CEE-SECR ’18, October 12-13, 2018, Moscow, Russian Federation

M. Mozgovoy and E. Pyshkin

A Comprehensive Approach to Quality Assurance in a
Mobile Game Project

Maxim Mozgovoy
University of Aizu
Aizu-Wakamatsu, Fukushima, Japan
mozgovoy@u-aizu.ac.jp

Abstract

Quality assurance is an integral part of software develop-
ment process. Game projects possess own distinctive traits
that affect all stages of work. In this paper, we share the
lessons learned during a three year-long mobile game de-
velopment project. We discuss the conceptual architecture
for mobile game quality assurance through the perspective
of techniques that turned out to be most efficient for us, in-
cluding manual testing, automated and manual runtime bug
reporting, Crashlytics-supported crash analysis, automated
smoke testing, and playtesting. We analyze how these activi-
ties address typical game-specific mobile development and
testing issues, and why they can be recommended for game
projects, as well as for wider range of mobile applications.

CCS Concepts -« Software and its engineering — Em-
pirical software validation; Software usability; « Human-
centered computing — Mobile computing;

Keywords Software development, quality assurance, con-
tinuous integration, automated testing, usability, mobile game

ACM Reference format:

Maxim Mozgovoy and Evgeny Pyshkin. 2018. A Comprehensive
Approach to Quality Assurance in a Mobile Game Project. In Pro-
ceedings of Central and Eastern European Software Engineering Con-
ference Russia, Moscow, Russian Federation, October 12—13, 2018 (CEE-
SECR ’18), 9 pages.

https://doi.org/xxxxxx

1 Introduction

Quality assurance (QA) is a complex set of methods, used
in all stages of software development, ranging from require-
ments engineering and software design to coding and testing.
Quality assurance practices cannot guarantee perfection of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

CEE-SECR ’18, October 12-13, 2018, Moscow, Russian Federation

© 2018 Association for Computing Machinery.

ACM ISBN xxxxxX...$15.00

https://doi.org/xxxxxx

Evgeny Pyshkin
University of Aizu
Aizu-Wakamatsu, Fukushima, Japan
pyshe@u-aizu.ac.jp

a software product, but they naturally affect its quality and
reliability. Explicit quality assurance measures are found in
all widely used software development processes, from tra-
ditional waterfall model to modern agile approaches where
testing procedures are moved to earlier stages of software
lifecycle [10, 12].

Still, quality issues are common in resulting software prod-
ucts. Khalid et al. [13] analyzed user reviews of 20 most pop-
ular i0S apps of June 2012. They found that 26.68% of user
complaints are related to functional errors, and other 10.51%
of complaints mention app crashing. Together with “feature
request”, they constitute top 3 complaint types.

One may argue that the best way to ensure software qual-
ity is to maintain high standards of software development
culture [15]. Indeed, poor design and planning, and some-
what relaxed attitude to writing code is often mentioned as
the primary reasons for buggy software [17]. Thus, grad-
ual improvement of software development processes is a
necessary, but difficult and time-consuming measure.

Many QA-related issues are common for all types of soft-
ware. However, mobile application testing has its own chal-
lenges. Research on advancing low-cost sharable open source
solutions that enable scalable process of mobile application
testing is one of clear trends in mobile software industry,
where, due to some limitations on applicability of automated
testing tools for mobile applications and lack of comprehen-
sive solutions for mobile testing, many teams still prefer to
rely on manual testing practices [16, 21].

The analysis of numerous projects dedicated to mobile
software testing helps us to discover certain particular as-
pects of mobile testing, attracting attention in recent works.
Since there is a large number of mobile devices with a diverse
specifications, developers have to be sure that the application
works properly on different real devices, and the emulators
are often not enough for this purpose.That is why one of
major concerns is how to support running automated tests
on multiple devices in case of resource-intensive mobile
applications [14]. The difficulties of deployment of a contin-
uous integration framework meet other specific problems of
mobile testing, including power consumption issues. Appli-
cation crashes is another serious issue, important for mobile
applications, since the developers have to support a huge va-
riety of devices with their own quirks. Thus, crash reporting
components, which would provide the detailed description

A Comprehensive Approach to Quality Assurance...

of the failure context, are crucial for a continuous integration
pipeline [20]. Crash reporting is a nontrivial problem, since
the reports might require inclusion of a lot data, such as
screenshots, steps to reproduce the failure, exception stack
traces, etc.

