
The Use of Machine Semantic Analysis in Plagiarism Detection

Maxim Mozgovoy*
University of Joensuu,

Finland
mmozgo@cs.joensuu.fi

Vitaly Tusov
St. Petersburg State University,

Russia
tusovvitalij@mail.ru

Vitaly Klyuev
University of Aizu,

 Japan
vkluev@u-aizu.ac.jp

Abstract

Plagiarism detection systems are known for years in
the university community. However, most of the
existing detectors for the natural language texts use
rather simple comparison methods that make the
instances of plagiarism easy to hide. The software,
designed for plagiarism detection in computer
programs, utilizes far more advanced techniques. We
propose a method, which adds functionalities similar
to tokenization and tree matching, to the natural
language texts-oriented detectors. This method
requires noticeable work to be applied in practice,
but also makes use of the existing software for
parsing and word sense disambiguation.

Keywords
machine semantic analysis, plagiarism detection,
string matching, plagiarism, computational
linguistics.

1. Introduction

Plagiarism in universities remains in the scope of
interest of researchers for years. Scientific
investigations cover various aspects of plagiarism: its
origins, pedagogical and ethical issues, plagiarism
prevention and detection, people’s attitude, legal
affairs and honor codes, etc. From the point of view
of practical computer science, one of the most
interesting directions is plagiarism detection.

Numerous systems were developed in recent years
to detect plagiarism in natural language texts as well
as in computer programs. Here we propose a possible
technique that can help to improve existing natural
language-oriented plagiarism detection software.
This technique can be roughly treated as an analogue

 * The corresponding author.

of a well-known tokenization procedure in program
code-oriented plagiarism detection systems.
Furthermore, we discuss a way of utilizing language
parsers to deal with the rephrasing of the sentences.

Our current studies are based on semantic
analyzer for the Russian language [1], but other
similar solutions can be used as well. The detection
system, which is described here, is just a part of our
research on natural language processing. We are also
trying to use semantic analysis for information
retrieval tasks and for machine translation.

2. Related Works

Most existing plagiarism detectors are specially
designed to process either program source code or
natural language texts. In the first case the system
usually treats a submitted collection of documents as
hermetic and performs a pairwise comparison
between single submissions only. Such projects
utilize advanced techniques to detect partial matches
(RKS-GST [2], matching in the repository [3]), and
regular changes of the code structure
(tokenization [4], p-matching [5]). The systems,
designed to find similarities in the natural language
texts, mainly search the Internet for the possible
matches. Generally, they do not use sophisticated
comparison methods, aiming mostly at processing
speed and wide coverage (e.g. the developers of
Turnitin [6] system claim they maintain “a huge
database of books and journals, and a database of the
millions of papers already submitted”).

“Hermetic” systems for plagiarism detection in the
natural language texts exist as well, though they are
little-known. We can mention, e.g. CopyCatch
Gold [7], YAP3 [8], and WCopyfind [9]. As a rule,
the detection software can find only partial exact
matches: rephrasing and rewording can conceal the
evidence of plagiarism. CopyCatch Gold reduces the
effect of rewording by taking into account only

mailto:mmozgo@cs.joensuu.fi
mailto:tusovvitalij@mail.ru
mailto:vkluev@u-aizu.ac.jp

hapax legomena words (those that appear only once
in the text) during the comparison, but this technique
is not very reliable.

3. Tokenization

Tokenization [4] is a well-known method that
makes useless all kinds of renaming tricks in
plagiarism in computer programs (such as variable
renaming and changing the type of loop structure).
Tokenization algorithms substitute the elements of
program code with single tokens. For example, any
identifier can be replaced by the token <IDT>, and
every numerical value by the token <VALUE>. Now,
if a program contains a line a = b + 45; this line will
be replaced by the string
<IDT>=<IDT>+<VALUE>; So trying to rename the
variables will not help since every line of the form
“identifier = identifier + value;” is translated to the
same tokenized sequence (the aforementioned
example is taken from [10]).

Tokenization can be treated as substitution of
single elements of some class by the name of the
class itself. E.g. 5, 11.5 and -32 are elements of the
class <VALUE>. In the natural language texts we
can use the same approach. For instance, the words
device and gadget are interchangeable in many
contexts. If we substitute these words by the name of
their class <MECHANISM>, such rewording will be
useless for the plagiarizer.

