
On Requirements for Acceptance Testing Automation

Tools in Behavior Driven Software Development

Evgeny Pyshkin

Dept. of Computer Systems and

Software Engineering

Saint-Petersburg State Polytechnical

University

Saint-Petersburg, Russia

pyshkin@ftk.spbstu.ru

Maxim Mozgovoy

Information Systems Division

University of Aizu

Aizu-Wakamatsu, Japan

mozgovoy@u-aizu.ac.jp

Mikhail Glukhikh

Dept. of Computer Systems and

Software Engineering

Saint-Petersburg State Polytechnical

University

Saint-Petersburg, Russia

glukhikh@kspt.ftk.spbstu.ru

Abstract— We study approaches to use behavior-driven

development (BDD) model while testing software. The paper’s

focus is on challenges of BDD in regards to the automation for

mapping use cases written in narrative manner to unit tests. We

analyze existing toolkits aimed to facilitate integration of the

BDD libraries (e.g. JBehave) with development environments.

We define requirement check list for further analysis of the BDD

and IDEs integration solutions.

Keywords- software; testing; unit testing; test driven

development; behaviour driven development; programming; testing

automation

Abstract in Russian— в статье обсуждается модель разработки

и тестирования программного обеспечения на основе

поведенческого описания. Работа посвящена проблемам,

возникающим при автоматизации генерации тестовых

классов на основе вариантов использования приложения,

написанных на естественном языке. Рассмотрены

имеющиеся средства, реализующие концепции

поведенческого тестирования, рассмотрены подходы к

написанию приемочных тестов и к автоматизации их

преобразования в тестовые классы на примере

инфраструктуры JBehave, определен контрольный список

требований к средствам автоматизации определения тестов

в рамках интеграции поведенческих сценариев и средств

разработки программного обеспечения.

Ключевые слова- программное обеспечение: модульное

тестирование; приемочные тесты; разработка через

тестирование; тестирование через определение поведения;

программирование; автоматизация тестирования.

I. INTRODUCTION

Software testing is one of the activities aimed at fixing
software defects as early as possible so to improve product
quality factors. Particularly, unit tests are ones that being closer
to the design stage allow developers to find bugs while writing
code to fit functional requirements. Developing testing
concepts and methods is the essential part of software
engineering theory and practice. However, one should
differentiate the use of term “testing” when it indeed means
“software testing techniques” from the use when it designates
developing practice. It is exactly the case of test-driven

development (TDD): effectively we don’t write tests in the
strict sense of the software testing, although we use some unit
testing techniques. As Kent Beck brilliantly noticed, “Hold on
there — I never said that test-first was a testing technique. In
fact, if I remember correctly, I explicitly stated that it wasn’t”
[4]. For this reason North preferred to use the term “behavior”
not only when he introduced a behavior-driven development
(BDD) approach, but even in regards to the TDD itself
emphasizing software product behavior aspects over
testing [7].

As well as test-first techniques, the BDD approach is
maturing, and there are still debates about definitions,
application objects, characteristics, usage recommendations
and effects [3, 5]. If we think about unit testing technique, even
for a basic term of unit there is discussion on what exactly
constitutes one [5]. In this paper we remain aside from such
debates.

A. From TDD to BDD

Acceptance testing is an important activity in software
production regardless of the development lifecycle model used
in a software project [2]. Problems of acceptance testing
virtually only slightly depend on the software subject domain.
Every software design team is anxious about the quality of the
software product and about the how the system meets
customers’ business need and users’ expectations.

Acceptance tests are often less formal and therefore it’s
more difficult to formalize and automate them. Behavior driven
development (BDD) is one of agile practices dealing with unit
tests; however, it allows mapping the acceptance tests to the
language-level test classes. In BDD, user-side test cases are
being defined in form of so-called user stories, or storytests that
represent the scenarios understandable by software users and
customers. Thus the BDD creates a kind of a communication
framework that allows the developers to rediscover the
customer context better in the process of software design and
testing. Hence testing is considered here to be a sort of
cooperative work: the customers propose user side-test
scenarios, while the testers write stories and map them to the
source code constructions. It contrasts with the test-first
strategy that rather helps developers to communicate clearly

