
Behavior Capture with Acting Graph:

a Knowledgebase for a Game AI System

Maxim Mozgovoy1* and Iskander Umarov2,

1 University of Aizu, Tsuruga, Ikki-machi, Aizu-Wakamatsu, Fukushima, 965-8580 Japan

mozgovoy@u-aizu.ac.jp
2 TruSoft Int’l Inc., 204 37th Ave. N #133, St. Petersburg, FL 33704 USA

umarov@trusoft.com

Abstract. Behavior capture is a popular experimental approach used to obtain

human-like AI-controlled game characters through learning by observation and

case-based reasoning. One of the challenges related to the development of

behavior capture-based AI is the choice of appropriate data structure for agents’

memory. In this paper, we consider the advantages of acting graph as a

memory model and discuss related techniques, successfully applied in several

experimental projects, dedicated to the creation of human-like behavior.

Keywords: behavior capture, learning by observation, case-based reasoning,

knowledge representation.

1 Building Believable Game Characters with Behavior Capture

1.1 Believable Behavior: a Key Feature of Game AI

Modern computer games and simulation-and-training applications are often

characterized as ―virtual worlds‖. This name emphasizes the growing complexity of

game/simulation environments that are able to create higher sense of immersion than

ever. This is done not only through hi-quality audiovisual technologies and detailed

interactive physical models, but also with the help of modern AI methods.

Many virtual worlds are inhabited both by human-controlled characters and AI

agents that serve as world’s neutral ―native population‖, allies or enemies. For

example, in Unreal Tournament game (Deathmatch mode), independent players try to

kill each other in a 3D map, and each player can be controlled either by human or by a

computer (in this case it is usually called ―a bot‖). In general, computer-controlled

characters are found in a variety of video games and training simulators. A good

example of such simulator (or a ―serious game‖) that involves computer-controlled

opponents is Virtual Battle Space 2. This software is a variation of 3D world,

specially designed for initial training of soldiers, and includes numerous training

* Supported in part by the Fukushima Prefectural Foundation, Project F-23-1, FY2011.

2 Maxim Mozgovoy and Iskander Umarov, Behavior Capture with Acting Graph

scenarios, ranging from vehicle driving in dangerous conditions and team combat to

cultural-aware interaction with local population [1, 2].

Detailed and realistic virtual worlds set high demands on the quality of AI-

controlled characters. Relatively simple game environments provide limited acting

options for an AI engine, so handcrafted finite-state machine-based scripted decision

making systems usually work well. Complex virtual worlds allow computer-

controlled agents to exhibit complex behavior patterns, thus making the design of

realistic human-like AI behavior an increasingly difficult task.

This trend is well known to both academic researchers and game creators. First, it

is widely emphasized that today’s AI-controlled game characters should be

believable, i.e. human-like and virtually indistinguishable from human-controlled

characters, in order to increase the overall enjoyability of a game [3, 4, 5]. Second, it

is admitted that handcrafted AI systems are hardly able to provide believable

behavior: scripted AI is easily recognized by experienced players, especially in

complex virtual worlds. For example, even the best systems, participated in 2K

BotPrize believability competition among Unreal Tournament bots were unable to

deceive human judges [6].

1.2 Behavior Capture

In today’s research projects human-like believable behavior is typically constructed

by means of analyzing actual human behavior patterns and subsequently

implementing them in AI system. Among them, most interest is evoked by the

methods that can automatically construct agents’ knowledge by observing behavior of

human players. This process is known as behavior capture [7]. Behavior capture was

used, for example, to build Unreal Tournament bots [8, 9], computer-controlled

boxers [10, 11], and an AI system for a real-time strategy game [12].

While general principles of behavior capture can be described as simply as ―watch

what the user does and try to reproduce the same patterns‖ (see Fig. 1), every

particular game world sets own challenges. In our works [10, 11, 13] we identified

several difficulties, related to practical implementation of behavior capture, common

to a wide variety of computer games, and tried to address them in our AI architecture.

Action

Game situation &

Action Game Engine

(learning mode)
Knowledge

base
AI Agent

Game situation

Knowledge

base
AI Agent Game Engine

(acting mode)

Fig. 1. Learning and acting of a behavior capture-based AI character.

