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Abstract 

Plagiarism detection systems are known for years in 
the university community. However, most of the 
existing detectors for the natural language texts use 
rather simple comparison methods that make the 
instances of plagiarism easy to hide. The software, 
designed for plagiarism detection in computer 
programs, utilizes far more advanced techniques. We 
propose a method, which adds functionalities similar 
to tokenization and tree matching, to the natural 
language texts-oriented detectors. This method 
requires noticeable work to be applied in practice, 
but also makes use of the existing software for 
parsing and word sense disambiguation. 
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1. Introduction 

Plagiarism  in universities remains in the scope of 
interest of researchers for years. Scientific 
investigations cover various aspects of plagiarism: its 
origins, pedagogical and ethical issues, plagiarism 
prevention and detection, people’s attitude, legal 
affairs and honor codes, etc. From the point of view 
of practical computer science, one of the most 
interesting directions is plagiarism detection. 

Numerous systems were developed in recent years 
to detect plagiarism in natural language texts as well 
as in computer programs. Here we propose a possible 
technique that can help to improve existing natural 
language-oriented plagiarism detection software. 
This technique can be roughly treated as an analogue 
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of a well-known tokenization procedure in program 
code-oriented plagiarism detection systems. 
Furthermore, we discuss a way of utilizing language 
parsers to deal with the rephrasing of the sentences. 

Our current studies are based on semantic 
analyzer for the Russian language [1], but other 
similar solutions can be used as well. The detection 
system, which is described here, is just a part of our 
research on natural language processing. We are also 
trying to use semantic analysis for information 
retrieval tasks and for machine translation.  
 
2. Related Works 

Most existing plagiarism detectors are specially 
designed to process either program source code or 
natural language texts. In the first case the system 
usually treats a submitted collection of documents as 
hermetic and performs a pairwise comparison 
between single submissions only. Such projects 
utilize advanced techniques to detect partial matches 
(RKS-GST [2], matching in the repository [3]), and 
regular changes of the code structure 
(tokenization [4], p-matching [5]). The systems, 
designed to find similarities in the natural language 
texts, mainly search the Internet for the possible 
matches. Generally, they do not use sophisticated 
comparison methods, aiming mostly at processing 
speed and wide coverage (e.g. the developers of 
Turnitin [6] system claim they maintain “a huge 
database of books and journals, and a database of the 
millions of papers already submitted”). 

“Hermetic” systems for plagiarism detection in the 
natural language texts exist as well, though they are 
little-known. We can mention, e.g. CopyCatch 
Gold [7], YAP3 [8], and WCopyfind [9]. As a rule, 
the detection software can find only partial exact 
matches: rephrasing and rewording can conceal the 
evidence of plagiarism. CopyCatch Gold reduces the 
effect of rewording by taking into account only 
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hapax legomena words (those that appear only once 
in the text) during the comparison, but this technique 
is not very reliable. 

 
3. Tokenization 

Tokenization [4] is a well-known method that 
makes useless all kinds of renaming tricks in 
plagiarism in computer programs (such as variable 
renaming and changing the type of loop structure). 
Tokenization algorithms substitute the elements of 
program code with single tokens. For example, any 
identifier can be replaced by the token <IDT>, and 
every numerical value by the token <VALUE>. Now, 
if a program contains a line a = b + 45; this line will 
be replaced by the string 
<IDT>=<IDT>+<VALUE>; So trying to rename the 
variables will not help since every line of the form 
“identifier = identifier + value;” is translated to the 
same tokenized sequence (the aforementioned 
example is taken from [10]). 

Tokenization can be treated as substitution of 
single elements of some class by the name of the 
class itself. E.g. 5, 11.5 and -32 are elements of the 
class <VALUE>. In the natural language texts we 
can use the same approach. For instance, the words 
device and gadget are interchangeable in many 
contexts. If we substitute these words by the name of 
their class <MECHANISM>, such rewording will be 
useless for the plagiarizer. 
 
