
Pragmatic Approach to Automated Testing of Mobile Applications with Non-Native

Graphic User Interface

Maxim Mozgovoy, Evgeny Pyshkin

School of Computer Science and Engineering, Division of Information Systems

University of Aizu

Aizu-Wakamatsu, Japan

E-mail:{mozgovoy, pyshe}@u-aizu.ac.jp

Abstract—This article addresses the problem of automated

smoke testing for mobile applications with hand-drawn non-

native graphic user interface (GUI) within the context of

continuous integration pipeline. In such applications the

traditional approach to define and test situations triggered by

appearance of certain GUI elements accessed

programmatically does not work, so we need to apply image

recognition and pattern matching algorithms to testing both

the application interface and its major functional features. We

introduce one example, which is a Unity-based mobile game

“World of Tennis: Roaring ’20s”. Our idea is to classify GUI

elements (including buttons, game control elements, static and

movable objects) with respect to their appearance in different

type of game scenes, as well as to find pattern recognition

methods providing the best similarity values to increase GUI

element recognition quality and therefore to suggest a reliable

support for test script writers.

Keywords-software testing; GUI; image recognition; pattern

matching; similarity; mobile game; continuous integration.

This post-conference article is based on M. Mozgovoy
and E. Pyshkin, “Using Image Recognition for Testing
Hand-drawn Graphic User Interfaces,” 11th International
Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies (UBICOMM 2017), November
12 – 16, 2017, Barcelona, Spain, IARIA, pp. 25–28 [1].

I. INTRODUCTION

Automated testing is an integral element of software
development pipeline, frequently discussed in literature.
Though many specialists agree that automated tests could not
completely substitute careful manual testing [2], the
combination of automated tests with manual quality
assurance procedures is one of the central tenets of
established software development methodologies, such as
test-driven development [3] and behavior-driven
development [4]. In addition, testing frameworks assure
better communication between developers and customers:
they allow developers rediscovering the customer context
better and therefore can be used to improve acceptance
testing practices and procedures, which, in turn, are essential
parts of iterative software development process [5][6][7].

In practice, however, maintaining an adequate set of tests
can be a challenging and time-consuming task: surveys show
that the majority of professional developers are not satisfied
with their current testing suites or do no automatic testing at

all, complaining that the tests are difficult to write and
maintain [8]. A pragmatic approach to testing suggests
prioritizing testing strategies, and keeping at least the most
useful tests well maintained. A number of authors suggest
giving the priority to smoke tests that check basic functions
of the whole software system [9]. Let us recall that,
according to [10], smoke tests represent a subset of all
defined/planned test cases that cover the main functionality
of a component or system. Their goal is to ascertain that the
most crucial functions of a program work correctly, without
checking more fine-grained aspects of software’s functional
specification.

In turn, Humble and Farley believe that smoke tests
(considered as elements of software deployment process) are
probably the most important tests to write [11]. Mustafa et al.
advise to “stick to smoke testing” in case of severe time and
cost pressure [12]; MSDN documentation calls smoke testing
“the most cost effective method for identifying and fixing
defects in software” after code reviews [13].

Thus, smoke tests are aimed at performing some basic
checkups: whether the program runs at all, is it able to open
required windows, does it react properly to user input, etc.
Automated user interface (UI) smoke tests should be able to
access applications in the same way as users do, so they need
to manipulate application’s user interface. Specifically,
testing graphical UI (GUI) provides an interesting and
nontrivial case of testing automation [14].

While a smoke test can be as simple as “launching the
application and checking to make sure that the main screen
comes up with the expected content” [11], it can also evolve
into a complex suite of tests checking core application
functionality. Complex testing scenarios may require the use
of specialized smoke testing frameworks. One interesting
and widespread example of such scenario is mobile
application testing automation. Mobile apps are hard to test
due to several factors:

1. All supported platforms and a wide range of devices
should be used in tests;

2. The apps should be tested on real devices rather than
on emulators/simulators;

3. The tests should reveal both bugs and problems such
as battery drain and low performance;

4. Non-native (hand-drawn) graphic user interface
(GUI) requires specialized handling.

The idea of hiding platform-specific UI automation
frameworks behind a universal interface was recently

implemented in the tools such as Appium [15] and
Calabash [16]. However, these frameworks can only interact
with user interfaces based on native GUI components of an
underlying operating system (such as widgets exposed by
standardized GUI libraries like Qt or WinForms). Thus,
additional efforts are required to recognize and interact with
hand-drawn (non-native) GUI elements, referenced in test
scripts. For example, cross-platform mobile games often rely
on such hand-drawn GUI elements. These widgets might
look slightly differently on different devices with different
resolutions, and their onscreen positions often are not fixed.
Many interactions also have to be performed with “active”
game objects, such as buildings, game characters, map
elements, etc. Technically, an operating system sees non-
native GUI elements as graphical primitives drawn on a
canvas, and thus cannot manipulate them via standard object-
oriented API.