Maxim Mozgovoy and Iskander Umarov, Behavior Capture with Acting Graph 3

Currently, our implementation is distributed as a set of tools and libraries under the

name of Artificial Contender [14]. Below we will introduce the method of

representing agents’ knowledge in Artificial Contender.

2 Knowledge Representation with Acting Graph

2.1 Addressing Challenges and Requirements

Our system was designed with the following goals in mind [15]:

 complex, non-repetitive behavior of AI agents;

 distinct personalities of AI characters, exhibiting a variety of skill levels and

playing styles;

 the capability to design, edit and adjust AI’s behavior (for a game designer).

These requirements served as a basis for our decision to use a variation of finite-

state machine that we call acting graph as a primary data structure of an AI agent’s

knowledgebase (see Fig. 2; a similar solution was used in [9]).

The nodes of this graph correspond to

game situations. Game situation is a

unique description of the current state of

the game world, represented with a set

of numerical attributes, defined by the

game designer. For example, for the

game of boxing such attributes may

include the coordinates of both

opponents, their directions (where

opponents look), body position

(standing, leaning, blocking, etc.), health

state of each player, and so on.

The edges of the graph correspond to

the observed character’s actions that

introduce changes into the game states.

For example, a simple action ―move

left‖ connects two game situations that

have a difference in character’s horizontal coordinate. There are no restrictions on

incoming and outgoing connections: (a) one action may lead to several new game

states (e.g., due to random factors involved in a game, the same action may yield

different results); (b) different actions may lead to the same game state; and (c)

distinct actions may connect the same pair of game situations (if a character is

blocked between two walls, both ―move forward‖ and ―move backward‖ actions yield

the same result). Each edge also has an associated probability: while a certain game

situation may have numerous outgoing actions, not all of them may be equally

preferable.

Fig. 2. Acting graph.

4 Maxim Mozgovoy and Iskander Umarov, Behavior Capture with Acting Graph

The ready acting graph represents a complete knowledgebase of a computer-

controlled character. Normally it is being constructed automatically during learning

by observation phase. A human expert plays the game, and the computer system

builds the acting graph on the fly according to the following procedure:

wait for the next user action (A)

S = (current game situation)

WHILE game is not finished

 wait for the next user action (A’)

 S’ = (current game situation)

 find graph nodes for S and S’

 (if a node does not exist, create it)

 establish a link between S and S’, and label it with A

 (if this link exists already, increase action probability)

 A = A’; S = S’

END LOOP

Let us now consider how the selected data structure helps to achieve the stated

goals. The acting graph stores all behavioral patterns, demonstrated by human

players. Unlike many knowledge representation mechanisms, such as neural

networks, it does not eliminate the noise: even if a certain sequence of actions

occurred only once during the training session, it will be still preserved in the graph.

Thus an AI agent acquires all idiosyncratic elements of its trainer’s style. By asking

different human experts to train individual game characters, we obtain separate AI

agents with different styles of acting [10].

Another significant advantage of acting graph is the possibility of manual

modification. Acting graph can be visualized (we do it with AT&T’s GraphViz

tool [16]) and edited by the game designer. It is possible to remove unwanted or

unintentional sections, to create artificial acting sequences, and to join separate graphs

into a single knowledgebase.

Acting graph also lets the AI system to analyze the consequences of applied

actions. The game designers might want to increase AI agent’s skill level by means of

automatic reward-and-punishment schemes (the use of reinforcement learning in

behavior capture-based AI is discussed in [11]) or with the help of a heuristic action

evaluation function. Such a function can traverse a graph, discover that a certain

action is always weak (e.g., it always leads to game states with lower health level of

the character), and discard it.

In general, clear and understandable structure of acting graph leaves enough room

for new experiments. For example, in one of our research projects we tried to improve

adaptivity of AI agents as follows. The agent is programmed to constantly learn new

acting sequences from its current opponent. Each action is marked with a timestamp

(when it was learned by the system). After certain time interval, old actions are

removed from the graph. With this technique, we were able to obtain highly adaptive

behavior: an agent tries to learn its opponent’s tactics, and quickly changes behavioral

patterns when the opponent decides to try another style.

Maxim Mozgovoy and Iskander Umarov, Behavior Capture with Acting Graph 5

2.2 Decision Making System

While automatic building of a knowledgebase is a rather straightforward process, the

use of agent’s knowledge for decision making involves more complicated techniques.