4. Word Classes

The above described technique can be quite easily
implemented by having a dictionary that matches
every word of a natural language with the
corresponding class. Our current version of the
system (for Russian) includes more than 1600 classes
that form a hierarchy. The small extraction from this
tree is shown in Fig. 1.

For example, a class <PHYSICAL-OBJECT> has
a subclass <ALIVE>, having, in its turn, a subclass
<ANIMAL> that includes classes <ANIMAL-
WILD> and <ANIMAL-DOMESTIC>.
Undoubtedly, the problem of classification is very
nontrivial, and no “best classification” can be
invented. We created only one possible hierarchy
that (according to our studies) satisfactorily reflects
general knowledge about human environment. A

variation of a specially created hierarchy might be
helpful in order to process documents, dedicated to
some narrow fields. For example, it is usually
reasonable to consider gadget and device as direct
successors of the class <MECHANISM>, but for the
technical texts a more detailed classification of
mechanisms will produce better results.

The use of subclasses can help to tune the
tokenizer. For example, we might want to find more
plagiarisms by widening the generalizations, e.g. it is
possible to substitute the word fox with the more
general class <ANIMAL> instead of <ANIMAL-
WILD>.

Figure 1. A Fragment of Concept Classes Tree

something
├─noun
│ ├─general-concepts
│ │ ├─event
│ │ │ ├─situation
│ │ │ …
│ │ …
│ ├─physical-object
│ │ ├─alive
│ │ │ ├─animal-wild
│ │ │ ├─animal-domestic
│ │ │ …
│ │ ├─money
│ │ │ ├─banknote
│ │ │ ├─payments
│ │ │ …
│ │ …
│ …
…

The obvious difficulty concerns polysemantic
words and homonyms. For instance, the system
should select the correct class for the word table
from the two alternatives — <FURNITURE> and
<DRAWING/TABLE>. We may suggest to use any
tool for word sense disambiguation (WSD),
referenced in [11]. Our software relies on the results,
provided by the semantic analyzer that performs
WSD as well.

5. Fast Plagiarism Detection Algorithm

To obtain working software, we took a system [3],
and substituted the tokenization module with the
natural language version. The corresponding author
is a member of the team that created the
aforementioned system.

The system is intended for hermetic, many-to-
many comparison of all files of the submitted
collection of documents that contain Java listings.
Most hermetic detection programs perform naïve
pairwise file-to-file comparison, which results in
O(f(n)N2) complexity, where N is the number of files
in the collection and f(n) is the time to make the
comparison between one pair of files of length n. Our
software tries to decrease the algorithmic complexity
while preserving almost the same quality of
detection.

The system firstly creates a suffix array from the
tokenized collection of files. A suffix array is a
lexicographically sorted array of all suffixes of a
given string. It allows us to quickly find a file (or
files), containing any given substring. A binary
search is utilized to achieve this.

To find all collection files that are similar to a
given query file, the system executes Alg. 1. It tries
to find the substrings of the tokenized query file,
Q[1..q], in the suffix array, where q is the number of
tokens. Matching substrings are recorded and each
match contributes to the similarity score. The
algorithm takes contiguous non-overlapping token
substrings of length γ from the query file and
searches all the matching substrings from the index.
These matches are recorded into a ‘repository’. This
phase also includes a sanity check as overlapping
matches are not allowed.

Algorithm 1. Search a File in a Collection

p = 1 // the first token of Q
WHILE p ≤ q − γ + 1
 find Q[p...p + γ − 1] from the suffix array
 IF Q[p...p + γ − 1] was found
 UpdateRepository
 p = p + γ
 ELSE
 p = p + 1
FOR EVERY file Fi in the collection
 Similarity(Q, Fi) = MatchedTokens(Fi)/q

In Alg. 2, the system encounters two types of
collisions. The first one appears when more than one
match is found in the same file. If several matches
that are found correspond to the same indexed file,
these matches are extended to Γ tokens, Γ ≥ γ, such
that only one of the original matches survives for
each indexed file. Therefore, for each file in the
index, the algorithm finds all matching substrings

that are longer than other matching substrings and
whose lengths are at least γ tokens.