Consequently, a user interface automation framework
also recognizes the main window of a non-native GUI based
application as a plain graphical image containing no UI
elements. Similar problems might appear in other
multimedia projects, such as text recognition applications
(where texts are represented as images), applications based
on interactive electronic maps, etc.

Figure 1. Actual screen of World of Tennis: Roaring ‘20s.

The example we use in this article is the mobile game
project “World of Tennis: Roaring ’20s” where we are
involved in [17] (see Figure 1). This game is made with
Unity, and its GUI is represented with hand-drawn
components. This setup makes difficult to develop standard
automated GUI tests and basic functional smoke tests, since
all screen elements are in fact plain graphical images that we
cannot easily access programmatically in test scripts [18].
Hence, testing automation requires integrated use of image
recognition and pattern matching capabilities.

The basic goal of this paper is to show how standard
pattern recognition tools can be used as a universal aid for
GUI testing (primarily for applications with non-native user
interface). We list practical challenges associated with this
approach, and discuss how to fine-tune the settings of the
pattern recognition procedure to ensure smooth operation in
a variety of scenarios.

The paper has the following structure. In Section II, we
describe our approach within the context of existing research

in the area. In Section III, we examine a number of problems
to be resolved while implementing test scripts using pattern
recognition methods. Section IV describes how the
experiments were organized. Section V introduces a
discussion on applicability of the suggested approach. In
Section VI, we briefly summarize the current state of this
project and introduce the tasks for future work.

II. APPROACH AND RELATED WORK

In our previous work, we described the process of
deployment of smoke testing infrastructure using Appium as
a testing automation framework and continuous integration
setup using TeamCity as a build server [14] (see Figure 2).
We also demonstrated that identifying objects of interest on
the screen, such as GUI elements or game characters, could
not be completely reduced to the task of perfect matching of
a bitmap image inside a screenshot [1]. It happens due to
several reasons:

 Onscreen objects may be rendered differently with
different GPUs or rendering quality settings;

 Screens vary in dimensions, so patterns might need
scaling;

 Onscreen objects often intersect with each other, so
one object might partially hide another object.

Figure 2. Mobile application testing infrastructure.

Thus, the most straightforward way to recognize such
elements is to rely on approximate pattern matching. There
are several tutorials where an idea of using image matching
in creating test scripts is discussed [19][20]. OpenCV library
[21] provides a number of methods for pattern recognition
and can serve as a typical tool used for searching and finding
the occurrences of the given pattern in a larger image. Basic
OpenCV pattern matching methods can be accessed using
matchTemplate() function with a parameter defining a
specific method among the variety of supported pattern
matching methods [22][23]:

1. CV_TM_SQDIFF: square difference matching
minimizing the squared difference between the
pattern and the image area;

2. CV_TM_SQDIFF_NORMED: normalized version
of the square difference matching (normalized

methods are typically used when the effects of
lighting difference between a pattern and an image
should be reduced [24]);

3. CV_TM_CCORR: correlation matching method
multiplicatively matching a template against the
image and then maximizing the matched area;

4. CV_TM_CCORR_NORMED: normalized version
of the correlation matching method;

5. CV_TM_CCOEFF: correlation coefficient matching
method that matches a template against the image
relative to their means and generates a matching
score ranging from –1 (complete mismatch) to 1
(perfect match); and

6. CV_TM_CCOEFF_NORMED: normalized version
of the correlation coefficient matching method.

As we know from different sources (such as [24]), the
matchTemplate() function slides a template over the given
area and computes similarity value in a range of [0..1] for
each pixel location, thus maximizing pattern matching
similarity. The function yields the best value as the final
recognition similarity, so we are able to analyze the result
from the viewpoint of GUI elements recognition quality.

An automated test consists of the following steps:

 Take a game screenshot.

 Detect the presence of a certain GUI element using
image recognition.

 React properly.

 Check the expected application behavior or program
state.