In order to follow human player’s style of behavior, the AI system has to perform

case-based reasoning: it needs to identify a node in the acting graph that matches the

current game situation, and to apply one of the actions, found in outgoing edges. The

complications are caused by heuristic nature of matching algorithm: perfect matches

are rare, so the system needs to be able to relax matching conditions gradually until an

approximate match is found.

Our system allows the game designer to specify the sequence of search operations

and their types, used to find an approximate match. There are two basic options: exact

search with attribute exclusion (static generalization) and search with attribute

variations (dynamic generalization).

Exact search finds a node that perfectly matches the given game situation. Since

game situations are coded with numbers, this is done in O(log n) time for a graph,

stored as a binary search tree. Attribute exclusions add more flexibility: the game

designer can specify game

situation attributes that are not

taken into account while

matching. So if the exact match

is not found, we can repeat the

search with relaxed conditions.

In order to implement this

feature, we require the game

designer to define all searchable

combinations of attributes in

compile time. During learning

by observation, the system

builds additional acting graphs

with reduced nodes, and stores

them in separate binary search

trees (see Fig. 3).

Dynamic generalization is a

wrapper around basic search

routine. It allows the designer to

specify an admissible matching

range for each attribute instead

of its exact value. For example, if the current game situation is represented with a

tuple of three attributes (a0, b0, c0), the use of dynamic generalization on two first

attributes with a range [-1…1] will match the following nine tuples:

(a0 – 1, b0 – 1, c0) (a0, b0 – 1, c0) (a0 + 1, b0 – 1, c0)

(a0 – 1, b0, c0) (a0, b0, c0) (a0 + 1, b0, c0)

(a0 – 1, b0 + 1, c0) (a0, b0 + 1, c0) (a0 + 1, b0 + 1, c0)

Fig. 3. Static generalization levels.

6 Maxim Mozgovoy and Iskander Umarov, Behavior Capture with Acting Graph

This technique is useful when a certain attribute is important and thus cannot be

excluded, but its exact value may slightly vary (as in case of game characters’

coordinates). Currently, dynamic generalizations indeed rely on multiple calls to the

basic search routine, thus potentially leading to combinatorial explosion of searches.

However, in our practical experiments we were able to obtain satisfactory results with

minimal use of dynamic generalizations. As a future work, we plan to implement

dynamic generalizations with kd-trees, which should result in much lower O(n
1 – 1/k

 +

m) time for each range search, where m is the number of reported points, and k is the

dimension of kd-tree [17].

The resulting set of actions, associated with the matching graph nodes, can be

further re-ranked or filtered by additional heuristic functions. We use many such

functions, both universal and game-dependent. The most important universal ranking

function extracts the actions that continue the currently executed acting chain (i.e. the

actions outgoing from the target graph node of the last used action). As a rule, such

actions should be preferred by the AI. Also, we use weighted random choice in order

to take into account action probability, stored in the graph.

3 3D Boxing: an Example Architecture

Our experiments with behavior capture-based AI for a 3D boxing game are described

in the papers [10] and [11]. Here we will only discuss basic knowledge configuration

for the 3D boxing AI, in order to provide a practical example of a graph-based

decision-making system.

3.1 Game State Attributes

Original game states of the boxing game2 are represented with a set of more than 60

numeric and Boolean attributes for each of the competing players. The most important

attributes include:

 the identifier of a boxer’s current animation sequence (this attribute describes an

actual pose of a boxer);

 distance between the opponents;

 is-player-close-to-knockout-state Boolean flag;

 is-player-on-ropes Boolean flag;

 the direction to nearest ropes (boxing ring edge);

 health and energy values of a player;

 the identifier of a current boxer’s animation sequence on the previous frame.

Each action is characterized with the following elements:

 action identifier (a type of an action) — one of 50 built-in action types, such as

―move left‖, ―move right‖, ―right jab‖ or ―right-hand high block‖;

 action duration (in frames).

2 We used a full-fledged commercial boxing game engine.

Maxim Mozgovoy and Iskander Umarov, Behavior Capture with Acting Graph 7

Not all of game state attributes were considered important, so we have selected a

set of 28 most valuable attributes to be stored in the

knowledgebase. Additionally, we have performed

necessary discretization to ease further retrieval.

