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ABSTRACT 

 
While behavior patterns of AI-controlled videogame charac-

ters are typically designed manually, self-learning AI systems 

possess unique attractive features. They can be used to create 

distinct character personalities of different skill levels, and 

“train your own character” can be a major user-end feature of 

a game. In this paper we present our attempt to develop a 

self-learning AI system for a mobile game of tennis. We 

show that our AI agents can learn behavior patterns from 

user actions, and play accordingly in similar game situations, 

exhibiting playing skills comparable to skills of a trainer. 

 

 
INTRODUCTION 

 
According to the report by International Data Corporation, 

online multiplayer games already surpassed single-player 

games in terms of consumer spending and player commit-

ment (Ward 2015). The competition among such games is 

high, so game designers have to introduce innovative game-

play elements to stay on the market.  

 

Typically, in online multiplayer games people compete both 

with other people, and with AI-controlled bots, so the quality 

of AI system has a significant impact on the overall success 

of a product. For our ongoing project of an online mobile 

tennis game, we decided to concentrate the effors on the AI 

system that implements the elements, suggested in (Umarov 

and Mozgovoy 2014): 

1. Complex,  non-repetitive  behavior  of  AI bots. 

2. Distinct personalities of AI bots, exhibiting  a  vari-

ety  of  skill  levels  and  playing styles. 

3. “Train  your  own  character”  mode  as  an element 

of gameplay. 

 

To achieve these goals, we employ a learning by observa-

tion-based approach to AI design, outlined in (Mozgovoy 

and Umarov 2011). As a result, we are planning to obtain AI 

agents that can learn from human players, and exhibit hu-

man-like behavior, comparable in terms of style and skill 

level to behavior of their trainers. Our current system shows 

promising results, and is already able to learn from human 

actions and play accordingly. 

 

TENNIS GAME ENGINE 

 
The game of tennis relies on a custom-designed game engine, 

developed with Unity3D (see Figure 1). 

 

 
 

Figures 1: Tennis Game Engine 

 
Each player in the game can perform actions of two types: 

run to the specified location and shoot the ball into the speci-

fied point on the court. The game physics is accurate (Lopu-

khov 2015), so, for example, if a player tries to send the ball 

coming at a high speed to a nearby point on the opponent’s 

side of a court, a backspin shot will be performed, so the ball 

will fly high over the net. Since we want to favor tactical 

gameplay rather than arcade, the game engine will automati-

cally steer the players towards optimal ball receiving points. 

Thus, a player only has to care about own character location 

while the ball is moving towards the opponent, and about the 

best target for the next shot. 

 
AI DESIGN PRINCIPLES 

 
The AI subsystem can operate in two distinct modes. In 

learning mode, it observes the actions of the specified player, 

and stores them in its knowledgebase. In acting mode, the AI 

subsystem uses its knowledgebase to retrieve the most suita-

ble action for a given game world state upon request from the 

game engine. 
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AI knowledgebase is represented with a set of three graphs, 

where individual vertices correspond to different game situa-

tions, and edges correspond to player actions. The difference 

between the graphs is in the list of attributes used to identify 

a single game situation. In other words, each graph describes 

desired agent behavior in form of a finite state machine at 

more or less accurate levels of abstraction. Our current sys-

tem setup is described in Table 1. 

 

In learning mode, each player action triggers insertion of a 

new (Game situation, action) pair into each of three graphs. 

If a game situation with the same attributes already exists in a 

certain graph, the action will be connected to the existing 

game situation node. 

 

Table 1: Attributes of a Game Situation 

 

Graph Attributes 

most 

accurate 

(level 0) 

Game state (serve / hit / receive / etc.) 

Player position* 

Ball target point* 

Player’s intended shot target* 

Player movement destination point* 

Opponent position* 

Opponent intended shot target* 

Ball position* 

average 

accuracy 

(level 1) 

Game state (serve / hit / receive / etc.) 

Player position* 

Ball target point* 

Player movement destination point* 

Opponent position* 

Opponent intended shot target* 

Ball position** 

least 

accurate 

(level 2) 

Game state (serve / hit / receive / etc.) 