 Repeat the process.
Hereafter we describe the core function of the automated

smoke tests we developed for the “World of Tennis: Roaring
’20s” mobile game. The Python test script presented below is
responsible for checking application initialization and several
actions performed in the beginning of the game. Initial game
run requires several core subsystems to work properly. Thus,
successful first run is more than just a smoke test; it is a good
indicator of a stable game build. In general, the test script
follows the same routine as described in the list above. In the
current automated testing framework implementation, we
match GUI elements with OpenCV matchTemplate()
function called with a parameter TM_CCOEFF_NORMED.

Since the game may run on devices with different screen
sizes, we scale the screenshots to match the dimensions of
the original screen used to record graphical patterns. In
Listing 1 we present a Python code for the findByImage()
function. This function tries to find a template GUI element
pattern templateImg in the screenshot img (highlighted line),
and returns the similarity score we got from the
corresponding OpenCV algorithm paired with the
coordinates of the matched area center.

LISTING 1. FINDING A TEMPLATE WITH TM_CCOEFF_NORMED METHOD

import cv2 # OpenCV

import imutils

def findByImage(img, templateImg):

 img_h, img_w = img.shape[0:2] # image dimensions

 template = cv2.imread(templateImg, 1) # read template

 h, w = template.shape[0:2]

 # rescale the template for the target device's screen

 # (here we assume that template image was taken

 # at 1920x1080 resolution)

 factor = float(img_w) / 1920

 template = imutils.resize(template,

 width = int(w * factor), inter = cv2.INTER_CUBIC)

 h, w = template.shape[0:2]

 res = cv2.matchTemplate(img, template,

 cv2.TM_CCOEFF_NORMED)

 (_, maxVal, _, maxLoc) = cv2.minMaxLoc(res)

 result = ((maxLoc[0] + (w / 2),

 maxLoc[1] + (h / 2)), maxVal)

 return result

The function waitFor() (see Listing 2) waits for the given
image or a list of images to appear on the screen (while the
application is running). In case of failed recognition, an
exception is thrown. This function uses the above presented
findByImage() in order to recognize the GUI element. The
similarity score returned by findByImage() function is then
compared to the globally defined threshold. After that, it is
possible to interact with a GUI element.

LISTING 2. WAITING FOR A GUI ELEMENT IMAGE ON THE SCREEN

def waitFor(driver, tries, interval, imagefiles):

 # convert a single image into a one-element list

 if type(imagefiles) is not list:

 imagefiles = [imagefiles]

 for i in range(tries):

 img = takeScreenshot(driver) # a wrapper for Appium

 # screenshot function

 for imagefile in imagefiles:

 (loc, simRatio) = findByImage(img, imagefile)

 if simRatio > Config.PicFoundThreshold:

 return (loc, simRatio)

 time.sleep(interval)

 raise RuntimeError("GUI element not found. Tried: " +

 str(imagefiles) + ".")

The fragment of function testFirstRun() (see Listing 3)
presents the first part of the smoke test responsible for
checking some initial actions during the game run:

1. Test whether the user name is properly entered and
accepted by the application.

2. Test whether the screen with players appears after
pushing OK button.

3. Test a possibility to go to the configuration screen
for the selected player.

4. Test whether the tabs work properly in the
configuration window.

5. Test how the selected configuration is applied after
tapping Apply button.

LISTING 3. FIRST RUN SMOKE TEST (FRAGMENT)

Test first run (test script fragment)

def testFirstRun(driver):

 print("Testing the first run")

 print("wait for the name input box, and tap it")

 tap(driver, waitFor(driver, 9, 3, 'name_input_box.png'))

 print("type the user name")

 # this function generates and types a random user name

 inputName(driver)

 print("tap OK button")

 tap(driver, waitFor(driver, 3, 3, 'ok_button.png'))

 time.sleep(4)

 print("wait for the player circle, and tap it")

 tap(driver, waitFor(driver, 10, 3,

 ['player_green_circle.png', 'finger.png']))

 print("tap 'Character'")

 tap(driver, waitFor(driver, 3, 3,

 ['character_tab_1.png', 'character_tab_2.png']))

 print("tap on the player")

 tap(driver, waitFor(driver, 3, 3,

 'player_select_region.png'))

 print("tap 'Apply'")

 tap(driver, waitFor(driver, 3, 3,

 ['apply_button_1.png', 'apply_button_2.png']))

 # ...

In testFirstRun() script we used a number of GUI
elements (Figure 3) that we are trying to recognize on the
screens presented in Figure 4.