JBehave

Given a default game

When I take stones from

cell 1

Then score should look

like 0:1

Requirement

specification

Use cases

Interfaces

and Fabrics

Text test

story

Классы и

методы на

Java

public class AnnotatedStoryBase {

 @Given("a default game")

 @Pending

 public void givenDefaultGame() {

 // Not yet implemented

 }

 @When("I take stones from cell $cell")

 @Pending

 ...

public class AnnotatedStoryBase {

 protected final static FieldFactory factory

 = FieldFactory.getInstance();

 protected Field field;

 @Given("a default game")

 public void givenDefaultGame() {

 field = factory.createDefaultField();

 }

 @When("I take stones from $cell")

 public void takeStonesFromCell(int cell) {

 // Implementation of the move

 //...

 }

 @Then("score should look like $lower:$upper")

 ...

Pending

steps

Candidate

steps

JBehave

public class AnnotatedStoryBase {

 ...

 @Given("a default game")

 public void givenDefaultGame() {

 ...

 }

 @When("I take stones from cell $cell")

 public void takeStonesFromCell(int cell) {

 ...

 }

 @Then("score should look like

 $lower:$upper")

 ...

Interfaces

and Fabrics

public class StoryBase extends JUnitStory {

 @Override

 public Configuration configuration() {

 …

 }

 @Override

 public List candidateSteps() {

 ...
Integration with JUnit

and configuration

Implementation

Running

Tests

Running story kalah/

jbehave/

annotated_story_base.

story

...

Scenario:

Given a default game

When I take stones

from cell 1

Then score should

look like 0:1

Results (console,

HTML, XML, IDE)

with their teammates, not with the stakeholders (or, in
Cunningham’s words, “developers use tests to communicate
with other developers” [8]). If we follow BDD, we virtually
cannot prove that we are able to cover all equivalence classes,
or the whole group of test cases, but this is exactly the same
story as with the “test-first” TDD approach, where the term
“testing” refers to the use of unit testing-style procedures rather
than to the testing technique.

The BDD gives the way to formalize the stakeholders’ side
use cases in form of executable, readable contracts mapped to
the unit tests similar to those represented by unit testing
frameworks like JUnit [1-3].

B. BDD as a Developing Approach

BDD is still a developing approach, so there are many open
questions regarding its usage in the software design practice
and BDD tools integration with the developing environments
as well. It isn’t novel understanding that software tools became
important factor not only in the software development but also
in evaluation of design methods and concepts. The success of
TDD is partially based on the support of xUnit framework
implementations for various developing environments such as
NetBeans, Eclipse, Visual Studio, etc. Janzen and Saiedian
note that TDD and related technologies (inspired with Extreme
Programming and agile development methods) may persist
even if the parent technologies fade in popularity [6].

Among other issues, in the following sections we try to
define some essential problems of the BDD design, usage and
applications.

II. BDD COMMUNICATION SCHEMAACCORDING TO [2],

THREE PRINCIPAL ROLES HAVE TO BE CONSIDERED WHILE

ORGANIZING THE PROCESS IN BDD:

 the Customer, who identifies user stories on the base of
customer’s understanding of the domain. Ideally, the
customer-side engineer writes acceptance test stories in
natural or quasi-natural language (“as English as
possible”);

 the QA Engineer, who does a big deal of reviewing
acceptance tests, suggests new scenarios, finds
problems (e.g. stories that conflict with each other or
with requirements specification), transfers acceptance
scenarios to the developing team in form of unit tests,
and communicates both with the Customer and the
Developer to define tests at the source code level;

 the Developer, who implements the system so it fits the
requirements and passes acceptance tests.

 Figure 1 shows basic steps of the acceptance test
conversions as they are implemented in JBehave, one well
known BDD framework [3, 10]. First, test stories are defined in
quasi natural language, and it is joint work of the customer and
the QA engineer. After that the unit test skeleton are
constructed either manually (in most products) or with some
automation. As in TDD (the ideal case), at this phase some
pending steps may occur, if the code is not implemented yet.

Figure 1. Conversion acceptance test to JUnit tests in JBehave

The unit tests (which they called the candidate steps) are
then configured to be run by the JUnit test runners (see
Figure 2).

Figure 2. Running JUnit tests in JBehave

In the above illustrations we used an example logical game
Kalah designed for our book on software testing. We consider
logical game software to be a good example of writing test
stories understandable by majority of eventual readers. In our
case, we can illustrate how are text stories are being mapped to
the unit test.