4. Word Classes 

The above described technique can be quite easily 
implemented by having a dictionary that matches 
every word of a natural language with the 
corresponding class. Our current version of the 
system (for Russian) includes more than 1600 classes 
that form a hierarchy. The small extraction from this 
tree is shown in Fig. 1. 

For example, a class <PHYSICAL-OBJECT> has 
a subclass <ALIVE>, having, in its turn, a subclass 
<ANIMAL> that includes classes <ANIMAL-
WILD> and <ANIMAL-DOMESTIC>. 
Undoubtedly, the problem of classification is very 
nontrivial, and no “best classification” can be 
invented. We created only one possible hierarchy 
that (according to our studies) satisfactorily reflects 
general knowledge about human environment. A 

variation of a specially created hierarchy might be 
helpful in order to process documents, dedicated to 
some narrow fields. For example, it is usually 
reasonable to consider gadget and device as direct 
successors of the class <MECHANISM>, but for the 
technical texts a more detailed classification of 
mechanisms will produce better results. 

The use of subclasses can help to tune the 
tokenizer. For example, we might want to find more 
plagiarisms by widening the generalizations, e.g. it is 
possible to substitute the word fox with the more 
general class <ANIMAL> instead of <ANIMAL-
WILD>. 

 
Figure 1. A Fragment of Concept Classes Tree 
 
something 
├─noun 
│ ├─general-concepts 
│ │ ├─event 
│ │ │ ├─situation 
│ │ │ … 
│ │ … 
│ ├─physical-object 
│ │ ├─alive 
│ │ │ ├─animal-wild 
│ │ │ ├─animal-domestic 
│ │ │ …  
│ │ ├─money 
│ │ │ ├─banknote 
│ │ │ ├─payments 
│ │ │ …  
│ │ … 
│ … 
… 
 

The obvious difficulty concerns polysemantic 
words and homonyms. For instance, the system 
should select the correct class for the word table 
from the two alternatives — <FURNITURE> and 
<DRAWING/TABLE>. We may suggest to use any 
tool for word sense disambiguation (WSD), 
referenced in [11]. Our software relies on the results, 
provided by the semantic analyzer that performs 
WSD as well. 
 
5. Fast Plagiarism Detection Algorithm 

To obtain working software, we took a system [3], 
and substituted the tokenization module with the 
natural language version. The corresponding author 
is a member of the team that created the 
aforementioned system. 



The system is intended for hermetic, many-to-
many comparison of all files of the submitted 
collection of documents that contain Java listings. 
Most hermetic detection programs perform naïve 
pairwise file-to-file comparison, which results in 
O(f(n)N2) complexity, where N is the number of files 
in the collection and f(n) is the time to make the 
comparison between one pair of files of length n. Our 
software tries to decrease the algorithmic complexity 
while preserving almost the same quality of 
detection.  

The system firstly creates a suffix array from the 
tokenized collection of files. A suffix array is a 
lexicographically sorted array of all suffixes of a 
given string. It allows us to quickly find a file (or 
files), containing any given substring. A binary 
search is utilized to achieve this. 

To find all collection files that are similar to a 
given query file, the system executes Alg. 1. It tries 
to find the substrings of the tokenized query file, 
Q[1..q], in the suffix array, where q is the number of 
tokens. Matching substrings are recorded and each 
match contributes to the similarity score. The 
algorithm takes contiguous non-overlapping token 
substrings of length γ from the query file and 
searches all the matching substrings from the index. 
These matches are recorded into a ‘repository’. This 
phase also includes a sanity check as overlapping 
matches are not allowed. 
 
