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Abstract—This article addresses the problem of automated 

smoke testing for mobile applications with hand-drawn non-

native graphic user interface (GUI) within the context of 

continuous integration pipeline. In such applications the 

traditional approach to define and test situations triggered by 

appearance of certain GUI elements accessed 

programmatically does not work, so we need to apply image 

recognition and pattern matching algorithms to testing both 

the application interface and its major functional features. We 

introduce one example, which is a Unity-based mobile game 

“World of Tennis: Roaring ’20s”. Our idea is to classify GUI 

elements (including buttons, game control elements, static and 

movable objects) with respect to their appearance in different 

type of game scenes, as well as to find pattern recognition 

methods providing the best similarity values to increase GUI 

element recognition quality and therefore to suggest a reliable 

support for test script writers. 

Keywords-software testing; GUI; image recognition; pattern 

matching; similarity; mobile game; continuous integration. 

This post-conference article is based on M. Mozgovoy 
and E. Pyshkin, “Using Image Recognition for Testing 
Hand-drawn Graphic User Interfaces,” 11th International 
Conference on Mobile Ubiquitous Computing, Systems, 
Services and Technologies (UBICOMM 2017), November 
12 – 16, 2017, Barcelona, Spain, IARIA, pp. 25–28 [1]. 

I.  INTRODUCTION 

Automated testing is an integral element of software 
development pipeline, frequently discussed in literature. 
Though many specialists agree that automated tests could not 
completely substitute careful manual testing [2], the 
combination of automated tests with manual quality 
assurance procedures is one of the central tenets of 
established software development methodologies, such as 
test-driven development [3] and behavior-driven 
development [4]. In addition, testing frameworks assure 
better communication between developers and customers: 
they allow developers rediscovering the customer context 
better and therefore can be used to improve acceptance 
testing practices and procedures, which, in turn, are essential 
parts of iterative software development process [5][6][7]. 

In practice, however, maintaining an adequate set of tests 
can be a challenging and time-consuming task: surveys show 
that the majority of professional developers are not satisfied 
with their current testing suites or do no automatic testing at 

all, complaining that the tests are difficult to write and 
maintain [8]. A pragmatic approach to testing suggests 
prioritizing testing strategies, and keeping at least the most 
useful tests well maintained. A number of authors suggest 
giving the priority to smoke tests that check basic functions 
of the whole software system [9]. Let us recall that, 
according to [10], smoke tests represent a subset of all 
defined/planned test cases that cover the main functionality 
of a component or system. Their goal is to ascertain that the 
most crucial functions of a program work correctly, without 
checking more fine-grained aspects of software’s functional 
specification. 

In turn, Humble and Farley believe that smoke tests 
(considered as elements of software deployment process) are 
probably the most important tests to write [11]. Mustafa et al. 
advise to “stick to smoke testing” in case of severe time and 
cost pressure [12]; MSDN documentation calls smoke testing 
“the most cost effective method for identifying and fixing 
defects in software” after code reviews [13]. 

Thus, smoke tests are aimed at performing some basic 
checkups: whether the program runs at all, is it able to open 
required windows, does it react properly to user input, etc. 
Automated user interface (UI) smoke tests should be able to 
access applications in the same way as users do, so they need 
to manipulate application’s user interface. Specifically, 
testing graphical UI (GUI) provides an interesting and 
nontrivial case of testing automation [14]. 

While a smoke test can be as simple as “launching the 
application and checking to make sure that the main screen 
comes up with the expected content” [11], it can also evolve 
into a complex suite of tests checking core application 
functionality. Complex testing scenarios may require the use 
of specialized smoke testing frameworks. One interesting 
and widespread example of such scenario is mobile 
application testing automation. Mobile apps are hard to test 
due to several factors: 

1. All supported platforms and a wide range of devices 
should be used in tests; 

2. The apps should be tested on real devices rather than 
on emulators/simulators; 

3. The tests should reveal both bugs and problems such 
as battery drain and low performance; 

4. Non-native (hand-drawn) graphic user interface 
(GUI) requires specialized handling. 

The idea of hiding platform-specific UI automation 
frameworks behind a universal interface was recently 



implemented in the tools such as Appium [15] and 
Calabash [16]. However, these frameworks can only interact 
with user interfaces based on native GUI components of an 
underlying operating system (such as widgets exposed by 
standardized GUI libraries like Qt or WinForms). Thus, 
additional efforts are required to recognize and interact with 
hand-drawn (non-native) GUI elements, referenced in test 
scripts. For example, cross-platform mobile games often rely 
on such hand-drawn GUI elements. These widgets might 
look slightly differently on different devices with different 
resolutions, and their onscreen positions often are not fixed. 
Many interactions also have to be performed with “active” 
game objects, such as buildings, game characters, map 
elements, etc. Technically, an operating system sees non-
native GUI elements as graphical primitives drawn on a 
canvas, and thus cannot manipulate them via standard object-
oriented API. 