In turn, mobile games demonstrate many important par-
ticularities and challenges of the testing process, such as:

e organization of Ul and usability testing, including playtest-

ing;

e automated non-native GUI testing relying on image
recognition algorithms to support simulation of user
interaction with hand-drawn elements of the game;

e organization of parallel testing on multiple devices,
possibly including both real and emulated hardware;

e existence of resource-intensive tests, such as stress
tests and/or tests requiring intensive data exchange;

e maintenance of device health and acceptable battery
levels of test devices.

These particularities might not explain all the most im-
portant mobile testing issues, but they are surely connected
to the significant factors of entertainment software testing.

Linares-Vasquez et al. [16] suggested a conceptual archi-
tecture for mobile testing that follows a number of principles
forming the triad “continuous - evolutionary — large-scale”.
The first term (“continuous”) connects the problem to con-
tinuous integration methods: applications are continuously
tested under changing environmental conditions with model-
ing realistic usage scenarios and triggering a testing iteration
according to the current version of the application and/or
different usage conditions (operating systems, devices, etc.).
The second term (“evolutionary”) refers to automatic adap-
tion of testing tools to the changes in software: “app source
code and testing artifacts should not evolve independently of
one another” [16]. Finally, the “large-scale” principle refers
to a large number of issues related to continuous delivery,
including the support for parallel testing on multiple devices,
both physical (preferred) and virtual, performance and stress
testing.

We concentrate on relatively simple, but cost-efficient mea-
sures, aimed to reveal bugs before they creep into the release
version, and to facilitate quick fixes of bugs not identified
during testing. While all these methods are well-known, they
deserve additional discussion within the process of game de-
velopment, since it has certain distinctive traits that affected
our views on quality assurance. We believe that these obser-
vations will be helpful not only to game programmers, but
also to the developers of general-purpose interactive desk-
top and mobile software with frequent releases and high
requirements for usability and quality.

Our observations were made during the development of a
mobile game World of Tennis: Roaring ’20s created by a small
team in three years. The game is written in Unity game
engine [30], and is currently available for i0OS, Android, a

CEE-SECR ’18, October 12-13, 2018, Moscow, Russian Federation

nd Universal Windows platforms. The game is free to play
with additional in-app purchases. It requires Internet connec-
tion for most actions, though occasional lags and unstable
connectivity do not affect game process. One of the most
interesting aspects of this game is a machine learning-based
Al system that observes players’ behavior to substitute them
in player-vs-player matches [23]. This capability allows the
players to compete against each other at any time, and miti-
gates all negative effects of poor Internet connection. This
feature also requires implementing particular quality assur-
ance scenarios, including believability tests in addition to
more commonly used playtesting or GUI testing.

2 Mobile Software QA Process for Game
Developers: A Conceptual Architecture

The nature of a software product we create affects the whole
development process, including quality assurance. As Ben-
Ari notes discussing the failure of Ariane 5 rocket launch in
1996, “the bug [was] not caught during testing. .. [because] you
cannot debug the system by inserting breakpoints while the
rocket is being launched!” [5]. Game development has its own
peculiarities, discussed in literature [25, 28]. With respect to
these peculiarities, we describe a conceptual architecture for
a solution aimed to combine necessary practices of mobile
software QA (see Figure 1).

This solution includes a number of several (not completely
independent) views: change management, test management,
continuous integration core, device management, and mobile
device testing issues.

Monitoring changes section describes activities and pro-
cesses that should trigger testing operations. Such processes
are connected to different change sources, including the
project source code, game design artifacts (e. g. the game UI),
target platforms and environments, and third-party libraries
and tools. Changes in software and in testing artifacts are
also triggered by collecting user feedbacks received after
playtesting sessions.

Managing tests section encompasses processes monitored
for changes, activities on test script creation or modification
aimed at arranging different types of required tests, including
automated unit and smoke tests, usability tests, playtests and
manual tests. The test scripts are to be stored in a test artifacts
repository and run on devices under testing.

