

© EUROSIS-ETI

DEVELOPING TRAINABLE BOTS FOR A MOBILE GAME OF TENNIS

Maxim Mozgovoy1, Akane Yamada1, and Iskander Umarov2

1The University of Aizu 2TruSoft Int’l, Inc.

Tsuruga, Ikki-machi, Aizuwakamatsu 204 37th Ave. N #133

Fukushima, 965-8580 Japan St. Petersburg, FL 33704 USA

{mozgovoy, m5191102}@u-aizu.ac.jp umarov@trusoft.com

KEYWORDS

Case-based reasoning, learning by observation, behavior

capture.

ABSTRACT

While behavior patterns of AI-controlled videogame charac-

ters are typically designed manually, self-learning AI systems

possess unique attractive features. They can be used to create

distinct character personalities of different skill levels, and

“train your own character” can be a major user-end feature of

a game. In this paper we present our attempt to develop a

self-learning AI system for a mobile game of tennis. We

show that our AI agents can learn behavior patterns from

user actions, and play accordingly in similar game situations,

exhibiting playing skills comparable to skills of a trainer.

INTRODUCTION

According to the report by International Data Corporation,

online multiplayer games already surpassed single-player

games in terms of consumer spending and player commit-

ment (Ward 2015). The competition among such games is

high, so game designers have to introduce innovative game-

play elements to stay on the market.

Typically, in online multiplayer games people compete both

with other people, and with AI-controlled bots, so the quality

of AI system has a significant impact on the overall success

of a product. For our ongoing project of an online mobile

tennis game, we decided to concentrate the effors on the AI

system that implements the elements, suggested in (Umarov

and Mozgovoy 2014):

1. Complex, non-repetitive behavior of AI bots.

2. Distinct personalities of AI bots, exhibiting a vari-

ety of skill levels and playing styles.

3. “Train your own character” mode as an element

of gameplay.

To achieve these goals, we employ a learning by observa-

tion-based approach to AI design, outlined in (Mozgovoy

and Umarov 2011). As a result, we are planning to obtain AI

agents that can learn from human players, and exhibit hu-

man-like behavior, comparable in terms of style and skill

level to behavior of their trainers. Our current system shows

promising results, and is already able to learn from human

actions and play accordingly.

TENNIS GAME ENGINE

The game of tennis relies on a custom-designed game engine,

developed with Unity3D (see Figure 1).

Figures 1: Tennis Game Engine

Each player in the game can perform actions of two types:

run to the specified location and shoot the ball into the speci-

fied point on the court. The game physics is accurate (Lopu-

khov 2015), so, for example, if a player tries to send the ball

coming at a high speed to a nearby point on the opponent’s

side of a court, a backspin shot will be performed, so the ball

will fly high over the net. Since we want to favor tactical

gameplay rather than arcade, the game engine will automati-

cally steer the players towards optimal ball receiving points.

Thus, a player only has to care about own character location

while the ball is moving towards the opponent, and about the

best target for the next shot.

AI DESIGN PRINCIPLES

The AI subsystem can operate in two distinct modes. In

learning mode, it observes the actions of the specified player,

and stores them in its knowledgebase. In acting mode, the AI

subsystem uses its knowledgebase to retrieve the most suita-

ble action for a given game world state upon request from the

game engine.

© EUROSIS-ETI

AI knowledgebase is represented with a set of three graphs,

where individual vertices correspond to different game situa-

tions, and edges correspond to player actions. The difference

between the graphs is in the list of attributes used to identify

a single game situation. In other words, each graph describes

desired agent behavior in form of a finite state machine at

more or less accurate levels of abstraction. Our current sys-

tem setup is described in Table 1.

In learning mode, each player action triggers insertion of a

new (Game situation, action) pair into each of three graphs.

If a game situation with the same attributes already exists in a

certain graph, the action will be connected to the existing

game situation node.

Table 1: Attributes of a Game Situation

Graph Attributes

most

accurate

(level 0)

Game state (serve / hit / receive / etc.)

Player position*

Ball target point*

Player’s intended shot target*

Player movement destination point*

Opponent position*

Opponent intended shot target*

Ball position*

average

accuracy

(level 1)

Game state (serve / hit / receive / etc.)

Player position*

Ball target point*

Player movement destination point*

Opponent position*

Opponent intended shot target*

Ball position**

least

accurate

(level 2)

Game state (serve / hit / receive / etc.)