Player position** 

Ball target point** 

Opponent position** 
* (x, y); inside a 10×10 grid 
** (x, y); inside a 5×5 grid 

 

 

Table 2: Sequence of Knowledgebase Queries 

 

Query Graph 

level 

Require 

action 

adjacency 

Extended range 

search on attributes 

1 0 Yes — 

2 0 No — 

3 1 Yes — 

4 1 No — 

6 2 Yes — 

7 2 Yes Player, opponent, 

and ball coordinates 

8 2 No — 

9 2 No Player, opponent, 

and ball coordinates 

 

In acting mode, the AI subsystem performs a number of que-

ries to the graphs in order to find the best possible action in 

the given game situation. We start with the most strict query 

to find a perfect match for the given game situation in the 

most accurate graph, and if no relevant actions are found, we 

relax search conditions. 

 

Currently there are three ways to relax a query: a) search in a 

graph of a higher abstraction level; b) instead of a perfect 

match require a match within a given value range — this is 

helpful for numerical attributes, such as player coordinates; 

c) do not require that two subsequent actions are also adja-

cent in the game graph (and thus do not follow the same 

game strategy). We cannot rely on assumption that AI always 

finds a perfect match in the knowledgebase for any possible 

game situation, so certain capabilities for approximate search 

are necessary. 

 

A fragment of an actual level 0 graph of a trained agent is 

shown in Figure 2. The sequence of search actions we cur-

rently use in acting mode is provided in Table 2. 

 

 
 

Figure 2: A Fragment of a Game Graph 

(Visualized with AT&T GraphViz) 

 
EXPERIMENTAL SETUP 

 
One of the goals of fine-tuning graph attributes and query 

conditions is to improve the overall playing experience for 

the users. In particular, we believe that the AI system should 

exhibit satisfactory behavior after 6-10 minutes of observa-

tions. Our experiments show that in average a player per-

forms approximately 100 actions per minute (auto-steering 

movements, performed by the game engine, are also classi-

fied as actions), so a typical training session includes 600-

1000 actions. 

 

As a preliminary test of our system, we ran several game 

sessions between three players, as described in Table 3. An 

individual match ends when seven points are scored by either 

party. Obviously, the most skillful player is C, and the key 

component of his playing style is a winning strategic place-

ment of a game character. 
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Next, we tested how the obtained AI agents play against each 

other by playing three matches for each pair of opponents. In 

all experiments the agents showed performance comparable 

to their trainers: A beats B with a score ranging from 7:0 to 

7:3, and C beats A with the same outcome. Furthermore, C 

was able to beat B with a score 7:1 in all three test matches. 

This outcome is expected, since A is more skilled than B, but 

our training data did not contain games between B and C. 

While these results cannot yet prove that the obtained agents 

actually preserve acting style of human players, they show 

that the relative skill level of the opponents was preserved. 

 

Table 3: Game Sessions 

 

Session Duration, sec Players Outcome 

1 56 A vs. B 7:0 

2 66 A vs. B 7:1 

3 80 A vs. B 7:2 

4 81 A vs. B 7:2 

5 83 A vs. B 7:2 

6 57 A vs. C 2:7 

7 53 A vs. C 0:7 

8 47 A vs. C 0:7 

 
CONCLUSION 

 
Game AI is a special topic for academic research, since com-

puter games set such unusual requirements for AI systems as 

human-likeness, unpredictability, skill level adjustments, and 

fun, a core of any entertainment. Self-learning AI systems 

have a potential to address these challenges, since they can 

directly learn from human opponents, and thus exhibit dis-

tinct human-like behaviors of different skill levels. Surveys 

show that gamers actually prefer such AI opponents (Soni 

and Hingston 2008). 
 

In this paper, we briefly discussed our work-in-progress AI 

systems for the game of tennis. While our AI did not reach a 

production-quality stage yet, it demonstrated the ability to 

learn and repeat behavioral patterns of human players 
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