
Building a Believable and Effective Agent

for a 3D Boxing Simulation Game

Maxim Mozgovoy

University of Aizu

Aizu-Wakamatsu, Japan

mozgovoy@u-aizu.ac.jp

Iskander Umarov

TruSoft Int’l Inc.

St. Petersburg, Florida, USA

umarov@trusoft.com

Abstract—This paper describes an approach used to build and

optimize a practical AI solution for a 3D boxing simulation

game. The two main features of the designed AI agent are belie-

vability (human-likeness of agent’s behavior) and effectiveness

(agent’s capability to reach own goals). We show how learning

by observation and case-based reasoning techniques are used to

create believable behavior. Then we employ reinforcement

learning to optimize agent’s behavior, turning the agent into a

strong opponent, acting in a commercial-level game environ-

ment. The used knowledge representation scheme supports high

maintainability, important for game developers.

Keywords—believability; behavior capture; learning by ob-

servation; reinforcement learning.

1. INTRODUCTION

The quality of a virtual agent is usually associated

with its effectiveness in reaching own goals. In these terms,

an agent that plays chess at grandmaster level is better than

an average-skilled AI player. However, in the domain of

computer simulation and video games, the factor of belie-

vability [1] also turns out to be one of the key factors of a

successful AI. According to [1], a believable agent “pro-

vides the illusion of life, and thus permits the audience’s

suspension of disbelief”. Such an agent normally possesses

certain human-like features: it can learn, make mistakes,

and adjust own strategy to be effective against a particular

opponent. Believability is recognized as an important factor

both by researchers and by game developers [2; 3]. A num-

ber of recent research projects are devoted to the creation of

believable agents for video game environments [4-7].

In our recent work [8], we have demonstrated a possi-

ble approach to building of a believable agent for a 3D box-

ing simulation game using a combination of learning by

observation and case-based reasoning. A computer system

first learns from a human expert, who demonstrates desired

behavior by actually playing the game, then acts according

to the formed knowledgebase. This technique (referred to

below as behavior capture) has a number of attractive fea-

tures [8]:

 Once the system is set up, no programming is needed to

create new boxers.

 By training (playing) different game styles, the game

designer creates unique boxer personalities.

 By making weak moves deliberately, the designer can

obtain AI’s weaker skill levels.

The obvious disadvantage of pure behavior capture is

high requirements to a human expert, who is supposed to

train the agents. In order to obtain a skillful AI boxer, the

human trainer should be a skillful player, too. This can be a

problem if behavior capture is implemented as a user-end

feature, i.e. when “train your own boxer” mode is a part of

the game process. Furthermore, in theory, the human-

trained boxer should exhibit roughly the same behavior as

its trainer. In practice, AI boxer’s skill level turns out to be

lower, due to heuristic and imprecise nature of our case-

based reasoning algorithms.

Skill level of an AI agent can be raised to some extent

by selecting only the best human-supplied behavior frag-

ments as a set of training samples. However, significant

improvements in decision making are hard to obtain, since

the agent gives no preference to individual learned patterns,

and makes the same mistakes as its human trainer.

In the present work, we address this issue by introduc-

ing reinforcement learning scheme into behavior capture

procedure. On the first stage, the agent learns human-

supplied behavior patterns. On the second stage, the agent

learns to select only the best patterns, corresponding to

effective game strategies. The same algorithm can also

work during the game, constantly adjusting to the current

opponent’s behavior. However, for the sake of simplicity of

the experiments, we do not consider such a mode here.

2. BASIC DECISION MAKING SCHEME

Since the details of our virtual boxer’s decision-

making scheme are provided in [8], here we will only give

a short description of this procedure, crucial for under-

standing how reinforcement learning is implemented within

behavior-capture mechanism.

A. Learning and Acting

A boxing game engine with behavior capture capabili-

ties operates as follows.

In learning mode, a behavior-capture agent (referred to

below as BC Agent) observes the actions of one of the par-

ticipating boxers. A boxer can be controlled by either a

human or another AI system. Every time the observed

player makes an action (including “do nothing” case), BC

Agent stores the executed action, paired with the represen-

tation of the current state of the game world, into its know-

ledgebase.

In acting mode, BC Agent uses its knowledgebase to

retrieve the most suitable action for a given game world

state upon request from the game engine. Most individual

actions last 1-60 frames, while the game runs at a constant

speed of 60 frames per second.

We used TruSoft’s Artificial Contender AI middle-

ware (www.trusoft.com) to build a customized version of a

behavior capture system for the 3D boxing game.

B. Knowledge Representation

Game world states and player actions are stored in

plain data structures GameSituation and Action. GameSitu-

ation structure stores the values of more than 60 numeric

and Boolean attributes for each of the competing players.