Continuous integration core section describes the common
architecture for a CI solution supporting automated testing
process. This solution is based on established practices used
by many software teams and includes a number of mandatory
components of CI pipeline, such as build machine (ensuring
the generation of fresh builds triggered by the changes in
source code), test runner (executing test scripts and generat-
ing test reports), test servers hosting mobile test automation
frameworks, and connected devices where the game under
test is being installed and run.

CEE-SECR ’18, October 12-13, 2018, Moscow, Russian Federation

M. Mozgovoy and E. Pyshkin

Monitoring Changes Continuous Integration Core m
[R (—\
o Source code w / Usability
Develllopers changes . Project E' Build artifacts ’—‘
e repository = repository Bugs
a GUI d . N - -I§ e r
pesigners | U changes | modifying
(" ot)
Y APl and
= execution o — Test .
Platform || environment . Test runner server Stability
vendors evolution == \)
Automated .ee
- —— -
Ili\x Libraries and smoke tests : Managing
"3 party tools B Test power levels
developers evolution Usablhty
__cvolution tests server p :
(iri) Managing
Acquiring))
user | D aviests Test artifacts Target device health
s feedback Y repository devices D ——
——— — Manual tests e Managing
Users Ga?meplay connectivity
issues

Managing tests

Managing devices

Figure 1. Conceptual architecture for mobile software QA process.

Managing devices and Issues sections describe the concerns
that should be taken into account when dealing with real
mobile devices as target test vehicles.

Hereafter we list the most significant factors affecting
our approach to quality assurance. We argue that these fac-
tors can explain a number of important recently recognized
specific aspects of mobile game software testing.

2.1 Heavy reliance on unstable 3rd-party libraries
and tools

We are responsible for most errors in the game, but 3rd-party
tools are not perfect, either. We are forced to use certain li-
braries to integrate with external services (such as Google,
Facebook or ad providers), and we have to rely on Unity
capabilities for internal game engine functionality and cross-
platform development. Some of these modules are quite com-
plex (such as cloth simulation), immature, and sometimes
cause app crashes. Often we have to face a choice: either
to use a 3rd-party module that implements a functionality
needed for a certain feature, or to cut this feature at all. It is
also often means to rely on early unstable versions of 3rd-
party modules and to hope that they will be improved in the
future. In practice it means that our approach to functional
errors and crashes has to be nuanced. For example, we might
decide to tolerate a certain level of crashes if it lets us to
integrate with an ad provider or enable great-looking cloth
simulation.

2.2 Diversity of hardware and software platforms

Unity does not make cross-platform development trivial,
but it certainly makes it much simpler. Therefore, it is very
tempting to take advantage of this capability, and to release
the game on a wide range of platforms. In turn, it means
that the game has to be tested on each platform separately.
Platform-specific errors typically occur in fragments of code
appearing in libraries compiled as native binaries and in
procedures working with platform-specific SDKs (e. g, for
in-app purchases). Diversity of hardware and operating sys-
tems also imposes additional challenges. Some distribution
channels such as Apple and Google application stores allows
the developers to specify the types of compatible devices by
providing minimal supported screen dimensions, amount of
RAM available, target operating system versions, and so on.
It leads us again to treat known flaws pragmatically. If the
game does not work properly on certain types of devices, it
might be reasonable from a business perspective to consider
them incompatible rather than invest efforts into patches.

2.3 Abundance of visual and sound issues

A great number of bugs in games can only be revealed with
manual testing. For instance, we had situations when shad-
ows were not visible, the colors of clothes were wrong, the
characters had their feet below the ground level, some text
boxes overlapped with other GUI elements or were too small
to contain the corresponding text lines. Same can be said

A Comprehensive Approach to Quality Assurance...

about animation: certain sequences looked unnatural and
transitions between animation types were not smooth. Sound
effects also were sometimes missing or different from what
was expected. Therefore, automated testing in game projects
is applicable to a relatively narrow set of cases. Ironically,
this factor motivated us to automate as many scenarios as
we could to give our testing team more time and incentive
to find nontrivial bugs.