According to the game rules, in the initial position shown in
Figure 3 the player holding the lower row of cells containing
stones may, for example, take stones from the cell number 1.
As a result the stones are being distributed sequentially to cells
from 2 to 6 and the last stone goes to the player’s (right side)
Kalah giving him again the turn (see Figure 4). The example
test scenarios describing the move and its consequences may
be as follows:

Given a default game

When I take stones from cell 1

Then score should look like 0:1

Then should be lower player's turn

Then cell 3 should contain 7 stones

Then cell 1 should be empty

The unit tests (which they called the candidate steps) are
then configured to be run by the JUnit test runners (see
Figure 2).

Figure 3. Kalah game: initial position

Figure 4. Kalah game: move from the cell 1

Assuming the factory is the game field creator, and the
field object is used to operate with the game field, the
respective unit test class methods can be implemented as
follows (since the Field class has not been exposed, you may
consider the following source as a pseudo code, although it is
the fragment of compiled Java code):

@Given("a default game")

public void givenDefaultGame() {

 field = factory.createDefaultField();

}

@When("I take stones from cell $cell")

public void takeStonesFromCell(int cell) {

 if (field.isUpperTurn())

 field.makeTurn(cell-field.getWidth()-1);

 else field.makeTurn(cell-1);

}

@Then("it is lower player's turn")

public void lowerPlayerTurn() {

 assertFalse(field.isUpperTurn());

}

@Then("score should look like $lower:$upper")

public void scoreShouldBe(int lower, int upper) {

 assertEquals(lower,

 field.getKalahStoneNumber(false));

 assertEquals(upper,

 field.getKalahStoneNumber(true));

}

@Then("cell $cell should contain $stones stones")

@Alias("cell $cell should contain $stones stone")

public vood cellContains(int cell, int stones) {

 boolean upper = (cell > field.getWidth());

 assertEquals(stones,

 field.getStoneNumber(upper?

 cell-field.getWidth()-1:cell-1,

 upper));

}

@Then("cell $cell should be empty")

public void cellEmpty(int cell) {

 cellContains(cell, 0);

}

We believe that on the basis of text based scenarios the
source code skeleton can be generated automatically.

@Given("a default game")

public void givenADefaultGame() {

 // TODO: Write the initial condition

 throw new UnsupportedOperationException();

}

@When("I take stones from cell $cell")

public void iTakeStonesFromCell(int cell) {

 // TODO: Write the unit test action

 throw new UnsupportedOperationException();

}

@Then("it is lower player's turn")

public void itIsLowerPlayersTurn() {

 // TODO: Write the assertion code

 throw new UnsupportedOperationException();

}

//...

Some difficulties of automated story mapping to unit tests
are discussed in section IV.

III. A STUDY OF BDD TOOLKITS

There are numerous toolkits supporting BDD, such as
JBehave [10], NBehave [11], RSpec [12], MSpec [13],

10
1 2 3 4 5 6

Cucumber [14], StoryQ [15], SpecFlow [16], and CBehave
[17]. Some characteristics of BDD toolkits are summarized in
Table I.

TABLE I. THE BDD TOOLKITS CHARACTERISTICS

Toolkit

Analyzed Characteristics

Supported

languages

User stories

as plain text

Mapping

rules
a

Automated

mapping to the

unit tests

JBehave Java Yes Yes No

NBehave .NET Yes Yes No

RSpec Ruby No No No

MSpec C# No No No

Cucumber

Ruby,
Java,

Python,

.NET,
C++, etc.

Yes Yes No

StoryQ .NET Yes Yes No

SpecFlow .NET Yes Yes Yes

CBehave C Yes Part. No

a. for automated acceptance testing

As argued in [3, 9], the BDD is strongly based on the
automation of the specification tasks and tests, and on proper
support by the IDE toolkits. In [3], the authors emphasize
ubiquitos languages, test-first practice and automated
acceptance testing as key characteristics making up the BDD.