For example, ―distance between the opponents‖ is

measured in pixels, and thus can have hundreds of

distinct values. We have scaled this attribute into a

range of seven values only (―very far‖, ―far‖, ―not

far‖, ―medium‖, ―almost close‖, ―close‖, ―very

close‖). The same operation was performed with

other continuous attributes, such as boxer’s health

and energy levels.

3.2 Generalizations

For the system of static generalizations, we have

selected six different sets of attributes. The most

accurate set contains all 28 values, while the least

accurate set is represented with 9 attributes only

(see Table 1 and Fig. 4). So the AI system can find

a match for the current game situation on any of

these six levels of abstraction.

For the system of dynamic generalizations, the following attributes were chosen:

 distance between the opponents;

 identifier of a boxer’s current animation sequence (it can be generalized to possible

―neighboring‖ sequences — e.g., a boxer can be in lean state, then in stand state, or

in stand state, then in make-punch state, but it cannot move to the make-punch

state directly from lean state);

 (same as above) animation identifier, belonging to the opponent.

Table 1. Configuration of abstraction levels

Level Attributes

Level Attributes

0 28 3 15

1 22 4 12

2 17 5 9

3.3 Decision Making

As mentioned above, the game designer can specify any sequence of calls to graph

search function in order to achieve desired AI performance. In general, actions found

with fewer generalizations, and actions that continue the current acting chain are more

preferable.

Fig. 4. Acting graph of 3D

boxing game (actual fragment

of level 2 graph, visualized

with GraphViz).

8 Maxim Mozgovoy and Iskander Umarov, Behavior Capture with Acting Graph

In our case, the system uses at most 22 invocations of the graph search function.

Each invocation is parameterized with: (a) level (numerical identifier) of chosen static

generalization; (b) Boolean flag indicating whether dynamic generalizations are used;

(c) Boolean flag indicating whether the system should extract actions of the current

acting chain only (see Table 2).

These 22 parameterizations roughly correspond to different ―confidence levels‖ of

case-based reasoning decision maker. The system searches for suitable actions,

sequentially relaxing searching conditions according to confidence levels. The first

acceptable action is returned as a result.

The 20
th

 confidence level is reserved for a special heuristics: if no actions were

found on levels 1-19, the system generates ―do nothing‖ action. The rationale for this

decision is simple: if no highly confident actions are available, it might be better just

to do nothing and to give the agent the second chance to find a better action on the

next request than to proceed directly to less confident ―safety levels‖ 21 and 22.

To make AI less predictable, we also experimented with a slightly modified

version of this algorithm. In this version, when the action selection subsystem finds an

applicable action, it first extracts all other applicable actions at the current confidence

level, and then returns a random action from this actions list.

Table 2. Confidence levels3

L S D C

L S D C

1 1 off True 12 3 off false

2 1 on True 13 3 on false

3 2 off True 14 4 off true

4 2 on True 15 4 on true

5 3 off True 16 4 off false

6 3 on True 17 4 on false

7 0 off false 18 5 off true

8 1 off false 19 5 on true

9 1 on false 20 WAIT

10 2 off false 21 5 off false

11 2 on false 22 5 on false

3.4 Heuristic Filters

As noted earlier, before an action is considered acceptable, it is analyzed with a set

of ranking/filtering functions. In our system, we used only four such filters:

3 L = confidence level, S = static generalization’s abstraction level, D = dynamic

generalizations, C = ―extract chain actions only‖ flag.

Maxim Mozgovoy and Iskander Umarov, Behavior Capture with Acting Graph 9

 ―Stumble on ropes‖. This filter analyzes backward move actions, leading to

stumble-on-ropes state (normally they are considered weak), and marks an action

as acceptable only if the original move action in the knowledgebase resulted in a

similar stumble-on-ropes state in the human-played game (i.e. it really was a

human player’s intention).

 ―Stumble on opponent‖. Analogously, stumbling on opponent (cinch) is usually a

disadvantaged situation, and should not be encouraged. Actions, leading to clinch,

are allowed only if the human player tried to initiate clinch in the original learning

session.

 ―Repeating actions‖. An action is ranked as weak, if it matches one of the last N (in

our experiments, N = 8) used actions. This filter makes boxer’s behavior less

predictable and less repetitive. Note though, that ―same action‖ means ―same

action object in the knowledgebase‖. The boxer can make two identical actions in a

row, but they should correspond to distinct objects in the acting graph.

