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Abstract—This paper describes an approach used to build and 

optimize a practical AI solution for a 3D boxing simulation 

game. The two main features of the designed AI agent are belie-

vability (human-likeness of agent’s behavior) and effectiveness 

(agent’s capability to reach own goals). We show how learning 

by observation and case-based reasoning techniques are used to 

create believable behavior. Then we employ reinforcement 

learning to optimize agent’s behavior, turning the agent into a 

strong opponent, acting in a commercial-level game environ-

ment. The used knowledge representation scheme supports high 

maintainability, important for game developers. 

Keywords—believability; behavior capture; learning by ob-

servation; reinforcement learning. 

1. INTRODUCTION 

The quality of a virtual agent is usually associated 

with its effectiveness in reaching own goals. In these terms, 

an agent that plays chess at grandmaster level is better than 

an average-skilled AI player. However, in the domain of 

computer simulation and video games, the factor of belie-

vability [1] also turns out to be one of the key factors of a 

successful AI. According to [1], a believable agent “pro-

vides the illusion of life, and thus permits the audience’s 

suspension of disbelief”. Such an agent normally possesses 

certain human-like features: it can learn, make mistakes, 

and adjust own strategy to be effective against a particular 

opponent. Believability is recognized as an important factor 

both by researchers and by game developers [2; 3]. A num-

ber of recent research projects are devoted to the creation of 

believable agents for video game environments [4-7]. 

In our recent work [8], we have demonstrated a possi-

ble approach to building of a believable agent for a 3D box-

ing simulation game using a combination of learning by 

observation and case-based reasoning. A computer system 

first learns from a human expert, who demonstrates desired 

behavior by actually playing the game, then acts according 

to the formed knowledgebase. This technique (referred to 

below as behavior capture) has a number of attractive fea-

tures [8]:  

 Once the system is set up, no programming is needed to 

create new boxers. 

 By training (playing) different game styles, the game 

designer creates unique boxer personalities. 

 By making weak moves deliberately, the designer can 

obtain AI’s weaker skill levels. 

The obvious disadvantage of pure behavior capture is 

high requirements to a human expert, who is supposed to 

train the agents. In order to obtain a skillful AI boxer, the 

human trainer should be a skillful player, too. This can be a 

problem if behavior capture is implemented as a user-end 

feature, i.e. when “train your own boxer” mode is a part of 

the game process. Furthermore, in theory, the human-

trained boxer should exhibit roughly the same behavior as 

its trainer. In practice, AI boxer’s skill level turns out to be 

lower, due to heuristic and imprecise nature of our case-

based reasoning algorithms. 

Skill level of an AI agent can be raised to some extent 

by selecting only the best human-supplied behavior frag-

ments as a set of training samples. However, significant 

improvements in decision making are hard to obtain, since 

the agent gives no preference to individual learned patterns, 

and makes the same mistakes as its human trainer. 

In the present work, we address this issue by introduc-

ing reinforcement learning scheme into behavior capture 

procedure. On the first stage, the agent learns human-

supplied behavior patterns. On the second stage, the agent 

learns to select only the best patterns, corresponding to 

effective game strategies. The same algorithm can also 

work during the game, constantly adjusting to the current 

opponent’s behavior. However, for the sake of simplicity of 

the experiments, we do not consider such a mode here. 

2. BASIC DECISION MAKING SCHEME 

Since the details of our virtual boxer’s decision-

making scheme are provided in [8], here we will only give 

a short description of this procedure, crucial for under-

standing how reinforcement learning is implemented within 

behavior-capture mechanism. 

A. Learning and Acting 

A boxing game engine with behavior capture capabili-

ties operates as follows. 

In learning mode, a behavior-capture agent (referred to 

below as BC Agent) observes the actions of one of the par-

ticipating boxers. A boxer can be controlled by either a 

human or another AI system. Every time the observed 

player makes an action (including “do nothing” case), BC 

Agent stores the executed action, paired with the represen-

tation of the current state of the game world, into its know-

ledgebase. 

In acting mode, BC Agent uses its knowledgebase to 

retrieve the most suitable action for a given game world 



state upon request from the game engine. Most individual 

actions last 1-60 frames, while the game runs at a constant 

speed of 60 frames per second. 