Figure 3. GUI elements used in the first run test script.

Figure 4. Game screenshots used in the first run test script.

III. TOWARDS BETTER GUI ELEMENT RECOGNITION

RELIABILITY

As it follows from the observations mentioned in
Section II, an important problem is to find optimal
parameters of image recognition algorithms maximizing GUI
elements recognition reliability. Such an approach would
decrease the number of automated tests that might fail, not
because of the software bugs, but due to the UI elements
recognition defects.

Figure 5. Club view template examples that can be used for checking

screen orientation.

Both types of recognition errors (false negatives and false
positives) actually caused problems in our experiments. Let
us provide some examples.
a) The first step in all our tests is to detect whether the

device screen is rotated upside down (for the sake of
brevity, this procedure was omitted in Section II). To do
it, we try to match certain elements of the initial “club
view” scene against regular and flipped patterns. Our
experience shows that this step often provides false
positives, as both types patterns are found by OpenCV.

b) When the game designers slightly change the buttons (in
order to beautify them, make them slightly larger or
smaller, change fonts, colors, etc.), our tests stop
recognizing them. It happens even with simple elements
like buttons shown in Figure 6.

c) When buttons have two states (enabled/disabled),
visually shown with different colors, the tests often fail to
recognize them accurately.

d) Additional elements shown on or next to GUI elements
(such as checkboxes or numbers) might prevent the tests
to recognize them properly.
The challenge is to make sure that we still can match

changing GUI elements, but be able to distinguish them.

Figure 6. Static UI controls: buttons, tabs, check boxes, static images, etc.

There are also numerous moving objects on the screen.
Suppose the test script needs to press on the character’s
model in the pictures shown in Figure 7.

Figure 7. Moving objects: the object view changes and the surrounding

area might change as well.

An animated head might make a perfect match difficult
not only because of changes in object view itself, but also
because of possible changes in the adjacent screen area (e.g.,
an airplane appeared in the sky, in our case). Hence, it might
be required to work with a set of different images related to

the same UI element and to perform a matching process for
all of them. We have to consider a possibility to work with a
larger region providing necessary context to avoid false
positive recognition results.

Our hypothesis is that experimenting with different
pattern matching algorithms will allow us to provide a
number of recommendations for test script developers. These
recommendations will provide hints on what are the better
algorithms to use in certain test contexts.

IV. EXPERIMENTS WITH DIFFERENT UI ELEMENTS

A large variety of UI components designed for the
“World of Tennis: Roaring ’20's” allows us to classify them
in a number of classes including the following UI types:

 UI widgets: buttons, edit boxes, tabs, etc.

 Static images: player portraits, court fragments,
popup message boxes.

 Dynamic objects: moving player figures, onscreen
hints.

As discussed in Section II, for the first implementation of

test scripts, we used OpenCV matchTemplate() function and
a number of built-in pattern matching methods. After
experimenting with a number of test scripts, we realized that
pattern matching reliability significantly depends on a
recognition task. For example, simple button-like GUI
elements (buttons, menus, tabs) can be recognized with high
degree of similarity (0.90..0.98), according to OpenCV
reports. Similarity score decreases to (0.63..0.65) for certain
elements interfering with the background like menu item
placed against the sky with moving clouds. This makes
perfect template matching impossible in principle. Lower
similarity values might occur even for the objects that are not
graphically complex, but contain patterns distorted during
rescaling (as Figure 8 shows).

Figure 8. Template matching similarity varies for different UI elements.

Even in the simplest cases, the similarity scores might
differ depending on the device where the code is running. As
Table I illustrates, the scores for OK button range from 0.94
to 0.99 for different devices even if there is no any
recognition complication such as “bad” background,
surrounding or changing objects, etc. (apparently due to
different screen resolutions and screen image scaling
distortions).

Table I lists a selection of devices used in this
experiment, their screen characteristics and reported
similarity scores.

