

DESIGNING PROGRAMMING EXERCISES FROM BOARD GAMES

Maxim Mozgovoy and Marina Purgina

School of Computer Science and Engineering

The University of Aizu

Tsuruga, Ikki-machi, Aizuwakamatsu, Fukushima

Japan

E-mail: mozgovoy@u-aizu.ac.jp, mapurgina@gmail.com

KEYWORDS

Board games, programming, education, learning

ABSTRACT

This paper introduces a collection of board games specifically

chosen to serve as a basis for programming exercises. We

examine the attractiveness of board games in this context as

well as features that make a particular game a good exercise.

The collection is annotated across several dimensions to assist

choosing a game suitable for the target topic and student level.

We discuss possible changes into exercise tasks to make them

more challenging and introduce new topics. The work relies

on established topics taxonomy and board games resources

which makes extending the current collection easy.

INTRODUCTION

Games commonly serve as a good starting point for

programming exercises [1, 2]. Such exercises offer a unique

combination of attractive features ranging from diverse

technical skills required to complete them to user interface

and artistic challenges on the way to appealing results. Games

are often used as example environments in a variety of

domains, including computer graphics, sound, AI, and

networking. Games are included into collections of sample

projects like Rosetta Code or distributed with development

tools (Microsoft QuickBasic, Visual Studio).

While the complexity and diversity of games as software

systems is evident, and their high potential as exercise projects

is obvious, introducing games into a regular entry-level

programming course is not always easy. Even a simple game

might demand considerable programming skills and

knowledge of specialized topics such as computer graphics

and GUI design. It is also easy to misjudge the complexity of

a project and its scope just by reading game description. A

game project might require the student to spend

disproportionate amount of time on marginal tasks like data

entry or face advanced topics like making AI.

Therefore, potential game project exercises have to be

carefully evaluated in advance to understand their real

complexity and suitability for a particular group of students.

The goal of this paper is to introduce a small but growing

collection of board games, handpicked specifically as

exercises for beginner software developers1. We will discuss

the rationale behind game selection process, typical

1 https://github.com/rg-software/board-games

programming challenges arising in games, and suggest

possible extensions of the proposed projects.

RELATED WORK

The present paper owes much to the work by Drake and

Sung [3], where an earlier attempt to collect games suitable as

programming exercises is introduced. The authors discuss a

variety of topics arising in this activity, and their reflections

on possible criteria for inclusion of particular games are

especially valuable. Here we will address many of the same

questions as raised by Drake and Sung.

Numerous authors describe their experience of introducing a

particular game into course curriculum. Choices vary from

classics such as Chinese checkers and Mancala [4] to modern

strategies like Ticket to Ride [5] and custom-made games,

designed for a specific purpose, e.g., teaching AI [6].

As already noted, games offer a diverse variety of challenges

to a programmer, so it is easy to imagine the use of a particular

game at any specialized course. It is harder to propose a

systematic approach for choosing games, suitable for specific

teacher and learner needs. This problem is closely related to

the task of classifying programming exercises in general: an

exercise should be accompanied with certain information

helping the student and/or teacher understand its objective,

scope, and complexity.

There are attempts to develop such classification schemes,

emphasizing different aspects of the educational process. For

example, Fuller et al. [7] focus on student abilities, evaluating

the relevance of a particular exercise on the basis of student’s

skills of interpreting and producing computer programs. Such

type of taxonomy is useful for adapting the given exercise to

a certain learner level, but it speaks less about intrinsic

properties of the software system we are aiming to produce. A

more relevant approach type for our purposes is proposed by

Santos et al. [8], who classify each exercise across three

dimensions:

1. Topics. The list of common topics in a typical

introductory programming course, such as “variables and

operators”, “conditional structures”, “functions”, etc. An

exercise can be classified as belonging to several topics.

2. Complexity. A certain “complexity score” of an exercise.

If necessary, several different complexity types can be

assigned, such as “math complexity”, “code complexity”,

or “cognitive effort”.

3. Levels. A list of levels assigned within alternative

models. The authors suggest providing a Bloom’s

taxonomy level and an intended student type (beginner,

intermediate, advanced).

Note that the dimensions above specify the general

classification framework rather than precisely defined

categories to be used. Thus, it has to be adapted for our needs.