Consequently, a user interface automation framework 
also recognizes the main window of a non-native GUI based 
application as a plain graphical image containing no UI 
elements. Similar problems might appear in other 
multimedia projects, such as text recognition applications 
(where texts are represented as images), applications based 
on interactive electronic maps, etc. 

 

 

Figure 1.  Actual screen of World of Tennis: Roaring ‘20s. 

The example we use in this article is the mobile game 
project “World of Tennis: Roaring ’20s” where we are 
involved in [17] (see Figure 1). This game is made with 
Unity, and its GUI is represented with hand-drawn 
components. This setup makes difficult to develop standard 
automated GUI tests and basic functional smoke tests, since 
all screen elements are in fact plain graphical images that we 
cannot easily access programmatically in test scripts [18]. 
Hence, testing automation requires integrated use of image 
recognition and pattern matching capabilities. 

The basic goal of this paper is to show how standard 
pattern recognition tools can be used as a universal aid for 
GUI testing (primarily for applications with non-native user 
interface). We list practical challenges associated with this 
approach, and discuss how to fine-tune the settings of the 
pattern recognition procedure to ensure smooth operation in 
a variety of scenarios. 

The paper has the following structure. In Section II, we 
describe our approach within the context of existing research 

in the area. In Section III, we examine a number of problems 
to be resolved while implementing test scripts using pattern 
recognition methods. Section IV describes how the 
experiments were organized. Section V introduces a 
discussion on applicability of the suggested approach. In 
Section VI, we briefly summarize the current state of this 
project and introduce the tasks for future work. 

II. APPROACH AND RELATED WORK 

In our previous work, we described the process of 
deployment of smoke testing infrastructure using Appium as 
a testing automation framework and continuous integration 
setup using TeamCity as a build server [14] (see Figure 2). 
We also demonstrated that identifying objects of interest on 
the screen, such as GUI elements or game characters, could 
not be completely reduced to the task of perfect matching of 
a bitmap image inside a screenshot [1]. It happens due to 
several reasons: 

 Onscreen objects may be rendered differently with 
different GPUs or rendering quality settings; 

 Screens vary in dimensions, so patterns might need 
scaling; 

 Onscreen objects often intersect with each other, so 
one object might partially hide another object. 
 

 

Figure 2.  Mobile application testing infrastructure. 

Thus, the most straightforward way to recognize such 
elements is to rely on approximate pattern matching. There 
are several tutorials where an idea of using image matching 
in creating test scripts is discussed [19][20]. OpenCV library 
[21] provides a number of methods for pattern recognition 
and can serve as a typical tool used for searching and finding 
the occurrences of the given pattern in a larger image. Basic 
OpenCV pattern matching methods can be accessed using 
matchTemplate() function with a parameter defining a 
specific method among the variety of supported pattern 
matching methods [22][23]: 

1. CV_TM_SQDIFF: square difference matching 
minimizing the squared difference between the 
pattern and the image area; 

2. CV_TM_SQDIFF_NORMED: normalized version 
of the square difference matching (normalized 



methods are typically used when the effects of 
lighting difference between a pattern and an image 
should be reduced [24]); 

3. CV_TM_CCORR: correlation matching method 
multiplicatively matching a template against the 
image and then maximizing the matched area;  

4. CV_TM_CCORR_NORMED: normalized version 
of the correlation matching method; 

5. CV_TM_CCOEFF: correlation coefficient matching 
method that matches a template against the image 
relative to their means and generates a matching 
score ranging from –1 (complete mismatch) to 1 
(perfect match); and 

6. CV_TM_CCOEFF_NORMED: normalized version 
of the correlation coefficient matching method. 

As we know from different sources (such as [24]), the 
matchTemplate() function slides a template over the given 
area and computes similarity value in a range of [0..1] for 
each pixel location, thus maximizing pattern matching 
similarity. The function yields the best value as the final 
recognition similarity, so we are able to analyze the result 
from the viewpoint of GUI elements recognition quality. 

An automated test consists of the following steps: 

 Take a game screenshot.   

 Detect the presence of a certain GUI element using 
image recognition. 

 React properly. 

 Check the expected application behavior or program 
state. 

 Repeat the process. 
Hereafter we describe the core function of the automated 

smoke tests we developed for the “World of Tennis: Roaring 
’20s” mobile game. The Python test script presented below is 
responsible for checking application initialization and several 
actions performed in the beginning of the game. Initial game 
run requires several core subsystems to work properly. Thus, 
successful first run is more than just a smoke test; it is a good 
indicator of a stable game build. In general, the test script 
follows the same routine as described in the list above. In the 
current automated testing framework implementation, we 
match GUI elements with OpenCV matchTemplate() 
function called with a parameter TM_CCOEFF_NORMED.  