TABLE I. EXPERIMENTING WITH OK BUTTON USING

TM_CCOEFF_NORMED ALGORITHM

Case
Description of the test case

Device Screen Tap size Similarity

Figure 3

(a)

Xiaomi Redmi

Note 3 Pro
1920x1080 1920x1080 0.99

Figure 3

(b)
iPad Air 2046x1536 1024x768 0.95

Figure 3
(c)

Doogee X5 Max
Pro

1280x720 1280x720 0.94

In certain tests, the system reported the presence of UI

elements that are actually not shown on the screen. Such
false positive cases typically happen if some similar-looking
graphical elements are confused with each other, especially
when they are surrounded by moving objects or complex
background. One way to struggle with such cases is to try to
match larger regions in order to include more context into the
pattern. For example, in our tennis game application, the
Skip button is always placed next to a checkbox, so we can
try to match the whole button/checkbox region.

One more approach that can be used to decrease
interference with the complex background is to apply image
transformations for both the grabbed screenshot and the
pattern. We were experimenting with a number of edge
detection filters including Laplace algorithm and Canny edge
detection algorithm [25]. Samples of image transformations
are shown in Figure 9. We used the GNU Image
Manipulation Program [26] for Laplace edge detection and
the online tool “Imaging Web Demonstrations” [27] for
Canny edge detection algorithm.

Figure 9. Samples of filtered templates.

Preliminary experiments show that the use of
transformed images does not significantly improve
recognition of UI elements when an element is present on the
screen. However, such transformations may be useful in
struggling with false positive cases.

Figure 10. Scenes used for experimenting with false postive cases.

In Table II, we summarized our experiments with the
TM_COEFF_NORMED algorithm. For the experiments, we
used 10 game scene screenshots (Figure 10) and 11 test

fragments. 10 fragments ware taken from the above-
mentioned screenshots (hence, each fragment exists exactly
in one scene). We also used one pattern fragment which does
not belong to any of 10 screenshots. Thus, from 110 possible
combinations only 10 correspond to true positive cases.

As we can see from the results listed in Table II, edge
filtering does not affect true positive cases. However, the
number of false positive cases with substantially high scores
significantly decreases if the pattern matching method
receives filtered images as input.

TABLE II. RECOGNIZING A SELECTION OF SAMPLE FRAGMENTS WITH

TM_CCOEFF_NORMED METHOD IN PLAIN CASE AND WITH EDGE

DETECTION FILTERS

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True

positive

(normal

images)

0 0 0 0 0 0 1 0 1 8

True
positive

(Canny)

0 0 0 0 0 0 1 0 1 0

False
positive

(normal

images)

0 0 14 19 32 22 13 0 0 0

False

positive

(Canny)

58 37 5 0 0 0 0 0 0 0

Figure 11 provides visual demonstration of the fact that

the scores for false positive cases are shifting to the lower
ranges after applying an edge detection filter to both scene
and template images.

Figure 11. Struggling with false positive cases using Canny edge filtering.

In principle, there is no necessity to strive for the highest
similarity scores in the situations where the GUI elements
are present on the screen. Our primary goal is to minimize
the number of both false positive and false negative errors,
so what we need is an algorithm that separates the scenes
with and without target GUI elements reliably.

We have to run pattern-matching algorithms for
significantly different usage contexts: in player settings
window, club selection window, game selection window,
ongoing game window, etc. We expect that for every

combination (algorithm, UI element, usage context), the
reported similarity values could give us better understanding
how to improve the quality of test scripts and, therefore, how
to make the next steps towards building a testing automation
framework for mobile applications based on hand-drawn or
non-native GUI components.

V. DISCUSSION

The approach to GUI testing we describe above is
applicable to a large variety of applications implementing
custom (non-native) user interface. They include desktop and
mobile games, HTML5 Canvas-based web applications, and
many specialized instruments such as graphical or audio
editors or mapping software. Accessing UI elements via the
API of the underlying operating system is the preferable way
for interacting with application for most tests. However, it is
not available if application UI is not based on standard
widgets.

One may argue that using pattern recognition leads to
fragile tests, since any changes in application GUI might
break test scripts. While this is certainly the case, we have to
note that all kinds of GUI tests are prone to fragility, and
might fail due to reorganization, renaming, or addition of
new user interface elements. Writing robust GUI tests is a
challenging task regardless of the approach used.

Reliance on screenshot processing slows down the testing
process considerably. First, the process of screenshot
generation on a mobile platform might take several seconds
depending on a particular device. Second, the screenshot
needs to be transferred to the machine running the test
scripts, which requires fast and reliable connection. Third,
pattern recognition is also computationally intensive, though
in our experiments with five concurrent test processes the
largest performance bottlenecks were still caused by the
procedure of taking and transferring the next screenshot to
the testing machine.