SHORTLISTING GAMES

Following the example of Drake and Sung [3], the present

work focuses specifically on board games, defined by these

authors as “board, card, or dice games that are typically not

played on a computer”. The largest online resource and

community of board game enthusiasts BoardGameGeek2

(BGG) gives no definition of a board game, instead providing

a lengthy list of games and game-like activities considered

outside the scope of the site3. Typical examples of board

games include chess, poker, snakes and ladders, etc.

Most board games share certain features, making them

attractive as exercises, especially in comparison with typical

video games:

1. Board games are generally turn based, which makes

complex subsystems of animation, physics, and real-time

player control unnecessary or optional.

2. A complete rulebook of any board game is known in

advance, so there is no need to “reverse engineer” game

logic, as may happen even with simple video games.

3. Board games do not require fast reflexes or other

dexterity skills from the player, which makes them

accessible to a wider audience.

Almost any board game project can be easily adjusted for the

desired complexity by means of gradual inclusion of

subsequent optional elements. For example:

1. (Base project). Implement a text-based version of the

system, allowing the minimal required number of human

players to complete one game session.

2. Implement a system of unit tests for the game (can be a

part of the base project if using test-driven development).

3. Implement a GUI for the game.

4. Implement support for additional players, if applicable.

5. Make the game resettable, i.e., allow to play another

session after the first one is finished.

6. Make the game saveable: let the users save the current

session to a file and reload it later.

7. Implement a remote (network) play capability.

8. Implement a game AI system.

Even the base project can be made simpler, for example, by

making illegal moves protection less strict or optional. It is

also possible to provide ready unit tests and ask the students

to implement code to pass them.

Since our goal is to use games as entry-level exercise projects,

each game has to pass a certain “filter” evaluating its viability

2 https://boardgamegeek.com

in this context. Following the guideline of [3], we can propose

its extended and modified version:

1. The game should be relatively quick to play, ideally under

15 minutes. Game rules should be short, clear, and easy

to implement in code.

2. The game should be designed for 2+ players (which

makes it a good pair programming exercise), but

occasional deviations are acceptable.

3. The game should presume that the same information is

available to all the players, which makes playing on the

same shared computer possible. This restriction excludes

most card games, however.

4. The game should be considered within the scope of BGG

and have a dedicated BGG page. This requirement makes

it easy to find more information about the game,

including its possible expansions and variations.

5. The previous condition excludes solo puzzles, such as 15

puzzle or Rush Hour. They are considered different from

solo or de facto solo games like card solitaire or

Mastermind, since they generally come with a list of

predefined problems and do not introduce randomicity

that makes each game session unique.

6. Game coding should not involve long tedious tasks (such

as typing lists of card effects or drawing custom boards).

7. The game should not include language-dependent

elements, making them harder to reuse in an international

setting (which excludes most word games).

8. The game should be at least mildly engaging, which can

be defined as “having an average BGG rating of 5 out of

10 or higher” for our purposes.

Some of these features are correlated. For example, quick

games tend to have simpler rules. However, simple games are

typically not found among the most high-ranked BGG entries.

The last decades were marked with the arrival of new

generations of innovative board games, making older games

look less attractive: most games on BGG with the user rating

of 8 and higher and at least 50 reviews are released after 2000.

Drake and Sung note that newer games are more likely to be

covered by some kind of legal protection (copyright and

trademarks, and far less commonly patents).

Relevant sources, such as [9–11] suggest that at least in the

North American context legal protection typically covers

trademarked names, visual art, and the exact wording of a

rulebook. Thus, one should be careful about reusing the

original text and graphics of a game. However, implementing

core game mechanics as a programming exercise is not likely

to cause legal issues according to the referenced sources and

to the best of authors’ knowledge. Note that the authors are

not lawyers and cannot provide legal advice.

DEVELOPING COLLECTION ATTRIBUTES

Once the criteria for choosing games are set, we need to

review the taxonomy of Santos et al. [8] and adapt it for our

purposes.

3 https://boardgamegeek.com/boardgame/23953/outside-

scope-bgg

The dimension of Topics is perhaps the most challenging as

the notion of “common topics in an introductory programming

course” is vague. An attempt to provide a short list of topics

and evaluate their difficulty to the student is made by Meisalo

et al. [12]. They identify the following items: Variables and

symbols, Input and output, Conditional statements, Loops,

Arrays, Methods, [Java] Applets, Graphics, Key Event,

Animations. Other lists can be compiled by examining the

contents of good introductory books on programming. For

example, a classic “K&R” book [13] contains the chapters

titled “Types, operators, and expressions”, “Control flow”,

“Functions and program structure”, “Pointers and arrays”,

“Structures”, and “Input and output”. It may be argued that

the choice of chapters depends on a particular language used.

