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Abstract. Behavior capture is a popular experimental approach used to obtain 

human-like AI-controlled game characters through learning by observation and 

case-based reasoning. One of the challenges related to the development of 

behavior capture-based AI is the choice of appropriate data structure for agents’ 

memory. In this paper, we consider the advantages of acting graph as a 

memory model and discuss related techniques, successfully applied in several 

experimental projects, dedicated to the creation of human-like behavior. 
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1 Building Believable Game Characters with Behavior Capture 

1.1 Believable Behavior: a Key Feature of Game AI 

Modern computer games and simulation-and-training applications are often 

characterized as ―virtual worlds‖. This name emphasizes the growing complexity of 

game/simulation environments that are able to create higher sense of immersion than 

ever. This is done not only through hi-quality audiovisual technologies and detailed 

interactive physical models, but also with the help of modern AI methods. 

Many virtual worlds are inhabited both by human-controlled characters and AI 

agents that serve as world’s neutral ―native population‖, allies or enemies. For 

example, in Unreal Tournament game (Deathmatch mode), independent players try to 

kill each other in a 3D map, and each player can be controlled either by human or by a 

computer (in this case it is usually called ―a bot‖). In general, computer-controlled 

characters are found in a variety of video games and training simulators. A good 

example of such simulator (or a ―serious game‖) that involves computer-controlled 

opponents is Virtual Battle Space 2. This software is a variation of 3D world, 

specially designed for initial training of soldiers, and includes numerous training 
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scenarios, ranging from vehicle driving in dangerous conditions and team combat to 

cultural-aware interaction with local population [1, 2]. 

Detailed and realistic virtual worlds set high demands on the quality of AI-

controlled characters. Relatively simple game environments provide limited acting 

options for an AI engine, so handcrafted finite-state machine-based scripted decision 

making systems usually work well. Complex virtual worlds allow computer-

controlled agents to exhibit complex behavior patterns, thus making the design of 

realistic human-like AI behavior an increasingly difficult task. 

This trend is well known to both academic researchers and game creators. First, it 

is widely emphasized that today’s AI-controlled game characters should be 

believable, i.e. human-like and virtually indistinguishable from human-controlled 

characters, in order to increase the overall enjoyability of a game [3, 4, 5]. Second, it 

is admitted that handcrafted AI systems are hardly able to provide believable 

behavior: scripted AI is easily recognized by experienced players, especially in 

complex virtual worlds. For example, even the best systems, participated in 2K 

BotPrize believability competition among Unreal Tournament bots were unable to 

deceive human judges [6]. 

1.2 Behavior Capture 

In today’s research projects human-like believable behavior is typically constructed 

by means of analyzing actual human behavior patterns and subsequently 

implementing them in AI system. Among them, most interest is evoked by the 

methods that can automatically construct agents’ knowledge by observing behavior of 

human players. This process is known as behavior capture [7]. Behavior capture was 

used, for example, to build Unreal Tournament bots [8, 9], computer-controlled 

boxers [10, 11], and an AI system for a real-time strategy game [12]. 

While general principles of behavior capture can be described as simply as ―watch 

what the user does and try to reproduce the same patterns‖ (see Fig. 1), every 

particular game world sets own challenges. In our works [10, 11, 13] we identified 

several difficulties, related to practical implementation of behavior capture, common 

to a wide variety of computer games, and tried to address them in our AI architecture. 

Action 

Game situation & 

Action Game Engine 

(learning mode) 
Knowledge 

base 
AI Agent 

Game situation 

Knowledge 

base 
AI Agent Game Engine 

(acting mode) 

Fig. 1. Learning and acting of a behavior capture-based AI character. 
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Currently, our implementation is distributed as a set of tools and libraries under the 

name of Artificial Contender [14]. Below we will introduce the method of 

representing agents’ knowledge in Artificial Contender. 

2 Knowledge Representation with Acting Graph 

2.1 Addressing Challenges and Requirements 

Our system was designed with the following goals in mind [15]: 

 complex, non-repetitive behavior of AI agents; 

 distinct personalities of AI characters, exhibiting a variety of skill levels and 

playing styles; 

 the capability to design, edit and adjust AI’s behavior (for a game designer). 

These requirements served as a basis for our decision to use a variation of finite-

state machine that we call acting graph as a primary data structure of an AI agent’s 

knowledgebase (see Fig. 2; a similar solution was used in [9]). 