For xBehave family (represented by JBehave and
NBehave), In [18] Rudolph noticed: “cycles needed to map
English to executable code via attributes makes it virtually
infeasible for driving out a domain at the unit level”. Each
sentence created in user stories has to be mapped manually to
an executable method; for every change we have to find the
related method and to change it respectively, and all this is
really painful [20]. xSpec family toolkits have no such
problems, but they are less appropriate for the business, since
test scenarios are defined only in the code, not in natural
langauge text or domain specific language

Even in cases where mapping rules are well defined
(JBehave, Cucumber, SpecFlow, NBehave), most test systems
and BDD implementations lack the support of automatic
transition from plain text stories to test classes skeletons and
acceptance tests maintenance.

To be fair, in SpecFlow (based on xBehave framework)
there are sets of solution to facilitate writing xBehave tests and
acceptance criteria, together with deeper integration with
Visual Studio, including IDE templates, running and
debugging facilities [17, 18].

In this paper we pay special attention to tools
implementing the idea of developers/stakeholders
communication framework. It is important to note that some
behavior driven design instruments just implement an idea of
having developer/tester communication oriented behavior
modeling schema like it is in MSpec or RSpec.

TABLE II. THE BDD TOOLKITS IDE INTEGRATION

Toolkit
IDE Integration Features

Deploy-

ment

IDE

integration

IDE

templates
a Debug

b
Unit tests

JBehave jar No No Part. JUnit

NBehave Install
Plug-in for

Visual Studio
No Part.

NUnit

MbUnit

XUnit
MSTest

RSpec

Install

on
Ruby

No No No
Ruby built

in

MSpec

Install

or

source
code

Part. No Yes
xUnit

based

Cucumber

Install

on
Ruby

Part. No No
Ruby built

in

StoryQ dll No No No

Visual

Studio
Unit

Testing

SpecFlow Install Visual Studio Yes Yes

NUnit,
Visual

Studio

Unit
Testing

CBehave
source

code
No No No Own

a. like New->Fearture, etc.

b. like breakpoints on Given/When/Then and steps though acceptance test execution

IV. CHALLENGES IN BDD BASED ACCEPTANCE TESTS

AUTOMATION

It seems nice to have automated procedure to pass from
acceptance tests to the software unit tests. There are still some
limitations and challenges that we have to consider if you try to
use BDD in your team.

First, while it is easy to automate unit testing, it is far from
being easy to automate conversion of acceptance tests into
implementation level tests.

Second, the acceptance tests are requirements [2]. Since
both requirements and software change over time, the issue of
acceptance tests modification is very important. While working
on a story, we may realize that some cases are being missed.
Another possibility is caused with changes in the application’s
internal interface. The acceptance tests don’t change but the
conversion procedure changes.

Third, it is unclear, whether are we always able to define
expected behavior that we can testwithout diving into the code
inner details.

Finally, the great challenge is to progress from the
unstructured natural language to the simplified structured
language based on the requirement specifications and in a way
that the test cases can be automated [3].

As noted above, one of the most serious drawbacks of BDD
toolkits lies in their inability to convert natural language-based
user stories into executable tests. Unfortunately, we have to
accept this situation, since such a conversion requires

translation of informal natural language constructions into
formal statements of a programming language and thus can be
considered a variation of programming, which is a task for a
human expert.

However, the context of BDD user stories is highly
restricted, and the text of stories itself is well structured. Even
the tools that are advertised as “supporting plain-text user
stories” in fact set certain restrictions on the structures of
stories. In particular, a user story is divided into isolated
scenarios, in their turn made up of sections that represent input
data, preconditions and postconditions. These structured plain-
text definitions are automatically converted into executable
testing code with a separate stub function for every scenario, to
be implemented by a programmer.

The latter observation makes us believe that the process of
user stories conversion can be automated further, at least, to
some extent. While automatic story conversion is infeasible,
individual elements of computer-aided conversion are certainly
doable with the help of modern natural language processing
methods and simple heuristic procedures.

For example, numbers, proper names, and abbreviations
found in the user story most probably represent parameters to
be passed to the testing code. The system can also generate
sensible test function names from scenario titles.

Since people might tend to use the same words for the same
objects in different scenarios, the system can analyze word use
and mark (for example) most frequent nouns as potential
parameters. Within this process, language processing
algorithms can also recognize different word forms of the same
word, which is important for natural languages with rich
morphology, such as Russian.