Algorithm 1. Search a File in a Collection 
 
p = 1 // the first token of Q 
WHILE p ≤ q − γ + 1 
  find Q[p...p + γ − 1] from the suffix array 
  IF Q[p...p + γ − 1] was found 
    UpdateRepository 
    p = p + γ 
  ELSE 
    p = p + 1 
FOR EVERY file Fi in the collection 
  Similarity(Q, Fi) = MatchedTokens(Fi)/q 
 

In Alg. 2, the system encounters two types of 
collisions. The first one appears when more than one 
match is found in the same file. If several matches 
that are found correspond to the same indexed file, 
these matches are extended to Γ tokens, Γ ≥ γ, such 
that only one of the original matches survives for 
each indexed file. Therefore, for each file in the 
index, the algorithm finds all matching substrings 

that are longer than other matching substrings and 
whose lengths are at least γ tokens. 
 
Algorithm 2. Update the Repository 
 
Let S be the set of matches of Q[p...p+ γ−1] 
IF some elems of S are found in the same file  
  leave only the longest one 
FOR every string M from the remaining list S 
  IF M doesn’t intersect with repository elems 
    insert M to the repository 
  ELSE IF M is longer than conflicting elems 
    remove all conflicting repository elements 
    insert M to the repository 

 
The second type of collision is the reverse of the 

first problem: we should forbid the situation when 
two different places in the input file correspond to 
the same place in some collection file. To resolve 
collisions we use ‘longest wins’ heuristics. We sum 
the lengths of all the previous matches that intersect 
with the current one, and if the current match is 
longer, we use it to replace the intersecting previous 
matches. 

The complexity of Algorithm 1 is highly 
dependent on the value of the γ parameter. Line 3 of 
Algorithm 1 takes O(γ + log n) average time, where 
is n the total number of tokens in the collection 
(assuming atomic token comparisons). If we make 
the simplifying assumption that two randomly picked 
tokens match each other (independently) with fixed 
probability p, then on average we obtain npγ matches 
for substrings of length γ. If Q was found, we call 
Algorithm 2. Its total complexity is, on average, at 
most O((q/γ · npγ)2). To keep the total average 
complexity of Algorithm 1 to at most O(q(γ + log n)), 
it is enough that γ = Ω(log1/p n). This results in O(q 
log n) total average time. Since we require that γ = 
Ω(log n), and may adjust γ to tune the quality of the 
detection results, we state the time bound as O(qγ). 
Finally, the scores for each file can be computed in 
O(N) time. To summarize, the total average 
complexity of Algorithm 1 can be made O(q(γ + log 
n) + N) = O(qγ + N). The O(γ + log n) factors can be 
easily reduced to O(1) (worst case) using suffix trees 
with suffix links, instead of suffix arrays. This would 
result in O(q + N) total time. 

This analysis does not include tokenization, but it 
is a linear process (both for Java files and for the 
natural language texts), and the number of tokens 
depends linearly on the file length. 



 
6. Tree Matching 

Any sentence of the given text can be 
automatically represented in the form of the tree, 
which reflects the structure of the sentence. The 
principles of organization of such parse trees still 
serve as the subject of wide discussions. Most 
automatic English parsers use Chomsky-styled Penn 
Treebank grammars [12], based on the traditional 
linguistic approach to the syntax analysis. For 
example, the phrase the monkey ate the banana will 
be parsed by such software as shown in Fig. 2. 
 
Figure 2. Parsing the Sentence 
 
      ┌──────SENTENCE─────┐ 
  SUBJECT    └─VERB     OBJECT 
  ├─ARTICLE    └─ate    ├─ARTICLE 
  │ └─the               │ └─the 
  └─NOUN                └─NOUN 
    └─monkey              └─banana 
 

Our semantic analyzer also builds a parse tree for 
any given sentence, but it is not based on Chomsky 
grammars (they are not well-suitable for the Russian 
language, because the order of the parts of a sentence 
in Russian is not fixed). The semantic analyzer treats 
the sentence as a control structure, having a 
functional nature. More specifically, it considers the 
sentence as a superposition of words-functions that 
depend on words-arguments. 