2.4 Large proportion of high-cost unit testing code

Unit testing is one of the most popular quality assurance
instruments, associated with agile software development
methodologies [8]. However, as observed by Sanderson, dif-
ferent types of code have different costs and benefits of being
covered by unit tests [29]. Sanderson identifies two types
of code with high cost of unit testing: complex code with
many dependencies, and trivial code with many dependen-
cies (“coordinators” between other code units). According to
Sanderson, complex code with many dependencies should
be refactored to separate algorithms from coordination.

Our experience shows that a game project has a large
proportion of both types of high-cost unit testing code. We
believe the primary reason for it is that the most cost-efficient
type of code (“complex code with few dependencies” in
Sanderson’s scheme) belongs to the game engine such as
Unity and 3rd-party libraries. The problem is further aggra-
vated with the fact that “complex code with many dependen-
cies” is rarely refactored in practice and thus also cannot be
unit-tested efficiently.

It might be tempting to attribute the lack of refactoring and
frequently noted substandard design of system architecture
in game projects to low culture of development. However,
there are objective factors contributing to this situation. In
particular, games have to be entertaining and provide ex-
citement — requirements that can hardly be satisfied with
traditional planning methods. Therefore, game programming
requires a lot of experimenting, and it is not surprising that
the developers tend to view much of their work as “throw-
away code”. As one of the respondents of the study [25] puts
it, “[the producer] doesn’t want you [the developer] to go and
spend a whole bunch of time planning out how you’re going to
do this thing that he’s asked for because he might change his
mind in a week or two. Knowing that, he knows deep down that
designing is useless because he’s going to be constantly chang-
ing things”. Furthermore, there is little incentive to refactor
working code since most of it is project-specific and most
probably will not be reused: “there’s always a feeling in games
that you almost don’t really have to maintain it...there’s kind
of a sense that you’re the last one to touch the code” [25].

2.5 Deep integration of GUI and animation

Automated tests (especially unit tests) often rely on the pos-
sibility to separate entities. One might want to test game
physics separately from animation or GUI independently

CEE-SECR ’18, October 12-13, 2018, Moscow, Russian Federation

from underlying logic. However, it might be virtually im-
possible to do in a game. For instance, in Unity animation
is an integral part of character motion model. To check the
changes in character’s coordinates during movement, one
has to play the related animation sequence. The notion of
“user interface” is also vague in games, as any clickable on-
screen object can be considered a part of interface. Further-
more, typical user controls like buttons or edit boxes are
often hand-drawn in games and thus inaccessible through
standard automation interfaces (such as Ul Automator in
Android or XCTest in iOS).

3 QA in World of Tennis

Following the principles demonstrated in the conceptual
architecture, we implemented a practical solution for mobile
game QA, with combining a number of approaches and tools
fitting well our project goals (Figure 2).

In this section, we will discuss in more detail some specific
measures we implemented in the project. We consider them
useful and cost-efficient, and are willing to adhere to the
same practices in the future.

3.1 Crashlytics Crash Reporting

As mentioned in the previous section, we take a pragmatic
approach to errors. With numerous 3rd-party modules we
use, Unity as a game engine, and a variety of supported
platforms and devices, malfunctions are inevitable. Our task
from the early stages of development was not only to identify
faults, but also to assess their severity for the product.

One of our first decisions was to integrate Crashlytics
crash reporting service [2]. It embeds special crash reporting
code into the application, which sends crash details into a
central server. As developers, we can analyze the reasons of
crashes and the list of devices where crashes occur.

In particular, Crashlytics helped us to identify devices
having not enough RAM for our game. On mobile platforms,
a task scheduler can simply kill a foreground application if it
consumes a critical amount of memory, which is is practically
equivalent to a crash. However, it is not easy to decide where
exactly one has to draw a line, s ince numerous devices
belong to a “gray area” where crashes are possible, but not
certain. Actual statistics from Crashlytics helped us to make
a well-grounded decision.