Algorithm 2. Update the Repository

Let S be the set of matches of Q[p...p+ γ−1]
IF some elems of S are found in the same file
 leave only the longest one
FOR every string M from the remaining list S
 IF M doesn’t intersect with repository elems
 insert M to the repository
 ELSE IF M is longer than conflicting elems
 remove all conflicting repository elements
 insert M to the repository

The second type of collision is the reverse of the

first problem: we should forbid the situation when
two different places in the input file correspond to
the same place in some collection file. To resolve
collisions we use ‘longest wins’ heuristics. We sum
the lengths of all the previous matches that intersect
with the current one, and if the current match is
longer, we use it to replace the intersecting previous
matches.

The complexity of Algorithm 1 is highly
dependent on the value of the γ parameter. Line 3 of
Algorithm 1 takes O(γ + log n) average time, where
is n the total number of tokens in the collection
(assuming atomic token comparisons). If we make
the simplifying assumption that two randomly picked
tokens match each other (independently) with fixed
probability p, then on average we obtain npγ matches
for substrings of length γ. If Q was found, we call
Algorithm 2. Its total complexity is, on average, at
most O((q/γ · npγ)2). To keep the total average
complexity of Algorithm 1 to at most O(q(γ + log n)),
it is enough that γ = Ω(log1/p n). This results in O(q
log n) total average time. Since we require that γ =
Ω(log n), and may adjust γ to tune the quality of the
detection results, we state the time bound as O(qγ).
Finally, the scores for each file can be computed in
O(N) time. To summarize, the total average
complexity of Algorithm 1 can be made O(q(γ + log
n) + N) = O(qγ + N). The O(γ + log n) factors can be
easily reduced to O(1) (worst case) using suffix trees
with suffix links, instead of suffix arrays. This would
result in O(q + N) total time.

This analysis does not include tokenization, but it
is a linear process (both for Java files and for the
natural language texts), and the number of tokens
depends linearly on the file length.

6. Tree Matching

Any sentence of the given text can be
automatically represented in the form of the tree,
which reflects the structure of the sentence. The
principles of organization of such parse trees still
serve as the subject of wide discussions. Most
automatic English parsers use Chomsky-styled Penn
Treebank grammars [12], based on the traditional
linguistic approach to the syntax analysis. For
example, the phrase the monkey ate the banana will
be parsed by such software as shown in Fig. 2.

Figure 2. Parsing the Sentence

 ┌──────SENTENCE─────┐
 SUBJECT └─VERB OBJECT
 ├─ARTICLE └─ate ├─ARTICLE
 │ └─the │ └─the
 └─NOUN └─NOUN
 └─monkey └─banana

Our semantic analyzer also builds a parse tree for
any given sentence, but it is not based on Chomsky
grammars (they are not well-suitable for the Russian
language, because the order of the parts of a sentence
in Russian is not fixed). The semantic analyzer treats
the sentence as a control structure, having a
functional nature. More specifically, it considers the
sentence as a superposition of words-functions that
depend on words-arguments.

The parse tree for the same phrase the monkey ate
the banana in this model will look like this:

 ┌──────ate─────┐
 the_monkey the_banana

Here the word ate is considered as a computable
function of two arguments: the_monkey and
the_banana.

Having ready-made parse trees (of any kind), we
can invoke a tree matching procedure. This technique
is described in [13] for the case of plagiarism
detection in program code.

Initially the algorithm builds a flowchart-styled
parse tree for each file to be analyzed. Then for each
pair of files, the algorithm performs a rough “abstract
comparison”, when only types of the parse tree
elements (like ASSIGNMENT, LOOP,

BRANCHING) are taken into account. This is done
recursively for the each level of tree nodes.

If the similarity percentage becomes lower than
some threshold at some step, the trees are
immediately treated as not similar.

If the abstract comparison indicates enough
similarity, a special low-level “micro comparison”
procedure is invoked. At this point each node
represents an individual statement. Thus, each tree
node turns into a separate subtree that has to be
compared with the corresponding subtree taken from
another file.

Note that the “abstract comparison” is a step when
tokenized sequences are compared, so for our
purposes (plagiarism detection over tokenized texts)
we can skip the next “micro comparison” procedure.
This technique seems to be the most advanced way of
comparing structured documents, but our results in
this direction are still very preliminary for any kind
of evaluation.