V. REQUIREMENT ANALISYS FOR A BDD SUPPORTING

TOOL

One of the important questions in regards of using BDD in
design time is how to integrate better the BDD practice with
the developing environments. As Table II shows, there is only
limited support for BDD in existing implementations. Probably
the most advanced implementation is the SpecFlow for Visual
Studio, but for the case of Java based tools we found only few
examples of BDD automation with quite restricted
functionality. Let us take the Eclipse plug-in cited in [21] as an
example. In addition to the features supported by the JBehave
class framework, it allows story keywords highlighting in the
behavior editor window, linking story steps to the matched unit
test methods, special icon for story files, and some auto
completion facilities while writing stories. These capabilities
seem still not enough in regards to BDD automation.

Hence collecting the requirements for a BDD supporting
tools seems to be actual problem of the domain. Here are some
primary considerations for further analysis of the BDD
integration solutions.

Conversion of narrative stories to the marked-up
scenarios. Marked-up scenarios should use a set of predefined
templates that can be converted into the source code at later
stages. On the other hand, scenarios should be parts of

narrative stories. It is good if narrative stories can use wide
range of words and phrases from one or more natural
languages.

Conversion from the marked-up scenarios to the unit
tests. This task seems to be much simpler than the previous one
since we need only to convert predefined templates to the code
using some programming language. Usually one template
corresponds to one function or method. Relation between
template and method can be defined by using annotations.

Conversion from the unit tests to the marked-up
scenarios. It is useful to synchronize changes made in the unit
tests directly by testers or QA engineers with actual state of the
user stories (it is probable that in most cases they would prefer
to write code rather than stories).

“Running” user stories. To facilitate acceptance testing
by the stakeholders, the unit tests may be executed as a
response to the respective command applied directly to the user
story.

Marking up scenarios. Creating test scenarios (and then
the unit tests) may be simpler if the QA analyzer has a special
automated tool to mark up the scenarios, deciding (e.g. in
dialog mode) which part of user stories should be converted to
which elements during marking-up stage (e.g. class and method
names, method parameters, aliases, and so on).

Including meta-information to the stories. Since the
BDD is about connecting developers and stakeholders, when
the customer defines user stories, it may be useful to have a
possibility to express relevant customer-side information. Fro
example, references to the requirements specification,
dependency on other stories, creation information such as data,
author, reasoning, etc. may be useful.

Tracing and debugging the test executions by marked-
up scenarios. Since the different marked-up scenarios may be
served by the same unit test, if the scenarios are traceable and
debuggable, we can easier recognize steps that failed and
which data have been used in the failed tests. This feature is
related to test run reporting.

Test run reporting. Test report allows us to know which
narrative stories are executed correctly. In case of fail, test
report should pinpoint the specific location inside the story that
caused the problem. It is much easier for the tester to detect
some problem if it is known where this problem occurs. It is
essential to have references not only to the source code but also
directly to the test scenario.

Back trace to the story from the test run. To fix a
problem with some test, the developer should be able to debug
an incorrectly working test. While debugging it may be useful
to have associations between parts of source code and narrative
stories.

VI. CONCLUSION

In this study we analyzed the state of the art in the domain
of behavior driven development automation. Despite the fact
that there are many tools supporting BDD, they are still more
oriented to the developers’ side, which, in some observation,

contrasts with the initial conception of facilitating
communication between the development team and the
customers.

We realized that in many published cases the test stories
and the marked-up scenarios were composed by the same
engineers (so we did, too). Therefore, those engineers may
consider a necessity to write stories as some additional work
that doesn’t lead to unit tests that are better and easier to create.

The interest to behavior driven development is high these
days. The developers are keen to simplify their job by
employing software tools, and as our investigations show, there
are numerous instruments to choose from. However, a closer
look reveals that the most of them implement BDD ideas only
at surface level. Formally they do assist agile development, but
they still fail to accomplish the basic aim of BDD, namely, to
simplify communications between the stakeholders and the
engineers. This observation makes us believe that there exists a
very perspective niche for the future development of such kind
of systems. While automating the formalization of natural
language constructions (i.e. natural language to formal
language translation) is also the most difficult task, even
modest improvements in this process can greatly increase the
overall usability of BDD-supporting instruments. We advise all
interested developers to have a closer look at this problem.

ACKNOWLEDGMENT

We thank Mark Finkov who encouraged us to explore the
area of the behavior driven development at a period we were
working on a book on software testing.