Each Action is characterized with action type and duration

parameters.

During learning phase, an agent stores incoming (Ga-

meSituation, Action) pairs into its knowledgebase. Addi-

tionally, the agent establishes a link between subsequent

records, so the whole knowledgebase can be viewed as a

directed graph that contains action chains. Each action

chain corresponds to a certain individual game session.

Action objects also contain a usage counter that is in-

creased every time when the same (GameSituation, Action)

pair arrives at the input. This counter is later used for a

weighted action choice (more frequent actions are selected

more often, when possible).

Figure 1 illu-

strates a fragment

of such an acting graph.

Game situations are

shown with ellipses, and

actions are represented

with triangles.

The action selection

mechanism is considera-

bly more complex than

the learning subsystem,

because it contains an

additional heuristic

search routine. Ideally,

when a virtual agent

receives the next Game-

Situation object from the

game engine, it should

extract the same GameSituation in the knowledgebase.

However, in order to obtain reliable decision-making, we

cannot assume that this search is always successful. There-

fore, the agent should be able to extract the closest (if not

perfect) match from the knowledgebase and act in accor-

dance with the found (GameSituation, Action) pair. In our

system, approximate matching is achieved through a series

of knowledgebase polls with sequentially relaxed search

conditions. Thus, BC Agent usually finds several suitable

actions, and selects the most reliable one, found under the

strictest search criteria. When several actions have the same

degree of reliability, the agent selects one of them random-

ly (we use weighted random choice [9] with action usage

counter as weight).

C. Rationale

Acting graph-based decision making scheme, applied

in our project, is infrequently used as a basis for intelligent

behavior. Normally, a more conventional instrument is

chosen. For example, the projects [4] and [6] rely on Baye-

sian networks, and the agents described in [10] and [11] use

standard neural networks.

From the perspective of game developers, acting graph

has a number of advantages as a knowledgebase. Probably,

the most obvious among them is the possibility to edit it

manually. Game developers prefer to keep the control over

the agent’s behavior, and often consider “black boxes” in-

acceptable. If a game designer wants to adjust the agent’s

decisions, straightforward re-training is not the only choice.

Instead, the designer can manually remove undesired action

chains or combine two acting graphs into a single know-

ledgebase.

3. INTRODUCING REINFORCEMENT LEARNING

As noted in the section B, action selection subsystem

first extracts a number of actions, having the same (hope-

fully high) degree of reliability, and then returns an action

from this list, according to an action usage counter-based

weighted random choice.

We have improved this algorithm by changing the

scheme of action weights calculation as follows. After each

decision, an aftermath of the applied action is evaluated,

and its quality is calculated. This quality affects current

action’s weight and propagates in the acting graph, also

affecting the weights of the previous actions in the chain.

Action quality is evaluated on the basis of only one numer-

ic value Q:

Q = ΔHealthOwn – ΔHealthOpponent

Here ΔHealthOwn is the difference in boxer’s health

level before and after the action (negative value means that

the boxer was punched). The second parameter,

ΔHealthOpponent, denotes the difference in opponent’s

health. The positive value of Q means that BC Agent-

controlled boxer got less damage than his opponent as a

result of the applied action.

The weight of each action is defined as a sum of direct

and indirect rewards (the values of these rewards are stored

in the Action object):

W = Rd + Ri

Initially, all direct and indirect rewards are set to zero.

The last applied action gets the following direct reward:

Rd = Rdp * Cnt / Cmax + Q * CR * (1 – Cnt / Cmax)

The basic idea is to make frequently used actions more

stable, and less affected by casual action quality jumps. In

order to increase boxer’s adaptivity, the system periodically

Figure 1. A fragment of a

knowledgebase

examines the acting graph and reduced usage counters of

actions, not chosen for a long time.

Parameter Comment

Rdp Previous direct reward of the action.

Cnt Usage counter of the action.

Cmax [=127] 1 The largest possible counter value.

CR [=4] Actual contribution of action quality

(Q). Higher values of CR make BC

Agent less risky.

After calculating the direct reward, we process pre-

vious actions in the chain, leading to the last applied action.

The indirect rewards of these actions are calculated using

the following formula:

Ri = Rdf * CIR * (1 – (framefirst – framea) * V)

Since Ri is stored as an integer, the backpropagation

ends when this value becomes close to zero.

Parameter Comment

Rdf Direct reward of the first action in the chain

(i.e. of the last applied action).

CIR [=0.9] The contribution of Rd into indirect reward

(lower values lead to less “look ahead”).

framefirst The frame number of the first action in the

chain.

framea The frame number of the action, being cur-

rently processed (framea < framefirst).

V [=0.01] The speed of reward decrease (lower values

lead to less “look ahead”)

The resulting action weight is clipped to a range

[MinWeight, MaxWeight] (set to [-127, 127] in the current

system).