On the other hand, it is already clear that the tree
matching can help to reveal rewording. If we treat the
children of every tree node as an unordered
collection of nodes, e.g. the phrases the monkey ate
the banana and the banana was eaten by the monkey
will be very close after the tokenization.

7. Evaluation

The evaluation part is a very problematic issue for
any kind of plagiarism detection system. It is
especially hard for the software that searches the
Internet for the possible occurrences of plagiarism,
but even papers on “hermetic” systems usually just
show the positive sides of the proposed
approach [4, 13]. However, we can examine the
reports that are produced by different plagiarism
detection software when used on the same dataset.

The original system [3] was evaluated by using
such “jury” method. The programs utilized for the
analysis include MOSS [14], JPlag [2] and
Sherlock [4]. Every system printed a report about the
same real collection, consisting of 220 undergraduate
students’ Java programs (varying in size from 2 KB
to 50 KB; the median length is 15 KB). Although the
‘opinions’ of all the tested systems are different for
many of the files, most files are either detected or

rejected by the majority of systems. This simple
approach (to consider only detection or rejection)
allows us to organize a ‘voting’ experiment. Let S i be
the number of ‘jury’ systems (MOSS, JPlag and
Sherlock), which marked file i as suspicious. If Si ≥
2, we should expect our system to mark this file as
well. If Si < 2, the file should, in general, remain
unmarked. For the test set consisting of 155 files
marked by at least one program, our system agreed
with the ‘jury’ in 115 cases (and, correspondingly,
disagreed in 40 cases). This result is more conformist
than the results obtained when the same experiment
was run on the other 3 tested systems. Each system
was tested while the other three acted as jury.

For the evaluation of the new system we used a
collection of 350 documents taken from the
NEWSru.com news server. Each document had an
informative title and was assigned to one of the
following categories: In Russia, In the World,
Economics, Religion, Criminal, Sport, and Culture.
The size of the articles varies from 450 bytes to
19 KB with the median size of about 2 KB. The
typical article consists of 8-12 small paragraphs that
are made of strict narrative sentences and quotations.

This selection was based on the assumption that
the newsreels often publish different documents on
the same topic (though we do not expect direct
plagiarism in this case), so the possibility to find
similar files is quite high. Since we do not know
about any other plagiarism detection systems that use
natural language processing techniques, the results
were analyzed manually.

The system found 20 relevant pairs of similar
documents (with at least 4% degree of similarity).
The typical examples include:
- A pair of documents about the solar eclipse on

20th of March. The first tells about the countries
where this phenomenon is observed; the second is
dedicated purely to the observation of the eclipse
in Russia.

- A pair of documents on the weather conditions in
Europe. The first is about floods in the EU; the
second contains some weather predictions for the
EU (including subsequent floods).

- A pair of documents on rumors about Russian
military assistance to the Iraqi government in
March of 2003. The first outlines the position of

Moscow; the second states the reaction of
Washington.

After tokenization the similarity degrees of the same
file pairs increased (in most cases) by a factor of 1.5
or (in few cases) remained the same. Meanwhile,
four additional false pairs were detected (but with
very low similarity ratios that did not exceed 4-5%).

There are typical situations encountered in the
experiment that noticeably affected the detection
process after tokenization. They include:
- Changes to grammar cases in Russian. The

phrases in one of resorts and of one of resorts are
not matched at due to the changes of the endings
of the words. After tokenization they become
almost identical.

- The use of distinct words of the same classes in
the same contexts in different documents. The
phrases the residence in Greece and the residence
in Athens do not match, but do match after the
tokenization (Greece and Athens are translated to
the same class <PLACE>).

The latter case is related to many mismatches as well.
For example, the phrases Vladimir Putin claimed and
George Bush claimed are treated as the same
sequence <NAME><NAME><SPEAK> after the
tokenization. It may be argued, though, that the
system of classes we used was not specially designed
for plagiarism/similarity detection procedures. A
more advanced hierarchy may include a careful
taxonomy that minimizes such collisions.

It should be noted that in the simplest case the
tokenization can be considered as a variation of
stemming technique that is widely used in
information retrieval. Although, for some languages
(including Russian) stemming procedures are not
simple, since they have to deal with many non-trivial
grammatical issues.