For example, a Python-based book [14] has a chapter on

“Loops and lists”, placing them into the same category.

Certain topics like “classes” or “recursion” are hard to assign

since any project can be completed without these instruments.

Clearly, some of these topics like “input and output” are

relevant for all board games. Others like “animations” or

“graphics” are deliberately made optional during initial task

definition. Thus, both these topic types are irrelevant for us. It

is also evident that some topics appear especially often in

board games. A typical board can be represented as a

rectangular matrix, so “two-dimensional arrays” will probably

be the most common topic. The currently used selection of

topics is provided in Table 1.

Table 1: Topic Dimension Categories

Topic Comment

Basics Assignments, simple branches and loops.

Arrays One-dimensional arrays and lists.

2D Arrays Two-dimensional arrays

Algorithms Basic algorithms (searching, sorting, etc.)

Algorithms+ More advanced algorithms like matrix

transposition and/or tricky techniques.

Graphs Graph representations and algorithms

The dimension of Complexity can be roughly estimated by the

required lines of code (LOC) used to implement the core

functionality of the game (without user interface). While some

projects are short but tricky to implement and vice versa, all

of them ultimately belong to the “simple board game” type, so

a simple line count is probably more reliable than any

subjective score assigned by the author.

The Levels dimension as described in Santos et al. [8] is hardly

applicable to our case. The target Bloom level is always 6

(“creating”) [15], and the target student level is roughly the

same for all the projects.

There are, however, other attributes that can be useful for our

context. They are Game category, Number of players, and

Table 2: The present content of the board games collection (sorted according to LOC)

Game BGG ID* BGG

Rating

Core

LOC

GUI

Value

Players Category Topics

Pig 161130 5.3 25 Low 2 Dice Basics

Mastermind 2392 5.6 25 Low 1-2 Deduction Basics, Arrays

GOLO (basic) 7270 5.6 25 Low 1+ Dice Basics, Arrays

Kalah 2448 5.9 50 Low 2 Abstract Arrays

Stop-Gate 7450 6.1 50 High 2 Abstract 2D Arrays

No Thanks! 12942 7.1 50 Low 3-7 Cards Arrays, Algorithms

Othello 2389 6.1 50 High 2 Abstract 2D Arrays, Algorithms+

Impact 246228 6.7 50 Low 2-5 Dice Arrays, Algorithms

Gold Fever 234120 6.4 50 Low 2-5 Cards Basics, Arrays

GOLO (scorecard) 7270 5.6 50 Low 1+ Dice Arrays, Algorithms

Ship, Captain, and
Crew 18812 5.1 50 Low 2+ Dice Arrays, Algorithms

Quixo 3190 6.2 50 High 2-3 Abstract Arrays, Algorithms

Poker dice 10502 5.1 100 Low 2+ Dice Arrays, Algorithms

Paletto 101463 6.7 100 High 2-3 Abstract Graphs, Algorithms+

Black Box 165 6.4 100 Low 1-2 Deduction 2D Arrays, Algorithms+

Criss Cross 220988 6.4 100 High 1-6 Dice 2D Arrays, Algorithms

King's Valley 86169 6.5 100 High 2 Abstract 2D Arrays, Algorithms

Farmers Finances 201028 6.3 150 Low 2 Economic Basics

Orchard 245487 7.4 150 High 1 Cards 2D Arrays, Algorithms+

Blokus Duo 16395 6.8 200 High 2 Abstract 2D Arrays, Algorithms+

Push Fight 54221 7.4 200 High 2 Abstract 2D Arrays, Graphs

*Check the BGG game page at https://boardgamegeek.com/boardgame/<BGG ID>

GUI value. The last attribute (low/high) indicates whether the

game is playable without a graphical interface, or making GUI

is strongly desirable. These attributes along with the game’s

BGG rating constitute the complete markup of each game in

the collection (see Table 2).

IMPLEMENTATION DETAILS

Each game in the collection is implemented according to the

“stage 3” complexity of the task: there are both text (dialog-

based) and graphical user interface versions, and a reasonable

set of unit tests. Implementations are supposed to be simple

and straightforward, resembling typical solutions. All games

are coded in Python. Being concise, Python provides a good

basis for the lower-bound LOC estimation. Graphical user

interface is created using Pygame Zero4, which adds minimal

overhead to text-based implementations. No other third-party

libraries are used.