The nodes of this graph correspond to 

game situations. Game situation is a 

unique description of the current state of 

the game world, represented with a set 

of numerical attributes, defined by the 

game designer. For example, for the 

game of boxing such attributes may 

include the coordinates of both 

opponents, their directions (where 

opponents look), body position 

(standing, leaning, blocking, etc.), health 

state of each player, and so on. 

The edges of the graph correspond to 

the observed character’s actions that 

introduce changes into the game states. 

For example, a simple action ―move 

left‖ connects two game situations that 

have a difference in character’s horizontal coordinate. There are no restrictions on 

incoming and outgoing connections: (a) one action may lead to several new game 

states (e.g., due to random factors involved in a game, the same action may yield 

different results); (b) different actions may lead to the same game state; and (c) 

distinct actions may connect the same pair of game situations (if a character is 

blocked between two walls, both ―move forward‖ and ―move backward‖ actions yield 

the same result). Each edge also has an associated probability: while a certain game 

situation may have numerous outgoing actions, not all of them may be equally 

preferable. 

Fig. 2. Acting graph. 
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The ready acting graph represents a complete knowledgebase of a computer-

controlled character. Normally it is being constructed automatically during learning 

by observation phase. A human expert plays the game, and the computer system 

builds the acting graph on the fly according to the following procedure: 

wait for the next user action (A) 

S = (current game situation) 

WHILE game is not finished 

   wait for the next user action (A’) 

   S’ = (current game situation) 

   find graph nodes for S and S’  

   (if a node does not exist, create it) 

   establish a link between S and S’, and label it with A 

   (if this link exists already, increase action probability) 

   A = A’; S = S’ 

END LOOP 

Let us now consider how the selected data structure helps to achieve the stated 

goals. The acting graph stores all behavioral patterns, demonstrated by human 

players. Unlike many knowledge representation mechanisms, such as neural 

networks, it does not eliminate the noise: even if a certain sequence of actions 

occurred only once during the training session, it will be still preserved in the graph. 

Thus an AI agent acquires all idiosyncratic elements of its trainer’s style. By asking 

different human experts to train individual game characters, we obtain separate AI 

agents with different styles of acting [10]. 

Another significant advantage of acting graph is the possibility of manual 

modification. Acting graph can be visualized (we do it with AT&T’s GraphViz 

tool [16]) and edited by the game designer. It is possible to remove unwanted or 

unintentional sections, to create artificial acting sequences, and to join separate graphs 

into a single knowledgebase. 

Acting graph also lets the AI system to analyze the consequences of applied 

actions. The game designers might want to increase AI agent’s skill level by means of 

automatic reward-and-punishment schemes (the use of reinforcement learning in 

behavior capture-based AI is discussed in [11]) or with the help of a heuristic action 

evaluation function. Such a function can traverse a graph, discover that a certain 

action is always weak (e.g., it always leads to game states with lower health level of 

the character), and discard it. 

In general, clear and understandable structure of acting graph leaves enough room 

for new experiments. For example, in one of our research projects we tried to improve 

adaptivity of AI agents as follows. The agent is programmed to constantly learn new 

acting sequences from its current opponent. Each action is marked with a timestamp 

(when it was learned by the system). After certain time interval, old actions are 

removed from the graph. With this technique, we were able to obtain highly adaptive 

behavior: an agent tries to learn its opponent’s tactics, and quickly changes behavioral 

patterns when the opponent decides to try another style. 
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2.2 Decision Making System 

While automatic building of a knowledgebase is a rather straightforward process, the 

use of agent’s knowledge for decision making involves more complicated techniques. 

In order to follow human player’s style of behavior, the AI system has to perform 

case-based reasoning: it needs to identify a node in the acting graph that matches the 

current game situation, and to apply one of the actions, found in outgoing edges. The 

complications are caused by heuristic nature of matching algorithm: perfect matches 

are rare, so the system needs to be able to relax matching conditions gradually until an 

approximate match is found. 

Our system allows the game designer to specify the sequence of search operations 

and their types, used to find an approximate match. There are two basic options: exact 

search with attribute exclusion (static generalization) and search with attribute 

variations (dynamic generalization). 

Exact search finds a node that perfectly matches the given game situation. Since 

game situations are coded with numbers, this is done in O(log n) time for a graph, 

stored as a binary search tree. Attribute exclusions add more flexibility: the game 

designer can specify game 

situation attributes that are not 

taken into account while 

matching. So if the exact match 

is not found, we can repeat the 

search with relaxed conditions. 

In order to implement this 

feature, we require the game 

designer to define all searchable 

combinations of attributes in 

compile time. During learning 

by observation, the system 

builds additional acting graphs 

with reduced nodes, and stores 

them in separate binary search 

trees (see Fig. 3). 