3.2 Autobugs and Manual Bugs

Developers widely use assertions to check certain assump-
tions about certain points in code. Assertions can be seen
as a part of “design by contract” approach, introduced by
Meyer [18]. While there is a general agreement that asser-
tions should be used during development as a method for
both in-code documentation and quality assurance, there is a
debate on whether assertions should be preserved in produc-
tion code [7]. The arguments in many cases depend on what

CEE-SECR ’18, October 12-13, 2018, Moscow, Russian Federation

M. Mozgovoy and E. Pyshkin

/

—| RhodeCode

e —

Game code Repository hosting

Test scripts runner

Non-native GUI
image recognition

Crashlytics
service

Crash reporting

\ 4

Teamwork

\ Bug tracker

TeamCity

Build server

UlAutomator

WinAppDriver

Test server for Android

and Windows apps

XCUITest

UlAutomation

UlAutomator

Figure 2. Practical solution for mobile game QA process.

assertions actually do, and the typical presumption is that a
failed assertion shows an error message and terminates the
application.

We decided that each failed assertion and each raised
exception should be reported to us. Fortunately, we presume
the presence of Internet connection on user devices, thus
error reporting is easy to automate. We use Teamwork [3] as
a task and bug tracker. It has a useful capability to create tasks
via email messages: an email with a predefined structure
sent to the tasks.teamwork.com domain becomes a new
task. This way, we created a dedicated “Autobug” category
of tasks to gather information about failed assertions and
raised exceptions. Each report contains basic information
about the build, user device, and current user account. It also
contains a link to the detailed session report stored on our
dedicated server.

The same technology is used for the “Manual Bug” cate-
gory. The users marked as beta-testers in the system have
an option to pause the game at any moment and send a bug
report. It will be posted to Teamwork in the same manner
along with the session report and with a user-supplied de-
scription. As noted above, massive manual testing in games
is inevitable, so we tried to attract beta-testers as soon as the
game became playable. The public announcement of open
beta-testing was made one year before the global launch of
the game.

3.3 Manual Testing

Our approach to manual testing is relatively straightforward.
As soon as we get a new build that is considered “stable”,
we ask our testers to play several game sessions, noting any
problems they encounter. All game sessions are recorded
as video clips, and the testers illustrate their findings with
links to particular video fragments. Since our QA team is
small (only two people test regularly), we also rely on a
professional QA company to check our major release builds
on a variety of devices and platforms.

3.4 Automated Smoke Testing

Smoke testing is a type of functional testing aimed to reveal
failures in a complete system by covering a broad product fea-
tures with simple test scenarios [11]. A smoke test can be as
simple as “launching the application and checking to make sure
that the main screen comes up with the expected content” [9],
it can also evolve into a complex suite of tests checking core
application functionality. Microsoft calls smoke testing “the
most cost effective method for identifying and fixing defects in
software” after code reviews [19].

We believe that smoke testing is indeed one of the most
cost-efficient methods of quality assurance. In our game,
there are certain routine actions that can be automated rel-
atively easily: 1) create a new user and pass the tutorial; 2)
play a league match against the next opponent; 3) upgrade

A Comprehensive Approach to Quality Assurance...

Figure 3. Mobile testing farm.

your character’s skills using available experience points; 4)
link your Facebook account to the game; 5) change current
club / character / clothes / equipment.

These actions require most subsystems of the game to
operate correctly, so it can be expected that such automated
testing would identify many critical bugs. Furthermore, au-
tomation allowed us to remove the specified scenarios from
manual testing, freeing more time of our QA team for more
creative bug-finding work.

Technically, mobile smoke tests can be set up using an
external service, such as Bitbar Testing [6] or AWS Device
Farm [1]. However, we found them too expensive for daily
use, and set up our own mobile farm of one Windows, three
i0S, and four Android devices (see Figure 3) [24]. The testing
farm is fully integrated into our pipeline. When a new build
is available on the build machine, the system runs predefined
test scripts on all devices in the farm. In Figure 3 we show a
number of mobile devices where the mobile game tests run,
as well as a desktop version that can be tested by using the
same testing farm infrastructure.

The scripts interact with our mobile devices via Appium
framework [31] and use image recognition to identify click-
able GUI elements. Test logs are available as HTML reports
with screenshots, illustrating ongoing actions. If a certain
test fails, it is easy to identify the cause in most cases.