We used TruSoft’s Artificial Contender AI middle-

ware (www.trusoft.com) to build a customized version of a 

behavior capture system for the 3D boxing game. 

B. Knowledge Representation 

Game world states and player actions are stored in 

plain data structures GameSituation and Action. GameSitu-

ation structure stores the values of more than 60 numeric 

and Boolean attributes for each of the competing players. 

Each Action is characterized with action type and duration 

parameters. 

During learning phase, an agent stores incoming (Ga-

meSituation, Action) pairs into its knowledgebase. Addi-

tionally, the agent establishes a link between subsequent 

records, so the whole knowledgebase can be viewed as a 

directed graph that contains action chains. Each action 

chain corresponds to a certain individual game session. 

Action objects also contain a usage counter that is in-

creased every time when the same (GameSituation, Action) 

pair arrives at the input. This counter is later used for a 

weighted action choice (more frequent actions are selected 

more often, when possible). 

Figure 1 illu-

strates a fragment 

of such an acting graph. 

Game situations are 

shown with ellipses, and 

actions are represented 

with triangles. 

The action selection 

mechanism is considera-

bly more complex than 

the learning subsystem, 

because it contains an 

additional heuristic 

search routine. Ideally, 

when a virtual agent 

receives the next Game-

Situation object from the 

game engine, it should 

extract the same GameSituation in the knowledgebase. 

However, in order to obtain reliable decision-making, we 

cannot assume that this search is always successful. There-

fore, the agent should be able to extract the closest (if not 

perfect) match from the knowledgebase and act in accor-

dance with the found (GameSituation, Action) pair. In our 

system, approximate matching is achieved through a series 

of knowledgebase polls with sequentially relaxed search 

conditions. Thus, BC Agent usually finds several suitable 

actions, and selects the most reliable one, found under the 

strictest search criteria. When several actions have the same 

degree of reliability, the agent selects one of them random-

ly (we use weighted random choice [9] with action usage 

counter as weight). 

C. Rationale 

Acting graph-based decision making scheme, applied 

in our project, is infrequently used as a basis for intelligent 

behavior. Normally, a more conventional instrument is 

chosen. For example, the projects [4] and [6] rely on Baye-

sian networks, and the agents described in [10] and [11] use 

standard neural networks. 

From the perspective of game developers, acting graph 

has a number of advantages as a knowledgebase. Probably, 

the most obvious among them is the possibility to edit it 

manually. Game developers prefer to keep the control over 

the agent’s behavior, and often consider “black boxes” in-

acceptable. If a game designer wants to adjust the agent’s 

decisions, straightforward re-training is not the only choice. 

Instead, the designer can manually remove undesired action 

chains or combine two acting graphs into a single know-

ledgebase. 

3. INTRODUCING REINFORCEMENT LEARNING 

As noted in the section B, action selection subsystem 

first extracts a number of actions, having the same (hope-

fully high) degree of reliability, and then returns an action 

from this list, according to an action usage counter-based 

weighted random choice. 

We have improved this algorithm by changing the 

scheme of action weights calculation as follows. After each 

decision, an aftermath of the applied action is evaluated, 

and its quality is calculated. This quality affects current 

action’s weight and propagates in the acting graph, also 

affecting the weights of the previous actions in the chain. 

Action quality is evaluated on the basis of only one numer-

ic value Q: 

Q = ΔHealthOwn – ΔHealthOpponent 

Here ΔHealthOwn is the difference in boxer’s health 

level before and after the action (negative value means that 

the boxer was punched). The second parameter, 

ΔHealthOpponent, denotes the difference in opponent’s 

health. The positive value of Q means that BC Agent-

controlled boxer got less damage than his opponent as a 

result of the applied action. 

The weight of each action is defined as a sum of direct 

and indirect rewards (the values of these rewards are stored 

in the Action object): 

W = Rd + Ri 

Initially, all direct and indirect rewards are set to zero. 

The last applied action gets the following direct reward: 

Rd = Rdp * Cnt / Cmax + Q * CR * (1 – Cnt / Cmax) 

The basic idea is to make frequently used actions more 

stable, and less affected by casual action quality jumps. In 

order to increase boxer’s adaptivity, the system periodically 

 

                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A fragment of a 

knowledgebase 

 



examines the acting graph and reduced usage counters of 

actions, not chosen for a long time. 