Dynamic generalization is a 

wrapper around basic search 

routine. It allows the designer to 

specify an admissible matching 

range for each attribute instead 

of its exact value. For example, if the current game situation is represented with a 

tuple of three attributes (a0, b0, c0), the use of dynamic generalization on two first 

attributes with a range [-1…1] will match the following nine tuples:  

(a0 – 1, b0 – 1, c0)  (a0, b0 – 1, c0)  (a0 + 1, b0 – 1, c0) 

(a0 – 1, b0, c0)      (a0, b0, c0)      (a0 + 1, b0, c0) 

(a0 – 1, b0 + 1, c0)  (a0, b0 + 1, c0)  (a0 + 1, b0 + 1, c0) 

Fig. 3. Static generalization levels. 
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This technique is useful when a certain attribute is important and thus cannot be 

excluded, but its exact value may slightly vary (as in case of game characters’ 

coordinates). Currently, dynamic generalizations indeed rely on multiple calls to the 

basic search routine, thus potentially leading to combinatorial explosion of searches. 

However, in our practical experiments we were able to obtain satisfactory results with 

minimal use of dynamic generalizations. As a future work, we plan to implement 

dynamic generalizations with kd-trees, which should result in much lower O(n
1 – 1/k

 + 

m) time for each range search, where m is the number of reported points, and k is the 

dimension of kd-tree [17]. 

The resulting set of actions, associated with the matching graph nodes, can be 

further re-ranked or filtered by additional heuristic functions. We use many such 

functions, both universal and game-dependent. The most important universal ranking 

function extracts the actions that continue the currently executed acting chain (i.e. the 

actions outgoing from the target graph node of the last used action). As a rule, such 

actions should be preferred by the AI. Also, we use weighted random choice in order 

to take into account action probability, stored in the graph. 

3 3D Boxing: an Example Architecture 

Our experiments with behavior capture-based AI for a 3D boxing game are described 

in the papers [10] and [11]. Here we will only discuss basic knowledge configuration 

for the 3D boxing AI, in order to provide a practical example of a graph-based 

decision-making system. 

3.1 Game State Attributes 

Original game states of the boxing game2 are represented with a set of more than 60 

numeric and Boolean attributes for each of the competing players. The most important 

attributes include: 

 the identifier of a boxer’s current animation sequence (this attribute describes an 

actual pose of a boxer); 

 distance between the opponents; 

 is-player-close-to-knockout-state Boolean flag; 

 is-player-on-ropes Boolean flag; 

 the direction to nearest ropes (boxing ring edge); 

 health and energy values of a player; 

 the identifier of a current boxer’s animation sequence on the previous frame. 

Each action is characterized with the following elements: 

 action identifier (a type of an action) — one of 50 built-in action types, such as 

―move left‖, ―move right‖, ―right jab‖ or ―right-hand high block‖; 

 action duration (in frames). 

                                                           
2 We used a full-fledged commercial boxing game engine. 
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Not all of game state attributes were considered important, so we have selected a 

set of 28 most valuable attributes to be stored in the 

knowledgebase. Additionally, we have performed 

necessary discretization to ease further retrieval. 

For example, ―distance between the opponents‖ is 

measured in pixels, and thus can have hundreds of 

distinct values. We have scaled this attribute into a 

range of seven values only (―very far‖, ―far‖, ―not 

far‖, ―medium‖, ―almost close‖, ―close‖, ―very 

close‖). The same operation was performed with 

other continuous attributes, such as boxer’s health 

and energy levels. 

3.2 Generalizations 

For the system of static generalizations, we have 

selected six different sets of attributes. The most 

accurate set contains all 28 values, while the least 

accurate set is represented with 9 attributes only 

(see Table 1 and Fig. 4). So the AI system can find 

a match for the current game situation on any of 

these six levels of abstraction. 

 

For the system of dynamic generalizations, the following attributes were chosen: 

 distance between the opponents; 

 identifier of a boxer’s current animation sequence (it can be generalized to possible 

―neighboring‖ sequences — e.g., a boxer can be in lean state, then in stand state, or 

in stand state, then in make-punch state, but it cannot move to the make-punch 

state directly from lean state); 

 (same as above) animation identifier, belonging to the opponent. 

Table 1. Configuration of abstraction levels 

Level Attributes 

 

Level Attributes 

0 28 3 15 

1 22 4 12 

2 17 5 9 

3.3 Decision Making 

As mentioned above, the game designer can specify any sequence of calls to graph 

search function in order to achieve desired AI performance. In general, actions found 

with fewer generalizations, and actions that continue the current acting chain are more 

preferable. 