It may be argued that providing reference implementations for

all the games in the collection tempts the students to “borrow”

existing code. While it might be true, it also greatly reduces

the burden of a teacher willing to design a simpler “fill the

gaps” exercise by providing an option to remove some parts

of the code. It also makes easy to check student solutions

against the most probable source of their “borrowings”

DISCUSSION AND CONCLUSION

The main goal of this work is to create a small-scale annotated

catalogue of board games, suitable as programming

assignments, and provide sample implementations. Using this

catalogue, it should be possible to identify games of desired

scale and complexity and adapt them to specific needs of a

particular course. The author, for instance, successfully uses

some of these games at a Concurrent and Distributed Systems

course, where typical assignments presume the

implementation of remote play functionality.

The stated filtering criteria allowed to choose games equally

applicable in a variety of contexts, so the teachers and learners

can focus on the target topic and complexity rather than on

individual peculiarities of a particular game. Unfortunately,

the proposed filtering favors certain game genres, especially

abstract strategy. Hopefully, the inclusion of new games will

increase genre diversity.

REFERENCES

[1] D. C. Cliburn, “The effectiveness of games as

assignments in an introductory programming course,”

in Proceedings. Frontiers in Education. 36th Annual

Conference, 2006, pp. 6–10.

[2] K. Sung, “Computer games and traditional CS

courses,” Commun. ACM, vol. 52, no. 12, pp. 74–78,

2009, doi: 10.1145/1610252.1610273.

[3] P. Drake and K. Sung, “Teaching introductory

programming with popular board games,” in

SIGCSE'11: Proceedings of the 42nd ACM Technical

Symposium on Computer Science Education, March 9-

12, 2011, Dallas, Texas, USA, New York, New York,

USA, 2011.

[4] T. Huang, “Strategy game programming projects,”

Journal of Computing Sciences in Colleges, vol. 16,

no. 4, pp. 205–213, 2001.

[5] D. Lim, “Taking students out for a ride: using a board

game to teach graph theory,” ACM SIGCSE Bulletin,

vol. 39, no. 1, pp. 367–371, 2007.

[6] D. Ashlock, J. A. Brown, C. Gregor, and M.

Makhmutov, “A Family of Turn Based Strategy Games

with Moose,” in 2021 IEEE Symposium Series on

Computational Intelligence (SSCI), Orlando, FL, USA,

2021, pp. 1–8.

[7] U. Fuller et al., “Developing a computer science-

specific learning taxonomy,” ACM SIGCSE Bulletin,

vol. 39, no. 4, pp. 152–170, 2007.

[8] Á. Santos, A. Gomes, and A. Mendes, “A taxonomy of

exercises to support individual learning paths in initial

programming learning,” in 2013 IEEE Frontiers in

Education Conference (FIE), 2013, pp. 87–93.

[9] E. Sargeantson, How to Protect Board Games with

Copyrights, Patents and Trademarks. [Online].

Available: https://mykindofmeeple.com/protect-board-

game-copyrights-patents-trademarks/

[10] J. Bailey, “The Rise of Board Game Plagiarism,”

Plagiarism Today, 24 Jul., 2018. https://

www.plagiarismtoday.com/2018/07/24/the-rise-of-

board-game-plagiarism/

[11] D. J. Schaeffer, “Not Playing Around: Board Games

and Intellectual Property Law,” Landslide, vol. 7, no.

4, 2015. [Online]. Available: https://

www.americanbar.org/groups/intellectual_property_

law/publications/landslide/2014-15/march-april/not-

playing-around-board-games-intellectual-property-law/

[12] V. Meisalo, E. Sutinen, and S. Torvinen,

“Classification of exercises in a virtual programming

course,” in 34th Annual Frontiers in Education, 2004.

FIE 2004, 2004, S3D‐1.

[13] B. W. Kernighan and D. M. Ritchie, The C

programming language, 2nd ed. Englewood Cliffs,

N.J.: Prentice Hall, 1988.

[14] H. P. Langtangen, A primer on scientific programming

with Python, 5th ed. Berlin: Springer, 2016.

[15] D. R. Krathwohl, “A revision of Bloom’s taxonomy:

An overview,” Theory into practice, vol. 41, no. 4, pp.

212–218, 2002.

4 https://pygame-zero.readthedocs.io