 ―Defer non-punches‖. Punch actions are considered stronger than non-punches.

This filter marks all non-punch actions as weak, so punch actions will always be

preferred to alternative actions at the same confidence level.

4 Conclusion

The feasibility of our approach has been evaluated and proven in a series of

experiments, involving the games of 3D boxing and soccer. We obtained believable

and effective characters, able to exhibit human-like behavior style (almost

indistinguishable from human actions) and to beat human-controlled opponents.

Our method does not implement reasoning capabilities and long-term planning, so

its applicability to virtual worlds that demand these features is still an open question.

We believe that our system can be used, at least, as a tactical AI decision maker,

while high-level strategic reasoning can be supplied by another AI solution.

The representation of AI agent’s knowledge as a game graph provides us with two

major advantages: the agent keeps track of all behavioral patterns of its human trainer,

and the obtained knowledge is easy to visualize and edit. While the latter point might

not seem major from the theoretical point of view, it is an important factor for game

developers, who are responsible for AI quality and prefer to have more control over

system configuration.

In addition, our case-based reasoning algorithm is fast. We keep a minimal set of

expensive operations and achieve our goals with fast search routines. Since game AI

systems have to work in realtime conditions, speed and robustness of decision making

algorithms are usually among key requirements, set by the game designers.

References

1. VBS Worlds: Cultural Awareness Training Simulation,

http://www.vbsworlds.com/?page_id=72

2. Hughes, S.: Real Lessons from Virtual Battle. BBC News, 29 August 2008.

10 Maxim Mozgovoy and Iskander Umarov, Behavior Capture with Acting Graph

3. Taatgen, N.A., van Opplo, M., Braaksma, J., Niemantsverdriet, J.: How to Construct a

Believable Opponent using Cognitive Modeling in the Game of Set. In: 5th International

Conference on Cognitive Modeling, pp. 201--206 (2003)

4. Choi, D., Konik, T., Nejati, N., Park, C., Langley, P.: A Believable Agent for First-Person

Perspective Games. In: 3rd Artificial Intelligence and Interactive Digital Entertainment

International Conference (2007)

5. Glende, A.: Agent Design to Pass Computer Games. In: 42nd annual ACM Southeast

regional conference, pp. 414--415 (2004)

6. Hingston, P.: A Turing Test for Computer Game Bots. IEEE Transactions on Computational

Intelligence and AI in Games, vol. 1(3), pp. 169--186 (2009)

7. Funge, J.: Cognitive Modeling for Games and Animation. Communications of the ACM,

vol. 43(7), pp. 40--48 (2000)

8. Schrum, J., Karpov, I.V., Miikkulainen, R.: UT^2: Human-like Behavior via Neuroevolution

of Combat Behaviorand Replay of Human Traces. The University of Texas at Austin (2011)

9. Le Hy, R., Arrigoni, A., Bessiere, P., Lebeltel, O.: Teaching Bayesian Behaviours to Video

Game Characters. Robotics and Autonomous Systems, vol. 47, pp. 177--185 (2004)

10. Mozgovoy, M., Umarov, I.: Building a Believable Agent for a 3D Boxing Simulation Game.

In: 2nd International Conference on Computer Research and Development, pp. 46--50

(2010)

11. Mozgovoy, M., Umarov, I.: Building a Believable and Effective Agent for a 3D Boxing

Simulation Game. In: 3rd IEEE International Conference on Computer Science and

Information Technology, vol. 3, pp. 14--18 (2010)

12. Ontanon, S., Mishra, K., Sugandh, N., Ram, A.: Case-Based Planning and Execution for

Real-Time Strategy Games. Lecture Notes in Computer Science, vol. 4626, pp. 164--178

(2007)

13. Mozgovoy, M, Umarov, I.: Believable Team Behavior: Towards Behavior Capture AI for

the Game of Soccer. In: 8th International Conference on Complex Systems, pp. 1554-1564

(2011)

14. TruSoft Int’l, Inc., http://www.trusoft.com

15. Mozgovoy, M., Umarov, I.: Behavior Capture: Building Believable and Effective AI Agents

for Video Games. International Journal of Arts and Sciences (2011, to appear)

16. AT&T GraphViz, http://www.graphviz.org

17. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press and McGraw-

Hill, Chapter 10 (2001).