Fig. 4. Acting graph of 3D 

boxing game (actual fragment 

of level 2 graph, visualized 

with GraphViz). 
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In our case, the system uses at most 22 invocations of the graph search function. 

Each invocation is parameterized with: (a) level (numerical identifier) of chosen static 

generalization; (b) Boolean flag indicating whether dynamic generalizations are used; 

(c) Boolean flag indicating whether the system should extract actions of the current 

acting chain only (see Table 2). 

These 22 parameterizations roughly correspond to different ―confidence levels‖ of 

case-based reasoning decision maker. The system searches for suitable actions, 

sequentially relaxing searching conditions according to confidence levels. The first 

acceptable action is returned as a result. 

The 20
th

 confidence level is reserved for a special heuristics: if no actions were 

found on levels 1-19, the system generates ―do nothing‖ action. The rationale for this 

decision is simple: if no highly confident actions are available, it might be better just 

to do nothing and to give the agent the second chance to find a better action on the 

next request than to proceed directly to less confident ―safety levels‖ 21 and 22. 

To make AI less predictable, we also experimented with a slightly modified 

version of this algorithm. In this version, when the action selection subsystem finds an 

applicable action, it first extracts all other applicable actions at the current confidence 

level, and then returns a random action from this actions list. 

Table 2. Confidence levels3 

L S D C 

 

L S D C 

1 1 off True 12 3 off false 

2 1 on True 13 3 on false 

3 2 off True 14 4 off true 

4 2 on True 15 4 on true 

5 3 off True 16 4 off false 

6 3 on True 17 4 on false 

7 0 off false 18 5 off true 

8 1 off false 19 5 on true 

9 1 on false 20 WAIT 

10 2 off false 21 5 off false 

11 2 on false 22 5 on false 

3.4 Heuristic Filters 

As noted earlier, before an action is considered acceptable, it is analyzed with a set 

of ranking/filtering functions. In our system, we used only four such filters: 

                                                           
3 L = confidence level, S = static generalization’s abstraction level, D = dynamic 

generalizations, C = ―extract chain actions only‖ flag. 



Maxim Mozgovoy and Iskander Umarov, Behavior Capture with Acting Graph  9 

 ―Stumble on ropes‖. This filter analyzes backward move actions, leading to 

stumble-on-ropes state (normally they are considered weak), and marks an action 

as acceptable only if the original move action in the knowledgebase resulted in a 

similar stumble-on-ropes state in the human-played game (i.e. it really was a 

human player’s intention). 

 ―Stumble on opponent‖. Analogously, stumbling on opponent (cinch) is usually a 

disadvantaged situation, and should not be encouraged. Actions, leading to clinch, 

are allowed only if the human player tried to initiate clinch in the original learning 

session. 

 ―Repeating actions‖. An action is ranked as weak, if it matches one of the last N (in 

our experiments, N = 8) used actions. This filter makes boxer’s behavior less 

predictable and less repetitive. Note though, that ―same action‖ means ―same 

action object in the knowledgebase‖. The boxer can make two identical actions in a 

row, but they should correspond to distinct objects in the acting graph. 

 ―Defer non-punches‖. Punch actions are considered stronger than non-punches. 

This filter marks all non-punch actions as weak, so punch actions will always be 

preferred to alternative actions at the same confidence level. 

4 Conclusion 

The feasibility of our approach has been evaluated and proven in a series of 

experiments, involving the games of 3D boxing and soccer. We obtained believable 

and effective characters, able to exhibit human-like behavior style (almost 

indistinguishable from human actions) and to beat human-controlled opponents. 

Our method does not implement reasoning capabilities and long-term planning, so 

its applicability to virtual worlds that demand these features is still an open question. 

We believe that our system can be used, at least, as a tactical AI decision maker, 

while high-level strategic reasoning can be supplied by another AI solution. 

The representation of AI agent’s knowledge as a game graph provides us with two 

major advantages: the agent keeps track of all behavioral patterns of its human trainer, 

and the obtained knowledge is easy to visualize and edit. While the latter point might 

not seem major from the theoretical point of view, it is an important factor for game 

developers, who are responsible for AI quality and prefer to have more control over 

system configuration. 

In addition, our case-based reasoning algorithm is fast. We keep a minimal set of 

expensive operations and achieve our goals with fast search routines. Since game AI 

systems have to work in realtime conditions, speed and robustness of decision making 

algorithms are usually among key requirements, set by the game designers. 
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