 

Parameter Comment 

Rdp Previous direct reward of the action. 

Cnt Usage counter of the action. 

Cmax [=127] 1 The largest possible counter value. 

CR [=4] Actual contribution of action quality 

(Q). Higher values of CR make BC 

Agent less risky. 

After calculating the direct reward, we process pre-

vious actions in the chain, leading to the last applied action. 

The indirect rewards of these actions are calculated using 

the following formula: 

Ri = Rdf * CIR * (1 – (framefirst – framea) * V) 

Since Ri is stored as an integer, the backpropagation 

ends when this value becomes close to zero. 

 

Parameter Comment 

Rdf Direct reward of the first action in the chain 

(i.e. of the last applied action). 

CIR [=0.9] The contribution of Rd into indirect reward 

(lower values lead to less “look ahead”). 

framefirst The frame number of the first action in the 

chain. 

framea The frame number of the action, being cur-

rently processed (framea < framefirst). 

V [=0.01] The speed of reward decrease (lower values 

lead to less “look ahead”) 

The resulting action weight is clipped to a range 

[MinWeight, MaxWeight] (set to [-127, 127] in the current 

system). 

Note that we backpropagate the rewards in the actual 

chain of actions, occurred in the ongoing game session, 

rather than in the acting graph knowledgebase. This simple 

solution turned out to be effective in our case. 

4. EXPERIMENTS 

Basic behavior capture-based agent (without rein-

forcement learning) exhibits believable behavior, as shown 

in [8]. The believability was demonstrated using two dif-

ferent methods. First, a variation of the Turing test was 

employed, where people were asked to identify opponents 

as humans or AI agents in the video recording of the game 

session. Second, an automatic “behavioral profiles” com-

parison procedure was run to identify similar boxers (this 

idea follows the approach earlier suggested in [12]). The 

comparison was organized as follows. First, we recorded 

sequences of game actions, performed by different boxers. 

Next, for each action sequence we computed a vector of 

probabilities of each possible combination of two succes-

                                                           
1 We will use square brackets to indicate actual values, used 

in the experiments. 

sive actions. A cosine of angle between a pair of such vec-

tors was used as a degree of behavioral similarity of the 

corresponding boxers. 

In this section, we will show that reinforcement learn-

ing increases effectiveness of BC Agent (i.e. makes it a 

stronger opponent), still preserving believability of ob-

served behavior. 

A. Improving Effectiveness of BC Agent 

For this experiment, we organized a short series of 

three matches between the computer-controlled boxers. The 

players were operated by the boxing game engine’s built-in 

finite state machine-based AI system2. The acting data of 

one of the boxers was used to train BC Agent. All three 

matches ended after 14-15 minutes of play with a knockout 

of one of the opponents. So the total duration of training 

was about 44 minutes. 

As noted before, a pure behavior capture-based boxer 

is normally less skillful than its trainer. The subsequent 

game sessions between BC Agent and the built-in AI have 

shown that BC Agent is able to stand for 8 minutes (on 

average), before being knocked out. 

After turning on reinforcement learning, BC Agent 

quickly improves its skills, and after 9 matches reaches a 

stable state, being able to knockout the built-in AI boxer in 

14-16 minutes (see Figure 2; white columns denote BC 

Agent’s victories, black columns represent defeats). 

 
Figure 2. AI-trained BC Agent’s progress 

It should be emphasized that the agent’s improvements 

are achieved solely by re-evaluating action weights. The 

agent still selects the actions, demonstrated by its teacher in 

similar cases, but it now prefers the decisions that are prov-

en to be advantageous. 

B. Optimizing Human-Trained BC Agent 

To see how a human-trained BC Agent can benefit 

from reinforcement learning, we have trained an agent of 

an average strength, able to stand around 5 minutes against 

a built-in AI, before being knocked out.  

                                                           
2 This AI system was actually used in a commercial boxing 

game, and it is rather challenging. At least, both authors 

were able to beat it only occasionally. 



Then we have performed a series of matches between 

our agent and a built-in AI. After four matches, BC Agent 

won its first game. After ten matches, BC Agent turned into 

an effective boxer, able to play at the level of a built-in AI 

(see Figure 3). 