The parse tree for the same phrase the monkey ate 
the banana in this model will look like this: 
 
    ┌──────ate─────┐ 
 the_monkey    the_banana 
 

Here the word ate is considered as a computable 
function of two arguments: the_monkey and 
the_banana. 

Having ready-made parse trees (of any kind), we 
can invoke a tree matching procedure. This technique 
is described in [13] for the case of plagiarism 
detection in program code. 

Initially the algorithm builds a flowchart-styled 
parse tree for each file to be analyzed. Then for each 
pair of files, the algorithm performs a rough “abstract 
comparison”, when only types of the parse tree 
elements (like ASSIGNMENT, LOOP, 

BRANCHING) are taken into account. This is done 
recursively for the each level of tree nodes. 

If the similarity percentage becomes lower than 
some threshold at some step, the trees are 
immediately treated as not similar. 

If the abstract comparison indicates enough 
similarity, a special low-level “micro comparison” 
procedure is invoked. At this point each node 
represents an individual statement. Thus, each tree 
node turns into a separate subtree that has to be 
compared with the corresponding subtree taken from 
another file. 

Note that the “abstract comparison” is a step when 
tokenized sequences are compared, so for our 
purposes (plagiarism detection over tokenized texts) 
we can skip the next “micro comparison” procedure. 
This technique seems to be the most advanced way of 
comparing structured documents, but our results in 
this direction are still very preliminary for any kind 
of evaluation. 

On the other hand, it is already clear that the tree 
matching can help to reveal rewording. If we treat the 
children of every tree node as an unordered 
collection of nodes, e.g. the phrases the monkey ate 
the banana and the banana was eaten by the monkey 
will be very close after the tokenization.  
 
7. Evaluation 

The evaluation part is a very problematic issue for 
any kind of plagiarism detection system. It is 
especially hard for the software that searches the 
Internet for the possible occurrences of plagiarism, 
but even papers on “hermetic” systems usually just 
show the positive sides of the proposed 
approach [4, 13]. However, we can examine the 
reports that are produced by different plagiarism 
detection software when used on the same dataset. 

The original system [3] was evaluated by using 
such “jury” method. The programs utilized for the 
analysis include MOSS [14], JPlag [2] and 
Sherlock [4]. Every system printed a report about the 
same real collection, consisting of 220 undergraduate 
students’ Java programs (varying in size from 2 KB 
to 50 KB; the median length is 15 KB). Although the 
‘opinions’ of all the tested systems are different for 
many of the files, most files are either detected or 



rejected by the majority of systems. This simple 
approach (to consider only detection or rejection) 
allows us to organize a ‘voting’ experiment. Let S i be 
the number of ‘jury’ systems (MOSS, JPlag and 
Sherlock), which marked file i as suspicious. If Si ≥ 
2, we should expect our system to mark this file as 
well. If Si < 2, the file should, in general, remain 
unmarked. For the test set consisting of 155 files 
marked by at least one program, our system agreed 
with the ‘jury’ in 115 cases (and, correspondingly, 
disagreed in 40 cases). This result is more conformist 
than the results obtained when the same experiment 
was run on the other 3 tested systems. Each system 
was tested while the other three acted as jury. 

For the evaluation of the new system we used a 
collection of 350 documents taken from the 
NEWSru.com news server. Each document had an 
informative title and was assigned to one of the 
following categories: In Russia, In the World, 
Economics, Religion, Criminal, Sport, and Culture. 
The size of the articles varies from 450 bytes to 
19 KB with the median size of about 2 KB. The 
typical article consists of 8-12 small paragraphs that 
are made of strict narrative sentences and quotations. 

This selection was based on the assumption that 
the newsreels often publish different documents on 
the same topic (though we do not expect direct 
plagiarism in this case), so the possibility to find 
similar files is quite high. Since we do not know 
about any other plagiarism detection systems that use 
natural language processing techniques, the results 
were analyzed manually. 

