectural pattern [10].

B. Implementation of core functionality

In addition to “virtual lab” experience, WorkBricks is
intended to contribute to the overall gamification of the study
process. Therefore, we tried to visualize the grammar through
plain and simple forms as much as possible. From a technical
point of view the above problem can be logically divided into
two sub-tasks: visualization of syntactic forms and semantic
description of grammar exercises.

a) Visualizing syntactic forms. Android application GUI is

a tree of instances of View subclasses, i.e. GUI widgets [11].

The View class is from the Android framework and it is used

for all Android GUI widgets. In the system, every element of a

sentence is represented with one brick of a certain shape and

color having a set of connectors for other sentence elements.

These elements may vary from one exercise to another, and

may consist of individual words or punctuation symbols, or

arbitrary phrase fragments. According to the Android

framework, Brick objects displayed on WordBricks screen

are defined as subclasses of the View class. The GUI tree is

normally defined with XML layout files, and at the runtime

expanded automatically into the tree of corresponding objects.

However, in our case our custom View of ViewBrick is

created and added to the existing GUI layer at runtime. This

allows the user to create and delete them at any time.

Brick width is calculated in accordance with a set of
parameters. These parameters are word length, empty
connectors and non-empty connectors if they are presented.
Therefore, brick width is constantly changing in the process of
sentences construction, as illustrated in Fig. 1.

Fig. 1. Connecting bricks into a sentence

b) Describing grammar exercises semantics. As

mentioned above, the content of each individual brick varies

from exerciese to exercise. Therefore, each exercise needs its

own XML-defined set of word bricks. In other words, each

exercise is specified by an XML file with an independent

'vocabulary' of bricks. In fact, this specification of the bricks is

a description of the semantics of words and semantic

description of its use. The polysemy nature of words can be

defined with multiple XML sections.

For example, the bricks “ball” as a noun and as an adjective

(“ball game”) can be described with XML as follows:

<brick word=" ball"
 part_of_speech="Noun phrase"

 case = "common"

 person = "third"

 number = "singular" >

 <item type="brick connector"

 value="Determiner"/>

 <item type="brick connector"

 value="Adjective phrase"/>

 <item type="text" value=" ball"/>

</brick>

<brick word="ball"

 part_of_speech ="Adjective phrase">

 <item type="text" value="ball"/>

</brick>

In this example, the brick contains one word form. Its
attributes require to form a brick view, as well as a further
compilation of sentences. A list of connectors also is in place
with the attributes.

Fig. 2. Scheme of the structure and interaction of components of WordBricks

When the user attempts to insert a brick into a connector,
the system checks whether the connector’s part of speech and
the brick’s part of speech do match. If parts of speech are the
same, attributes are being checked next. If the attribute list of
the connector includes the attribute list of the brick, then the
brick is inserted into the connector successfully. Moreover, it
does not matter if the brick has a dependent brick or not. The
order of brick connection actions is also not important.

C. Interactions between WordBricks components

The scheme of the general structure and interaction of
components of the application in a simplified form is shown in
Fig. 2. The main steps of interaction are as follows.

The user can select words from the vocabulary exercises
and add them to the screen (item (1) on the Fig. 2).
Descriptions of the corresponding bricks are retrieved from the
XML exercise file (item (2) on the Fig. 2). The descriptions are

then parsed and stored in the class Brick instance (item (3) on

the Fig. 2). After that, a new element of BrickView class is
added and displayed on the screen (item (4) on the Fig. 2).

D. Design of WordBricks GUI

The Start Activity (item (5) on the Fig. 2) is a list of

chapters of the textbook (we used the textbook [6]). After

selecting the exercise, the user goes to the main screen of the

application. The user interface of the main Activity (item (6)

on the Fig. 2) is a standard Navigation Drawer (item (7) on the

Fig. 2) recommended from the official Google

documentation [12]. It is used for switching fragments of the

working area (item (8) on the Fig. 2). In WordBricks, the

Drawer on the left part of the screen allows the user to switch

between the exercises.

Working area of the Blackboard is implemented through a

Fragment class from the Android framework.

New bricks can be added using the floating action button,

located in the bottom right corner of the application screen.

Editing or deleting a block is performed by double-clicking on

the block. Also, this can be done via the Action Bar.

a) Blackboard: The user of the WordBricks can move

bricks and create sentences by employing a drag-and-drop

interface. Bricks can be connected in any order. GUI contains

color hints and pop-up information about words at the bottom

of the screen for convenience of the user.

b) Responsive design: Sizes of bricks are calculated

dynamically according to the screen resolution. Thus, the

bricks look normally on the screens of any screen size and

density. Also, the application has an ability to zoom the screen

of the Blackboard for individual user settings. However, an

horizontal orientation is preferred since a relatively long

sentences hardly fit the screen.