 
Figure 3. Human-trained BC Agent’s progress 

C. Testing Believability 

Since reinforcement learning changes the behavior of 

BC Agent, it is not obvious whether the agent remains be-

lievable (i.e. human-like in case of human-trained BC 

Agent) or not. 

To test believability, we applied the same behavior 

profiles comparison method, as described in [8]. We rec-

orded several profiles, corresponding to: 

 the built-in AI agent (ai1, ai2, ai3); 

 the human player (hum); 

 the human-trained BC Agent (bc1, bc2, bc3); 

 the same BC Agent with reinforcement learning-

modified knowledgebase (rl1, rl2, rl3). 

Then we compared the profiles, and visualized the si-

milarity matrix as a plot3 (see Figure 4; high similarity ra-

tios correspond to shorter distances between the profiles). 

As seen in the picture, each group forms a clearly iso-

lated cluster. While rl1 – rl3 profiles show less similarity 

with the original human trainer than bc1 – bc3 profiles, 

they still belong to the same family of BC agents. For ex-

ample, distance between rl1 and bc2 is smaller than be-

tween bc3 and bc2. Note also that the built-in AI (ai1-ai3) 

is far away both from human player, and from human-

trained BC agents. 

5. DISCUSSION 

The introduction of reinforcement learning into beha-

vior capture system raises a number of topics worth a sepa-

rate discussion. 

Perhaps, the most questionable point is our backpro-

pagation scheme. It is based on very simple principles, and 

                                                           
3 This is done by employing neato tool from AT&T 

GraphViz package. 

it is not designed to be generalizable and/or scalable. Our 

grading formula is designed specifically for such a fast and 

reactive game as boxing. Boxing requires neither long-term 

planning, nor complex strategic decisions. That’s why a 

simple adaptive system, able to adjust rapidly to the oppo-

nent’s actions, is suitable for our aims. 

During the first experi-

ment (optimizing the AI-

trained BC Agent), we en-

countered the following prob-

lem. When BC Agent be-

comes too strong, our reason-

ing system faces difficulties 

with finding relevant actions 

in the acting graph. Since in 

the original training session 

both players were of the same 

skill level, certain types of 

game situations were rare. For 

example, it is unlikely that 

either of the opponents was 

cornered for a considerable 

time interval. 

This problem seems to be 

fundamental for case-based 

reasoning systems. While the 

agent improves own skills, the 

decision making algorithm has 

to act in previously unseen 

game scenarios. As a result, it 

produces actions of less quali-

ty, having not enough relevant 

cases in the knowledgebase. 

The best solution for this 

problem is to supply the agent 

with additional training data. 

However, excessive training has its own drawbacks. Long-

er training sessions produce more robust agents: a boxer 

with extensive training history rarely “gets lost”, and more 

often finds actions, having better quality. However, com-

prehensive knowledgebase dilutes boxer’s character, as the 

boxer receives more and more distinct acting options in the 

same game situation. Thus, its behavior becomes more 

“generic”, and the difference between characters, trained by 

different players, becomes less evident. 

In order to obtain a boxer that exhibits clear playing 

style and finds appropriate actions in overwhelming majori-

ty of game situations, we designed a two-layered know-

ledge application scheme: if the next action is not found in 

a smaller boxer-specific knowledgebase, we continue 

searching in the extensive generic knowledgebase, shared 

by all boxers. Thus, short training sessions are used to form 

distinguishable characters, able to act in most cases; if a 

boxer is unable to find an action, the subsequent “safety 

level” supports decision making. This scheme can be gene-

ralized into arbitrary number of layers. In addition, safety 

 
Figure 4. Comparison 

of behavior profiles 



level can be represented with a classic rule-based AI, if 

case-based reasoning system is still considered not enough 

reliable. 

6. CONCLUSION 

We have extended our earlier behavior capture AI sys-

tem with optimization algorithm, based on reinforcement 

learning. While the previous version of the system allowed 

designing believable game characters, it generally required 

the trainers to be skillful players. Furthermore, it produced 

less effective boxers, unable to compete at the level of their 

trainers. Reinforcement learning adjusts the agent’s beha-

vior automatically by cutting off weak actions, thus raising 

the agent’s skill level. 

This auto-adjustment preserves believability of game 

characters. Adjusted agents still exhibit acting patterns, 

similar to the ones demonstrated by their trainers, as shows 

the comparison of the agents’ behavior profiles. 
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