The system found 20 relevant pairs of similar 
documents (with at least 4% degree of similarity). 
The typical examples include: 
- A pair of documents about the solar eclipse on 

20th of March. The first tells about the countries 
where this phenomenon is observed; the second is 
dedicated purely to the observation of the eclipse 
in Russia. 

- A pair of documents on the weather conditions in 
Europe. The first is about floods in the EU; the 
second contains some weather predictions for the 
EU (including subsequent floods). 

- A pair of documents on rumors about Russian 
military assistance to the Iraqi government in 
March of 2003. The first outlines the position of 

Moscow; the second states the reaction of 
Washington. 

After tokenization the similarity degrees of the same 
file pairs increased (in most cases) by a factor of 1.5 
or (in few cases) remained the same. Meanwhile, 
four additional false pairs were detected (but with 
very low similarity ratios that did not exceed 4-5%). 

There are typical situations encountered in the 
experiment that noticeably affected the detection 
process after tokenization. They include: 
- Changes to grammar cases in Russian. The 

phrases in one of resorts and of one of resorts are 
not matched at due to the changes of the endings 
of the words. After tokenization they become 
almost identical. 

- The use of distinct words of the same classes in 
the same contexts in different documents. The 
phrases the residence in Greece and the residence 
in Athens do not match, but do match after the 
tokenization (Greece and Athens are translated to 
the same class <PLACE>). 

The latter case is related to many mismatches as well. 
For example, the phrases Vladimir Putin claimed and 
George Bush claimed are treated as the same 
sequence <NAME><NAME><SPEAK> after the 
tokenization. It may be argued, though, that the 
system of classes we used was not specially designed 
for plagiarism/similarity detection procedures. A 
more advanced hierarchy may include a careful 
taxonomy that minimizes such collisions.  

It should be noted that in the simplest case the 
tokenization can be considered as a variation of 
stemming technique that is widely used in 
information retrieval. Although, for some languages 
(including Russian) stemming procedures are not 
simple, since they have to deal with many non-trivial 
grammatical issues. 

The use of tokenization results in the immediate 
increase of the number of matches. Tokenization of 
level 0 (stemming), level 1 (with the terminal classes 
in the hierarchy) and level 2 (with the direct 
ancestors of the terminal classes) makes sense, but 
the use of tokenization of higher levels results in 
many false matches, since the classes become too 
general. For example, tokenization of level 3 
substitutes the word cat with the class name 
<ALIVE>. The same class corresponds to all alive 
objects, such as worm, chairman or wife. 



The system also did not detect several file pairs 
that could be treated as similar under certain 
conditions. For example, some documents can have 
only a few common substrings, but most human 
readers consider them as similar. The manual 
analysis shows that the number of such pairs in our 
collection is less than five, and the corresponding 
files are not originated from the same source, i.e. 
they do not contain instances of plagiarism.  

 
8. Conclusion 

Plagiarism detection for text in natural languages 
is a challenge. Most natural language processing 
tools, such as parsers and taggers remain unused by 
the authors of plagiarism detection systems. Also 
these tools are language dependent and designed for 
English. 

Our approach gives a possible solution to make a 
language independent system to determine plagiarism 
in collections of the texts. The key idea behind it is 
the use of hierarchies of concepts and the functional 
style of representing the sentences. To implement the 
system, we adopted algorithm [3], applied the 
tokenization technique and the tree matching 
procedure. We utilized the concept hierarchy for the 
Russian language. Our tests showed the promising 
results which include intelligent tokenization and 
high speed processing of the text data (O(q + N) is 
required to test a query file of size q against a 
collection of N files). The tree matching procedure is 
still very experimental, but we believe that it can 
significantly improve the quality of plagiarism 
detection. Our solution is scalable (see [3]), so it is 
suitable for large essays banks. 
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