However, let us note that screenshots provide a useful
graphical log of the testing process, and we often resort to it
for debugging purposes. So one might consider taking
screenshots regardless of the method of accessing GUI.
Furthermore, accessing UI elements with conventional
methods (such as using XPath locators in Appium) is can
also be slow, and might take several seconds per query
depending on a particular situation.

VI. CONCLUSION AND FUTURE WORK

Let us note that image recognition algorithms are rarely
discussed within the scope of software testing, so we believe
that advancing and improving the quality of the proposed
approach will provide a feasible solution to be used as a part
of integration pipeline in software development and testing.

Current frameworks such as Appium [28] allow running
smoke tests on real mobile devices. However, they do not
provide built-in capabilities for managing multiple-device
tests and for integration of smoke testing into continuous
delivery pipeline. Several companies, such as Bitbar and
Amazon that offer “mobile test farm” services. They are also
used and evaluated by academic researchers [29, 30].
However, they are expensive for small developers, offer a

limited range of mobile devices, and lack flexibility. There is
also an open Smartphone Test Farm initiative [31], but its
primary goal is to provide remote control options for
Android devices rather than to build an automated cross-
platform smoke testing facility. We also have to mention a
number of commercial service providers, such as Amazon,
Xamarin, and Bitbar supporting heterogeneous multiple-
device farm facilities

Our further goal is to create an open source framework
for small-scale mobile farms. The aim of this framework is
to let anyone to quickly connect their own iOS / Android
devices into a fully functional mobile farm, and integrate it
into existing continuous delivery pipeline. Our software will
make smoke testing of mobile apps easier to set up for the
developers, and thus will increase the popularity of
automated testing methods, and, consequently, will
contribute to the improved quality of software. We believe
that a practical testing framework should implement the
following capabilities:

1. Concurrent tests on several mobile devices.
2. Automated detailed reports of test results with app

screenshots and activity logs.
3. Health monitoring of the devices for early detection

of battery drain or device malfunction.
4. Manual and event-driven test runs.
We expect that the approach can be advanced towards

designing the architecture of a farm as a distributed system
allowing geographically dispersed teams to use their devices
effectively. We specifically address the tasks of automating
apps with non-native GUIs, such as apps written in Unity (a
popular instrument for cross-platform development of games
and multimedia software). The project can be considered a
transdisciplinary human-centric research [32] that requires
applying the solutions achieved in areas such as pattern
recognition, intelligent interfaces and usability to a distinct
application domain (mobile software testing), rather than
straightforward integrated use of available tools and
methods.

REFERENCES

[1] M. Mozgovoy and E. Pyshkin, “Using Image Recognition for
Testing Hand-drawn Graphic User Interfaces,” 11th
International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies (UBICOMM 2017),
Barcelona, Spain, November 12-16, 2017, IARIA, pp. 25-28.

[2] D.M. Rafi, K.R. Moses, K. Petersen, and M. Mäntylä,
“Benefits and limitations of automated software testing:
systematic literature review and practitioner survey,” In
Proceedings of the 7th International Workshop on
Automation of Software Test (AST '12), IEEE Press,
Piscataway, NJ, USA, 2012, pp. 36-42.

[3] K. Beck, Test-Driven Development by Example. Addison-
Wesley Professional, 2002, 240 p.

[4] S. Bellware, “Behavior-Driven Development,” Code
Magazine, 2008, vol. 9(3).

[5] E. Pyshkin, M. Mozgovoy, and M. Glukhikh, “On
requirements for acceptance testing automation tools in
behavior driven software development,” In Proceedings of the
8th Software Engineering Conference in Russia (CEE-SECR),
2012, accessed: January 26, 2018. [Online]. Available:
http://2012.secr.ru/2012/presentations/pyshkin-mozgovoy-
glukhikh_80_article.pdf.

[6] Boehm. B. Software Engineering Economics. Prentice Hall,
Englewood Cliffs, NJ, 1981.

[7] E. Pyshkin and M. Glukhikh, “Teaching program flow
validation: A case study of branch coverage testing,” In Ari
Lindeman (Ed.), Studies in social sciences, humanities and
engineering, The second joint research publication of Peter
the Great St. Petersburg Polytechnic University and
Kymenlaakso University of Applied Sciences, Kymenlaakso
University of Applied Sciences, Kouvola, Finland, 2015,
Series A, No. 71, pp. 72-80.