Player position**

Ball target point**

Opponent position**
* (x, y); inside a 10×10 grid
** (x, y); inside a 5×5 grid

Table 2: Sequence of Knowledgebase Queries

Query Graph

level

Require

action

adjacency

Extended range

search on attributes

1 0 Yes —

2 0 No —

3 1 Yes —

4 1 No —

6 2 Yes —

7 2 Yes Player, opponent,

and ball coordinates

8 2 No —

9 2 No Player, opponent,

and ball coordinates

In acting mode, the AI subsystem performs a number of que-

ries to the graphs in order to find the best possible action in

the given game situation. We start with the most strict query

to find a perfect match for the given game situation in the

most accurate graph, and if no relevant actions are found, we

relax search conditions.

Currently there are three ways to relax a query: a) search in a

graph of a higher abstraction level; b) instead of a perfect

match require a match within a given value range — this is

helpful for numerical attributes, such as player coordinates;

c) do not require that two subsequent actions are also adja-

cent in the game graph (and thus do not follow the same

game strategy). We cannot rely on assumption that AI always

finds a perfect match in the knowledgebase for any possible

game situation, so certain capabilities for approximate search

are necessary.

A fragment of an actual level 0 graph of a trained agent is

shown in Figure 2. The sequence of search actions we cur-

rently use in acting mode is provided in Table 2.

Figure 2: A Fragment of a Game Graph

(Visualized with AT&T GraphViz)

EXPERIMENTAL SETUP

One of the goals of fine-tuning graph attributes and query

conditions is to improve the overall playing experience for

the users. In particular, we believe that the AI system should

exhibit satisfactory behavior after 6-10 minutes of observa-

tions. Our experiments show that in average a player per-

forms approximately 100 actions per minute (auto-steering

movements, performed by the game engine, are also classi-

fied as actions), so a typical training session includes 600-

1000 actions.

As a preliminary test of our system, we ran several game

sessions between three players, as described in Table 3. An

individual match ends when seven points are scored by either

party. Obviously, the most skillful player is C, and the key

component of his playing style is a winning strategic place-

ment of a game character.

© EUROSIS-ETI

Next, we tested how the obtained AI agents play against each

other by playing three matches for each pair of opponents. In

all experiments the agents showed performance comparable

to their trainers: A beats B with a score ranging from 7:0 to

7:3, and C beats A with the same outcome. Furthermore, C

was able to beat B with a score 7:1 in all three test matches.

This outcome is expected, since A is more skilled than B, but

our training data did not contain games between B and C.

While these results cannot yet prove that the obtained agents

actually preserve acting style of human players, they show

that the relative skill level of the opponents was preserved.

Table 3: Game Sessions

Session Duration, sec Players Outcome

1 56 A vs. B 7:0

2 66 A vs. B 7:1

3 80 A vs. B 7:2

4 81 A vs. B 7:2

5 83 A vs. B 7:2

6 57 A vs. C 2:7

7 53 A vs. C 0:7

8 47 A vs. C 0:7

CONCLUSION

Game AI is a special topic for academic research, since com-

puter games set such unusual requirements for AI systems as

human-likeness, unpredictability, skill level adjustments, and

fun, a core of any entertainment. Self-learning AI systems

have a potential to address these challenges, since they can

directly learn from human opponents, and thus exhibit dis-

tinct human-like behaviors of different skill levels. Surveys

show that gamers actually prefer such AI opponents (Soni

and Hingston 2008).

In this paper, we briefly discussed our work-in-progress AI

systems for the game of tennis. While our AI did not reach a

production-quality stage yet, it demonstrated the ability to

learn and repeat behavioral patterns of human players

REFERENCES

Lopukhov, A. 2015. “Realistic Ball Motion Model for a Tennis

Videogame”. Proceedings of International Workshop on Appli-

cations in Information Technology (IWAIT), pp. 81-83.

Mozgovoy, M. and Umarov, I. 2011. “Behavior Capture with Act-

ing Graph: a Knowledgebase for a Game AI System.” Lecture

Notes in Computer Science, vol. 7108, pp. 68-77.

Soni, B. and Hingston, P. 2008. “Bots Trained to Play Like a Hu-

man are More Fun”. Proceedings of IEEE International Joint

Conference on Neural Networks, pp. 363-369.

Umarov, I. and Mozgovoy, M. 2014. “Creating Believable and

Effective AI Agents for Games and Simulations: Reviews and

Case Study”. Contemporary Advancements in Information

Technology Development in Dynamic Environments, pp. 33-57.

Ward, L. 2015. “Gaming Spotlight, 1H15: How Online Multiplayer

Is a Game Changer.” Document #256831, International Data

Corporation.