It should be noted that these automated tests also generate
autobugs, so even if there are no obvious faults reported
by the test, it still might detect some malfunction via the
mechanism of assertions and exceptions.

We think this system is technologically the most advanced
testing mechanism in our daily use. It certainly has numerous
flaws: mobile devices require maintenance, and each device
might need to be configured in a specific way; Appium and
operating system updates sometimes break compatibility,

CEE-SECR ’18, October 12-13, 2018, Moscow, Russian Federation

Figure 4. Usability testing.

and game updates break existing tests. However, we still con-
sider this solution to be very cost-effective, and are planning
to increase the number of implemented tests.

3.5 Playtesting and Usability Testing

All the techniques described above were dedicated to ensure
software quality in objective terms, such as the proportion
of crash-free sessions, the number of known bugs and the
probability to face a certain bug, acceptable CPU / GPU /
energy consumption levels and so on. However, they cannot
reveal subjective user experience, which is a crucial topic for
games, since they represent leisure activity and thus must be
enjoyable. Amaya et al. [4] suggest to consider the separate
processes of usability testing and playtesting as methods to
obtain behavioral and attitudinal data of the users.

The purpose of usability testing is “to reveal areas of the
game in which the player experience does not match with
the design intent” [4]. In other words, the goal of usability
testing is to make sure that user interaction with the game
is smooth: the users are able to learn game rules, navigate
GUI elements to find the functions they are interested in
with ease, and in general concentrate on the game process
rather than exploring menus and mastering counter-intuitive
controls.

In contrast, playtesting is focused on “players’ opinions
to illuminate areas of the game in which player experience
does not map onto design intent” [4]. This way, the goal of
playtesting is to seek explicit player opinion about their
satisfaction with the game and willingness to play.

Briefly speaking, a typical usability testing session consists
of recording the users actually playing the game with the
subsequent analysis of their actions (see Figure 4). We record
the users with two cameras: one facing the user, and another
one directly facing a tablet used to play the game. The users
are strongly encouraged to verbalize their feelings during
the game process. This technique, known as thinking aloud,
is considered a simple and cost-effective method of revealing
cognitive activities of the users [26]. These verbal reports

CEE-SECR ’18, October 12-13, 2018, Moscow, Russian Federation

along with video recordings help us to identify common
problems in user interaction with the game.

Playtesting is typically done with structured survey anal-
ysis [4]. The participants are asked to play the game for a
certain amount of time, and to answer a set of questions,
highlighting particular game-dependent concerns. For exam-
ple, the work [27] discusses a case study of a multi-mission
game, where the users had to report their impressions of the
“fun”, the “excitement” and the “clarity” of each mission’s
objectives.

In case of World of Tennis: Roaring °20s, we had concerns
about game tutorial, speed, controls, and Al system, so our
playtesting questions were mainly focused on these topics.

Over the course of game development, we have performed
three such usability/playtesting sessions, each involving 8-
10 participants. Large game development studios suggest
recruiting a group of 25-35 people as a pragmatic trade-
off between confidence and resource constraints [27]. The
results of these tests indeed motivated us to rethink several
design decisions, related to the user interface, control scheme,
and game tutorial.

4 Future Plan: Health Indicators

Automated smoke testing in practice opens a whole new
set of possibilities for more fine-grained types of testing.
For example, we keep short summary of all game sessions
that include basic data about user device, matches played,
their scores and durations, and so on. In particular, such
summary includes an average framerate of the game, which
is a vital indicator of playability on a particular device. Smoke
testing allows us to obtain average framerate values for all
test devices for each new build automatically.

This small benefit turned out to be indispensable during
certain phases of work. Framerate might drop significantly
due to seemingly small scene changes made by the artist or
due to different handling of shadows or antialiasing. Further-
more, different devices can be affected differently by these
changes. Since our testers possess devices that we consider
“typical”, they do not always notice framerate drops, as the
power of their hardware is still sufficient to run the game
smoothly. Thus, it was our deliberate decision to include
several low-end devices into mobile farm to make sure the
game exhibits acceptable performance there.