[8] E. Daka and G. Fraser, “A Survey on Unit Testing Practices
and Problems,” 25th IEEE International Symposium on
Software Reliability Engineering (ISSRE), 2014, pp. 201-211.

[9] S. McConnell, “Daily build and smoke test,” IEEE software,
1996, vol. 13(4), p. 144.

[10] E. van Veenendaal, “Standard glossary of terms used in
software testing,” International Software Testing
Qualifications Board, 2010, pp. 1-51.

[11] J. Humble and D. Farley, Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment
Automation. Addison-Wesley Professional, 2010, 512 p.

[12] G. Mustafa, A. Shah, K. Asif, and A. Ali, “A Strategy for
Testing of Web Based Software,” Information Technology
Journal, 2007, vol. 6(1), pp. 74-81

[13] “Microsoft Corp. Guidelines for Smoke Testing,” MSDN
Library for Visual Studio 2008, accessed: Jan 14, 2018.
[Online]. Available: https://msdn.microsoft.com/en-
us/library/ms182613(v=vs.90).aspx

[14] M. Mozgovoy and E. Pyshkin, “Unity application testing
automation with Appium and image recognition,” In Itsykson
V., Scedrov A., Zakharov V. (eds) Tools and Methods of
Program Analysis. TMPA 2017. Communications in
Computer and Information Science, vol 779. Springer, Cham,
pp. 139-150.

[15] Appium, project homepage, accessed: January 6, 2018.
[Online]. Available: http://appium.io.

[16] Calabash, project homepage, accessed: January 6, 2018.
[Online]. Available: http://calaba.sh.

[17] “World of tennis: Roaring ‘20s,” project homepage, accessed:
Jan 14, 2018. [Online]. Available: http://worldoftennis.com/.

[18] “Automating user interface tests,” accessed: Jul 7, 2017.
[Online]. Available:https://developer.android.com/training/
testing/ui-testing /index.html.

[19] V. V. Helppi, “Using opencv and akaze for mobile app and
game testing,” (January 2016), accessed: Jul 7, 2017.
[Online]. Available: http://bitbar.com/using-opencv-and-
akaze-for-mobile-app-and-game-testing.

[20] S. Kazmierczak, “Appium with image recognition,” (February
2016), accessed: Jul 7, 2017. [Online]. Available:
https://medium.com/@SimonKaz/appium-with-image-
recognition-17a92abaa23d\#.oez2f6hnh.

[21] “OpenCV Library,” accessed: Jan 14, 2018. [Online].
Available: http://opencv.org.

[22] “OpenCV: Template Matching”, accessed: Jul 14, 2018.
[Online]. Available:
http://docs.opencv.org/master/de/da9/tutorial_template_match
ing.html.

[23] G. Bradski and A. Kaehler, Learning OpenCV: Computer
vision with the OpenCV library. O’Reilly Media, Inc., 2008.

[24] R. Laganière, “OpenCV Computer Vision Application
Programming Cookbook,” 2nd ed., Packt Publishing, 2014.

[25] J. Canny, “A computational approach to edge detection,”
IEEE Transactions on pattern analysis and machine
intelligence, no. 6, 1986, pp. 679-698.

[26] GIMP, project homepage, accessed: January 24, 2017.
[Online]. Avaliable: https://www.gimp.org/.

[27] “Imaging Web Demonstrations,” Biomedical Imaging Group,
accessed: Jan 24, 2018. [Online]. Available:
http://bigwww.epfl.ch/demo/ip/demos/01-edgeDetector/.

[28] N. Verma. Mobile Test Automation with Appium. Packt
Publishing, 2017, 231 p.

[29] C. Tao and J. Gao, “Cloud-Based Mobile Testing as a
Service,” International Journal of Software Engineering and
Knowledge Engineering, 2016, vol. 26(1), pp. 147-152.

[30] M. Linares-Vásquez, K. Moran and D. Poshyvanyk,
“Continuous, Evolutionary and Large-scale: A New
Perspective for Automated Mobile App Testing,” 33rd IEEE
International Conference on Software Maintenance and
Evolution (ICSME’17), 2017.

[31] Smartphone Test Farm, project homepage, accessed: August
11, 2018. [Online] Available: https://openstf.io/.

[32] E. Pyshkin, “Designing human-centric applications:
Transdisciplinary connections with examples,” In Proc. of
2017 3rd IEEE International Conference on Cybernetics
(CYBCONF), Exeter, UK, Jun 21-23, 2017, pp. 455-460.