The use of tokenization results in the immediate
increase of the number of matches. Tokenization of
level 0 (stemming), level 1 (with the terminal classes
in the hierarchy) and level 2 (with the direct
ancestors of the terminal classes) makes sense, but
the use of tokenization of higher levels results in
many false matches, since the classes become too
general. For example, tokenization of level 3
substitutes the word cat with the class name
<ALIVE>. The same class corresponds to all alive
objects, such as worm, chairman or wife.

The system also did not detect several file pairs
that could be treated as similar under certain
conditions. For example, some documents can have
only a few common substrings, but most human
readers consider them as similar. The manual
analysis shows that the number of such pairs in our
collection is less than five, and the corresponding
files are not originated from the same source, i.e.
they do not contain instances of plagiarism.

8. Conclusion

Plagiarism detection for text in natural languages
is a challenge. Most natural language processing
tools, such as parsers and taggers remain unused by
the authors of plagiarism detection systems. Also
these tools are language dependent and designed for
English.

Our approach gives a possible solution to make a
language independent system to determine plagiarism
in collections of the texts. The key idea behind it is
the use of hierarchies of concepts and the functional
style of representing the sentences. To implement the
system, we adopted algorithm [3], applied the
tokenization technique and the tree matching
procedure. We utilized the concept hierarchy for the
Russian language. Our tests showed the promising
results which include intelligent tokenization and
high speed processing of the text data (O(q + N) is
required to test a query file of size q against a
collection of N files). The tree matching procedure is
still very experimental, but we believe that it can
significantly improve the quality of plagiarism
detection. Our solution is scalable (see [3]), so it is
suitable for large essays banks.

References

[1] V.A. Tusov, Computer Semantics of the Russian
Language (in Russian), S.-Petersburg University
Press, S.-Petersburg, 2004.
[2] L. Prechelt, G. Malpohl, and M. Philippsen,
JPlag: Finding Plagiarisms among a Set of

Programs, Technical report, Fakultät für Informatik,
Universität Karlsruhe, Germany, 2000.
[3] M. Mozgovoy, K. Fredriksson, D. White, M. Joy,
and E. Sutinen, “Fast Plagiarism Detection System”,
Lecture Notes in Computer Science, vol. 3772, 2005,
pp. 267-270.
[4] M.S. Joy, M. Luck, “Plagiarism in Programming
Assignments”, IEEE Transactions on Education,
vol. 42(2), 1999, pp. 129-133.
[5] B.S. Baker, “Parameterized Duplication in
Strings: Algorithms and an Application to Software
Maintenance”, SIAM Journal on Computing,
vol. 26(5), 1997, pp. 1343-1362.
[6] Turnitin: www.turnitin.com
[7] CopyCatch Gold: www.copycatchgold.com
[8] M.J. Wise, “YAP3: Improved Detection of
Similarities in Computer Program and Other Texts”,
Proceedings of SIGCSE ’96, 1996, pp. 130-134.
[9] WCopyfind: plagiarism.phys.virginia.edu
[10] M. Mozgovoy, “Desktop Tools for Offline
Plagiarism Detection in Computer Programs”,
Informatics in Education, vol. 5(1), 2006, pp. 97-
112.
[11] Ph. Edmonds, A. Kilgarriff (Eds.), Journal of
Natural Language Engineering (Special Issue Based
On Senseval-2), vol. 9(1), 2003.
[12] M.P. Marcus, B. Santorini,
M.A. Marcinkiewicz, “Bulding a large annotated
corpus of English: the Penn Treebank”,
Computational Linguistics, vol. 19, 1993, pp. 313-
330.
[13] B. Belkhouche, A. Nix, J. Hassell, “Plagiarism
Detection in Software Designs”, Proceedings of the
42nd Annual Southeast Regional Conference, 2004,
pp. 207-211.
[14] S. Schleimer, D. S. Wilkerson, A. Aiken,
“Winnowing: Local Algorithms for Document
Fingerprinting”, Proceedings of the 2003 ACM
SIGMOD International Conference on Management
of Data, 2003, pp. 76-85.

http://www.turnitin.com
http://www.copycatchgold.com