We are still experimenting with the game, fine-tuning cer-
tain parameters to adjust user experience. Sometimes these
adjustments cause unexpected consequences, e. g., signifi-
cant change of an average match duration (which might not
be desirable). Automated smoke test scripts are capable to
repeat the same game sessions almost verbatim and thus
can provide reliable indicators for average framerate, match
duration, percentage of crashes or other faults, and so on. We
are planning to introduce a number of “health indicators”,

M. Mozgovoy and E. Pyshkin

and use automated tests to monitor how they change as new
game builds are released.

5 Discussion

Mobile free-to-play games is a very special kind of product.
They are not designed to be sold once. Instead, their develop-
ers have to keep an eye on their audience, tinker with game
mechanics and monetization techniques, and implement new
features. We believe that such games combine certain fea-
tures found in both worlds of “games” and “non-game apps”.

Research shows that game programmers believe there are
substantial differences in their work practice comparing to
work practice of people developing office and other non-
game applications, and there is evidence that many of these
feelings reflect reality [25]. In particular, game projects suffer
from loosely formulated requirements, frequent changes of
core system elements, heavy reliance on manual testing, and
little incentive to improve architecture, since much of the
work is seen as “throwaway code”. In a sense, a game is like
a movie: once it is ready, nobody needs props anymore.

Mobile free-to-play games is not an exception in regards
to coding practice, but they at least require strict and reliable
quality assurance process to make sure regular updates do
not break the game. It is incredibly difficult to establish a
place in a hyper-competitive environment of modern mobile
app stores, and bugs may cause a quick descent. In addition
to negative user reviews, a game might get downranked
by a store. In 2017, Google announced that “higher-quality
apps” will be ranked higher than “the similar apps that are
lower-quality (e.g. if they exhibit more frequent crashes)” [22].

Therefore, we believe that games would benefit from a
more comprehensive approach to testing that takes into
account specific issues related to game development. Not all
commonly recommended practices are well suitable for game
developers, and the right answer to this challenge would be
to identify the practices that work best.

6 Conclusions

In this paper, we outlined several objective factors that have
a negative effect on mobile game projects. However, they
cannot serve as an excuse for functional errors and crashes,
haunting many games. Instead, they should be seen as chal-
lenges for more comprehensive and streamlined quality as-
surance procedures, based on cost-efficient measures that
take into account the distinctive nature of game projects. In
our mobile game World of Tennis: Roaring "20s, a combination
of crash reporting, autobugs and manual bugs, manual test-
ing, playtesting, and automated smoke testing is used. All
these elements work together, providing a clear cumulative
effect. Most of these subsystems are easy to setup, and can
be implemented in a small team on lean budget.

A Comprehensive Approach to Quality Assurance...

References

[1] [n. d.]. AWS Device Farm. ([n. d.]). https://aws.amazon.com/
device-farm

[2] [n.d.]. Crashlytics. ([n. d.]). https://crashlytics.com

[3] [n.d.]. Teamwork.com. ([n. d.]). https://www.teamwork.com

[4] George Amaya, J. P. Davis, D. V. Gunn, C. Harrison, R. Pagulayan,
B. Phillips, and D. Wixon. 2008. Games user research (GUR): Our
experience with and evolution of four methods. Game Usability: Advice
from the Experts. Morgan Kaufmann, San Francisco, CA (2008).

[5] Mordechai Ben-Ari. 2001. The bug that destroyed a rocket. ACM
SIGCSE Bulletin 33, 2 (2001), 58-59.

[6] Bitbar. [n. d.]. Mobile Testing Made Scalable. ([n. d.]). https://bitbar.
com/testing

[7] Walter Bright. 2008. Assertions in Production Code. (2008). https:
//digitalmars.com/articles/b14.html

[8] Jay Fields. 2014. Working effectively with unit tests. CreateSpace
Independent Publishing Platform, [United States?].

[9] Jez Humble and David Farley. 2011. Continuous delivery. Addison-
Wesley, Upper Saddle River and NJ.

[10] Ming Huo, June Verner, Liming Zhu, and Muhammad Ali Babar. 2004.
Software quality and agile methods. In The 28th IEEE International Con-
ference on Computers, Software & Applications. 520-525.