Note that we backpropagate the rewards in the actual

chain of actions, occurred in the ongoing game session,

rather than in the acting graph knowledgebase. This simple

solution turned out to be effective in our case.

4. EXPERIMENTS

Basic behavior capture-based agent (without rein-

forcement learning) exhibits believable behavior, as shown

in [8]. The believability was demonstrated using two dif-

ferent methods. First, a variation of the Turing test was

employed, where people were asked to identify opponents

as humans or AI agents in the video recording of the game

session. Second, an automatic “behavioral profiles” com-

parison procedure was run to identify similar boxers (this

idea follows the approach earlier suggested in [12]). The

comparison was organized as follows. First, we recorded

sequences of game actions, performed by different boxers.

Next, for each action sequence we computed a vector of

probabilities of each possible combination of two succes-

1 We will use square brackets to indicate actual values, used

in the experiments.

sive actions. A cosine of angle between a pair of such vec-

tors was used as a degree of behavioral similarity of the

corresponding boxers.

In this section, we will show that reinforcement learn-

ing increases effectiveness of BC Agent (i.e. makes it a

stronger opponent), still preserving believability of ob-

served behavior.

A. Improving Effectiveness of BC Agent

For this experiment, we organized a short series of

three matches between the computer-controlled boxers. The

players were operated by the boxing game engine’s built-in

finite state machine-based AI system2. The acting data of

one of the boxers was used to train BC Agent. All three

matches ended after 14-15 minutes of play with a knockout

of one of the opponents. So the total duration of training

was about 44 minutes.

As noted before, a pure behavior capture-based boxer

is normally less skillful than its trainer. The subsequent

game sessions between BC Agent and the built-in AI have

shown that BC Agent is able to stand for 8 minutes (on

average), before being knocked out.

After turning on reinforcement learning, BC Agent

quickly improves its skills, and after 9 matches reaches a

stable state, being able to knockout the built-in AI boxer in

14-16 minutes (see Figure 2; white columns denote BC

Agent’s victories, black columns represent defeats).

Figure 2. AI-trained BC Agent’s progress

It should be emphasized that the agent’s improvements

are achieved solely by re-evaluating action weights. The

agent still selects the actions, demonstrated by its teacher in

similar cases, but it now prefers the decisions that are prov-

en to be advantageous.

B. Optimizing Human-Trained BC Agent

To see how a human-trained BC Agent can benefit

from reinforcement learning, we have trained an agent of

an average strength, able to stand around 5 minutes against

a built-in AI, before being knocked out.

2 This AI system was actually used in a commercial boxing

game, and it is rather challenging. At least, both authors

were able to beat it only occasionally.

Then we have performed a series of matches between

our agent and a built-in AI. After four matches, BC Agent

won its first game. After ten matches, BC Agent turned into

an effective boxer, able to play at the level of a built-in AI

(see Figure 3).

Figure 3. Human-trained BC Agent’s progress

C. Testing Believability

Since reinforcement learning changes the behavior of

BC Agent, it is not obvious whether the agent remains be-

lievable (i.e. human-like in case of human-trained BC

Agent) or not.

To test believability, we applied the same behavior

profiles comparison method, as described in [8]. We rec-

orded several profiles, corresponding to:

 the built-in AI agent (ai1, ai2, ai3);

 the human player (hum);

 the human-trained BC Agent (bc1, bc2, bc3);

 the same BC Agent with reinforcement learning-

modified knowledgebase (rl1, rl2, rl3).

Then we compared the profiles, and visualized the si-

milarity matrix as a plot3 (see Figure 4; high similarity ra-

tios correspond to shorter distances between the profiles).

As seen in the picture, each group forms a clearly iso-

lated cluster. While rl1 – rl3 profiles show less similarity

with the original human trainer than bc1 – bc3 profiles,

they still belong to the same family of BC agents. For ex-

ample, distance between rl1 and bc2 is smaller than be-

tween bc3 and bc2. Note also that the built-in AI (ai1-ai3)

is far away both from human player, and from human-

trained BC agents.

5. DISCUSSION

The introduction of reinforcement learning into beha-

vior capture system raises a number of topics worth a sepa-

rate discussion.

Perhaps, the most questionable point is our backpro-

pagation scheme. It is based on very simple principles, and

3 This is done by employing neato tool from AT&T

GraphViz package.

it is not designed to be generalizable and/or scalable. Our

grading formula is designed specifically for such a fast and

reactive game as boxing. Boxing requires neither long-term

planning, nor complex strategic decisions. That’s why a

simple adaptive system, able to adjust rapidly to the oppo-

nent’s actions, is suitable for our aims.