III. DISCUSSION

Designing a virtual lab for language learning is a very
challenging task. There is no generally accepted way of
teaching languages: numerous distinct strategies coexist, and
they greatly vary in methods and materials, and emphasize
various aspects of language use. The materials must be adapted
to the learners’ proficiency level, and might be specifically
tailored for the needs of the native speakers of a particular
language. The structure of natural languages is also very
diverse, and might greatly vary, causing difficulties both for
learners and MALL software developers. Furthermore, there is
no established way of using virtual lab-like experimental
software, since most teaching methods rely on traditional
learning activities, such as reading, writing, speaking and
listening, and assume that learner feedback is provided via
teacher-student interaction.

Therefore, the architecture of a virtual language lab must be
flexible enough to support a variety of pedagogical needs and
language structures. It is nearly impossible to anticipate all
potential use cases and needs of a particular educational setup.
So we have to aim for maximum flexibility and language
independence. In the present version of WordBricks this goal is
accomplished by encoding all brick features in XML
documents. Brick shapes, content, and configuration of
connectors are fully defined in XML. These definitions
represent semantics of words and semantics of usage in the
sentences. In its turn, XML files are currently crated manually,
but we believe that some part of this work can be automated
with natural language processing software.

A number of technical and pedagogical challenges is
caused by the distinctive features of mobile platforms. The
small mobile screen cannot display the complete set of brick
attributes, so we had to intentionally hide some of them, and
make the remaining attributes easy to see and understand. We
also had to support numerous possible user actions via limited
tap interface, and ensure proper auto-positioning and sizing of
bricks.

Preliminary experiments show that the users appreciate our
efforts, and speak in favor of the current design decisions.
However, we should note that the ready experimental data is
still very limited. We tested the system in the classroom using
a number of textbook exercises, and thus we cannot yet prove
the robustness of WordBrick on large blocks of educational
materials, complex and diverse grammatical phenomena, and
effectiveness of the software for teaching. These topics will be
addressed in our upcoming research initiatives.

IV. CONCLUSION

Designing a sound experimental MALL system is a
challenging endeavor, given the variety of use cases, natural
language complexity, and the ongoing evolution of the
software to respond to changing user needs. Proper software
architecture is a notable aid in this work, reducing the need of
rewriting code and fine-tuning it to adapt to new use scenarios.
Our current experiments show that the chosen approach

supports nearly all natural language elements we had to
implement for the classroom use, and ensures flexibility and
adaptability of WordBricks.

ACKNOWLEDGEMENT

WordBricks project is supported by the JSPS KAKENHI
Grant #25330410.

REFERENCES

[1] G. Stanley and S. Thornbury, Language learning with
technology: Ideas for integrating technology in the
language classroom, 2013.

[2] J. Duffy, “The Best Language-Learning Software for
2015,” PC Magazine, 02 Sep, 2015,
http://www.pcmag.com/article2/0,2817,2381904,00.asp.

[3] V. Potkonjak, M. Gardner, V. Callaghan, P. Mattila, C.
Guetl, V. M. Petrović, and K. Jovanović, “Virtual
laboratories for education in science, technology, and
engineering: A review,” Computers & Education, vol.
95, pp. 309–327, 2016.

[4] M. Mozgovoy and R. Efimov, “WordBricks: a virtual
language lab inspired by Scratch environment and
dependency grammars,” Human-centric Computing and
Information Sciences, vol. 3, no. 1, pp. 1–9, 2013.

[5] M. Resnick, B. Silverman, Y. Kafai, J. Maloney, A.
Monroy-Hernández, N. Rusk, E. Eastmond, K.
Brennan, A. Millner, E. Rosenbaum, and J. Silver,
“Scratch,” Commun. ACM, vol. 52, no. 11, pp. 60–67,
2009.

[6] R. Murphy, English Grammar in Use, 4th Ed:
Cambridge University Press, 2012.

[7] M. Park, M. Purgina, and M. Mozgovoy, “Learning
English Grammar with WordBricks: Classroom
Experience,” in Proceecings of the 2016 IEEE
International Conference on Teaching and Learning in
Education, 2016.

[8] Salazar, Felix Javier Acero and M. Brambilla,
“Tailoring Software Architecture Concepts and Process
for Mobile Application Development,” in Proceedings
of the 3rd International Workshop on Software
Development Lifecycle for Mobile, New York, NY,
USA: ACM, 2015, pp. 21–24.

[9] B. A. Lucini, T. Hatt, C. Gardner, and B. Pon, Mobile
platform wars: GSMA Intelligence, 2014.

[10] J. Smith, “WPF Apps With The Model-View-
ViewModel Design Pattern,” MSDN Magazine, Feb.
2009.

[11] Google Inc. and the Open Handset Alliance,
API Guides: UI Overview. Available:
http://developer.android.com/guide/topics/ui/overview.h
tml (2016, Mar. 26).

[12] Google Inc, Material Design Specification. Patterns –
Navigation. Available:
https://www.google.com/design/spec/patterns/navigatio
n.html (2016, Mar. 26).