[11] Cem Kaner, James Bach, and Bret Pettichord. 2002. Lessons learned in
software testing: A context-driven approach. Wiley, New York.

[12] Mohamad Kassab, Joanna DeFranco, and Phil Laplante. 2016. Software
testing practices in industry: The state of the practice. IEEE Software
(2016).

[13] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed E.
Hassan. 2015. What do mobile app users complain about? IEEE
Software 32, 3 (2015), 70-77.

[14] Taeyeon Ki, Alexander Simeonov, Chang Min Park, Karthik Dantu,
Steven Y. Ko, and Lukasz Ziarek. 2017. Fully Automated UI Testing
System for Large-scale Android Apps Using Multiple Devices. In Pro-
ceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services. 185.

[15] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan,
Thomas Zimmermann, and David Lo. 2015. Understanding the test
automation culture of app developers. (2015).

[16] Mario Linares-Vasquez, Kevin Moran, and Denys Poshyvanyk. 2017.
Continuous, evolutionary and large-scale: A new perspective for au-
tomated mobile app testing. In Software Maintenance and Evolution
(ICSME), 2017 IEEE International Conference on. 399-410.

[17] Charles C. Mann. 2002. Why software is so bad. Technology Review
105, 6 (2002), 33-38.

CEE-SECR ’18, October 12-13, 2018, Moscow, Russian Federation

[18] Bertrand Meyer. 1992. Applying ’design by contract’. Computer 25, 10
(1992), 40-51.

[19] Microsoft Corp. [n. d.]. Guidelines for Smoke Testing. ([n. d.]). https:
//msdn.microsoft.com/en-us/library/ms182613(v=vs.90).aspx

[20] Kevin Moran, Mario Linares-Vasquez, Carlos Bernal-Cardenas,
Christopher Vendome, and Denys Poshyvanyk. 2017. Crashscope: A
practical tool for automated testing of android applications. In Software
Engineering Companion (ICSE-C), 2017 IEEE/ACM 39th International
Conference on. 15-18.

[21] Kevin Moran, Mario Linares-Vasquez, and Denys Poshyvanyk. 2017.
Automated GUI testing of Android apps: from research to practice. In
Proceedings of the 39th International Conference on Software Engineering
Companion. 505-506.

[22] Angela Moscaritolo. [n. d.]. Google Play Now Favoring °'High-
Quality Apps’. ([n. d.]). https://www.pcmag.com/news/355375/
google-play-now-favoring-high-quality-apps

[23] Maxim Mozgovoy, Marina Purgina, and Iskander Umarov. 2016. Be-
lievable Self-Learning Al for World of Tennis. In 2016 IEEE Conference

on Computational Intelligence and Games. 1-7.
[24] Maxim Mozgovoy and Evgeny Pyshkin. 2017. Unity application test-

ing automation with Appium and image recognition. In International
Conference on Tools and Methods for Program Analysis. 139-150.

[25] Emerson Murphy-Hill, Thomas Zimmermann, and Nachiappan Na-
gappan. 2014. Cowboys, ankle sprains, and keepers of quality: How is
video game development different from software development?. In Pro-
ceedings of the 36th International Conference on Software Engineering.
1-11.

[26] Janni Nielsen, Torkil Clemmensen, and Carsten Yssing. 2002. Getting
access to what goes on in people’s heads?: reflections on the think-
aloud technique. In Proceedings of the second Nordic conference on
Human-computer interaction. 101-110.

[27] Randy J. Pagulayan, Kevin Keeker, Dennis Wixon, Ramon L. Romero,
and Thomas Fuller. 2002. User-centered design in games. CRC Press
Boca Raton, FL.

[28] Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and Alberto
Bacchelli. 2018. How Is Video Game Development Different from
Software Development in Open Source?. In MSR Conference.

[29] Steve Sanderson. 2009. Selective Unit Testing — Costs and Benefits.
(2009). https://bit.ly/2tVIUcx

[30] Unity Technologies. [n. d.]. Unity Game Development Platform. ([n.
d.]). https://unity3d.com

[31] Nishant Verma. [n. d.]. Mobile test automation with Appium: Compre-
hensive guide to build mobile test automation solution using Appium.