During the first experi-

ment (optimizing the AI-

trained BC Agent), we en-

countered the following prob-

lem. When BC Agent be-

comes too strong, our reason-

ing system faces difficulties

with finding relevant actions

in the acting graph. Since in

the original training session

both players were of the same

skill level, certain types of

game situations were rare. For

example, it is unlikely that

either of the opponents was

cornered for a considerable

time interval.

This problem seems to be

fundamental for case-based

reasoning systems. While the

agent improves own skills, the

decision making algorithm has

to act in previously unseen

game scenarios. As a result, it

produces actions of less quali-

ty, having not enough relevant

cases in the knowledgebase.

The best solution for this

problem is to supply the agent

with additional training data.

However, excessive training has its own drawbacks. Long-

er training sessions produce more robust agents: a boxer

with extensive training history rarely “gets lost”, and more

often finds actions, having better quality. However, com-

prehensive knowledgebase dilutes boxer’s character, as the

boxer receives more and more distinct acting options in the

same game situation. Thus, its behavior becomes more

“generic”, and the difference between characters, trained by

different players, becomes less evident.

In order to obtain a boxer that exhibits clear playing

style and finds appropriate actions in overwhelming majori-

ty of game situations, we designed a two-layered know-

ledge application scheme: if the next action is not found in

a smaller boxer-specific knowledgebase, we continue

searching in the extensive generic knowledgebase, shared

by all boxers. Thus, short training sessions are used to form

distinguishable characters, able to act in most cases; if a

boxer is unable to find an action, the subsequent “safety

level” supports decision making. This scheme can be gene-

ralized into arbitrary number of layers. In addition, safety

Figure 4. Comparison

of behavior profiles

level can be represented with a classic rule-based AI, if

case-based reasoning system is still considered not enough

reliable.

6. CONCLUSION

We have extended our earlier behavior capture AI sys-

tem with optimization algorithm, based on reinforcement

learning. While the previous version of the system allowed

designing believable game characters, it generally required

the trainers to be skillful players. Furthermore, it produced

less effective boxers, unable to compete at the level of their

trainers. Reinforcement learning adjusts the agent’s beha-

vior automatically by cutting off weak actions, thus raising

the agent’s skill level.

This auto-adjustment preserves believability of game

characters. Adjusted agents still exhibit acting patterns,

similar to the ones demonstrated by their trainers, as shows

the comparison of the agents’ behavior profiles.

REFERENCES

[1] J. Bates, "The role of emotion in believable characters,"

Communications of the ACM, 1994, vol. 37, pp. 122-125.

[2] J. Orkin, "Three states and a plan: the AI of FEAR,"

Game Developers Conference, 2006.

[3] G. Yannakakis and J. Hallam, "Towards optimizing

entertainment in computer games," Applied Artificial Intelligence,

2007, vol. 21, pp. 933-972.

[4] C. Thurau, T. Paczian and C. Bauckhage, "Is bayesian

imitation learning the route to believable gamebots," Proc. of

GAME-ON North America, 2005, pp. 3-9.

[5] D. Choi, T. Konik, N. Nejati, C. Park and P. Langley,

"A believable agent for first-person shooter games," Proc. of the

3rd Annual AI and Interactive Digital Entertainment Conference,

2007, pp. 71-73.

[6] R. Le Hy, A. Arrigoni, P. Bessiére and O. Lebeltel,

"Teaching bayesian behaviours to video game characters," Robot-

ics and Autonomous Systems, 2004, vol. 47, pp. 177-185.

[7] S. Ontanón, K. Mishra, N. Sugandh and A. Ram, "Case-

based planning and execution for real-time strategy games," Lec-

ture Notes in Computer Science, 2007, vol. 4626, pp. 164-178.

[8] M. Mozgovoy and I. Umarov, "Building a Believable

Agent for a 3D Boxing Simulation Game," To appear in Proc. of

the 2nd International Conference on Computer Research and

Development, 2010.

[9] F. Olken and D. Rotem, "Simple random sampling from

relational databases," Proceedings of the 12th International Con-

ference on Very Large Data Bases, 1986, pp. 160-169.

[10] R. Bonse, W. Kockelkorn, R. Smelik, P. Veelders and

W. Moerman. Learning Agents in Quake III. Technical Report,

University of Utrecht. 2004.

[11] S. Bonacina, P. Lanzi and D. Loiacono, "Evolving

Dodging Behavior for OpenArena using Neuroevolution of Aug-

menting Topologies," PPSN'08 Workshop (Computational Intelli-

gence and Games), 2008.

[12] F. Tencé and C. Buche, "Automatable evaluation me-

thod oriented toward behaviour believability for video games,"

International Conference on Intelligent Games ans Simulation,

2008, pp. 39-43.