We also express our gratitude to Prof. Vitaly Klyuev from
the University of Aizu for the collaboration and his valuable
advices.

REFERENCES

[1] Reppert, T. Don’t just break software, Make Software: How story-test-

driven development is changing the way QA, customers, and developers
work. Better Software, 6(6): 18–23, 2004.

[2] Melnik, G., Maurer, F. Multiple perspectives on executable acceptance
test-driven development. In Proceeding of the 8th international
conference on Agile processes in software engineering and extreme
programming (XP'07). Springer-Verlag Berlin, Heidelberg, 2007.

[3] Solis, C., Xiaofeng Wang. A study of the characteristics of behaviour
driven development. In Proceedings of 37th EUROMICRO Conference

on Software Engineering and Advanced Applications (SEAA), Oulu,
Aug., 30 – Sep., 2, 2011. DOI=10.1109/SEAA.2011.76.

[4] Beck, K. Aim, Fire. IEEE Software, vol. 18, no. 5, 87–89, Sept/Oct
2001.

[5] Janzen, D., Saiedian, D.H. Test-driven development: concepts,
taxonomy, and future directions. Computer, vol.38, no. 9, 43–50, Sept
2005.

[6] D. Janzen and H. Saiedian. Does Test-Driven Development Really
Improve Software Design Quality? IEEE Software, vol. 25, no. 2, 77–
84, Mar/Apr 2008.

[7] North, D. Behavior modification: the evolution of behavior-driven
development. Better Software, March 2006.

[8] XP pioneer stumps for test-first programming, In Udell, J. Test before
you leap. InfoWorld, p. 55, 08.04.2003.

[9] Tavares, H.P., Guimarães Rezende, G., Mota, V., Soares Manhães, R.,
Atem de Carvalho, M. A tool stack for implementing Behaviour-Driven
Development in Python Language, CoRR, 2010.

[10] What is JBehave, http://jbehave.org. Accessed: March 21, 2012.

[11] NBehave: BDD Framework for .Net, http://nbehave.org. Accessed:
March 21, 2012.

[12] RSpec, http://rspec.info. Accessed: March 21, 2012.

[13] Getting started with MSpec,
https://github.com/machine/machine.specifications#readme. Accessed:
March 21, 2012.

[14] Cucumber – Making BDD Fun, http://cukes.info. Accessed: March 21,
2012.

[15] StoryQ, http://storyq.codeplex.com. Accessed: March 21, 2012.

[16] SpecFlow: Binding business requirements to .NET code,
http://specflow.org. Accessed: March 21, 2012.

[17] CBehave: A Behavior Driven Development Framework for C,
http://code.google.com/p/cbehave/. Accessed: March 21, 2012.

[18] What is the most mature BDD Framework for .NET?,
http://stackoverflow.com/questions/307895/what-is-the-most-mature-
bdd-framework-for-net. Accessed: March 21, 2012.

[19] Sanderson, S. Behavior Driven Development (BDD) with SpecFlow and
ASP.NET MVC, http://blog.stevensanderson.com/2010/03/03/behavior-
driven-development-bdd-with-specflow-and-aspnet-mvc/. Accessed:
March 21, 2012.

[20] Borg, R., Kropp. M. Automated acceptance test refactoring. In
Proceedings of WRT’11, May 22, 2011, Waikiki, Honolulu, HI, USA.

[21] Vasilev, N. Behavior Driven Development with Java, Slideshare, July,
15, 2011, http://www.slideshare.net/shadrik/bdd-with-java-8323915.
Accessed: May, 22, 2012.

http://jbehave.org/
http://nbehave.org/
http://rspec.info/
https://github.com/machine/machine.specifications#readme
http://cukes.info/
http://storyq.codeplex.com/
http://specflow.org/
http://code.google.com/p/cbehave/
http://stackoverflow.com/questions/307895/what-is-the-most-mature-bdd-framework-for-net
http://stackoverflow.com/questions/307895/what-is-the-most-mature-bdd-framework-for-net
http://blog.stevensanderson.com/2010/03/03/behavior-driven-development-bdd-with-specflow-and-aspnet-mvc/
http://blog.stevensanderson.com/2010/03/03/behavior-driven-development-bdd-with-specflow-and-aspnet-mvc/
http://www.slideshare.net/shadrik/bdd-with-java-8323915