Since the game may run on devices with different screen 
sizes, we scale the screenshots to match the dimensions of 
the original screen used to record graphical patterns. In 
Listing 1 we present a Python code for the findByImage() 
function. This function tries to find a template GUI element 
pattern templateImg in the screenshot img (highlighted line), 
and returns the similarity score we got from the 
corresponding OpenCV algorithm paired with the 
coordinates of the matched area center. 

LISTING 1. FINDING A TEMPLATE WITH TM_CCOEFF_NORMED METHOD 

import cv2 # OpenCV 

import imutils 

 

def findByImage(img, templateImg): 

  img_h, img_w = img.shape[0:2]         # image dimensions 

  template = cv2.imread(templateImg, 1) # read template 

  h, w = template.shape[0:2]  

  

 

  # rescale the template for the target device's screen 

  # (here we assume that template image was taken  

  # at 1920x1080 resolution) 

 

  factor = float(img_w) / 1920 

  template = imutils.resize(template,  

      width = int(w * factor), inter = cv2.INTER_CUBIC) 

  h, w = template.shape[0:2] 

 

  res = cv2.matchTemplate(img, template, 

                          cv2.TM_CCOEFF_NORMED) 

  (_, maxVal, _, maxLoc) = cv2.minMaxLoc(res) 

  result = ((maxLoc[0] + (w / 2),  

             maxLoc[1] + (h / 2)), maxVal)   

  return result 

 

The function waitFor() (see Listing 2) waits for the given 
image or a list of images to appear on the screen (while the 
application is running). In case of failed recognition, an 
exception is thrown. This function uses the above presented 
findByImage() in order to recognize the GUI element. The 
similarity score returned by findByImage() function is then 
compared to the globally defined threshold. After that, it is 
possible to interact with a GUI element. 

LISTING 2. WAITING FOR A GUI ELEMENT IMAGE ON THE SCREEN 

def waitFor(driver, tries, interval, imagefiles): 

  # convert a single image into a one-element list 

  if type(imagefiles) is not list: 

    imagefiles = [imagefiles] 

 

  for i in range(tries): 

    img = takeScreenshot(driver) # a wrapper for Appium 

                                 # screenshot function 

    for imagefile in imagefiles: 

      (loc, simRatio) = findByImage(img, imagefile) 

      if simRatio > Config.PicFoundThreshold: 

        return (loc, simRatio) 

    time.sleep(interval) 

  

  raise RuntimeError("GUI element not found. Tried: " + 

                                  str(imagefiles) + ".") 

 

The fragment of function testFirstRun() (see Listing 3) 
presents the first part of the smoke test responsible for 
checking some initial actions during the game run: 

1. Test whether the user name is properly entered and 
accepted by the application. 

2. Test whether the screen with players appears after 
pushing OK button. 

3. Test a possibility to go to the configuration screen 
for the selected player. 

4. Test whether the tabs work properly in the 
configuration window. 

5. Test how the selected configuration is applied after 
tapping Apply button. 

LISTING 3. FIRST RUN SMOKE TEST (FRAGMENT) 

# Test first run (test script fragment) 

def testFirstRun(driver): 

  print("Testing the first run") 

   

  print("wait for the name input box, and tap it") 

  tap(driver, waitFor(driver, 9, 3, 'name_input_box.png')) 

   

  print("type the user name") 

  # this function generates and types a random user name 

  inputName(driver) 

   

  print("tap OK button") 

  tap(driver, waitFor(driver, 3, 3, 'ok_button.png')) 

  time.sleep(4) 

   



  print("wait for the player circle, and tap it") 

  tap(driver, waitFor(driver, 10, 3,  

          ['player_green_circle.png', 'finger.png'])) 

 

  print("tap 'Character'") 

  tap(driver, waitFor(driver, 3, 3, 

        ['character_tab_1.png', 'character_tab_2.png'])) 

  

  print("tap on the player") 

  tap(driver, waitFor(driver, 3, 3, 

                      'player_select_region.png')) 

 

  print("tap 'Apply'") 

  tap(driver, waitFor(driver, 3, 3, 

          ['apply_button_1.png', 'apply_button_2.png'])) 

 

  # ... 

 

In testFirstRun() script we used a number of GUI 
elements (Figure 3) that we are trying to recognize on the 
screens presented in Figure 4. 

 

 

Figure 3.  GUI elements used in the first run test script. 

 

Figure 4.  Game screenshots used in the first run test script. 

III. TOWARDS BETTER GUI ELEMENT RECOGNITION 

RELIABILITY 

As it follows from the observations mentioned in 
Section II, an important problem is to find optimal 
parameters of image recognition algorithms maximizing GUI 
elements recognition reliability. Such an approach would 
decrease the number of automated tests that might fail, not 
because of the software bugs, but due to the UI elements 
recognition defects. 

 

 

Figure 5.  Club view template examples that can be used for checking 

screen orientation. 

Both types of recognition errors (false negatives and false 
positives) actually caused problems in our experiments. Let 
us provide some examples. 
a) The first step in all our tests is to detect whether the 

device screen is rotated upside down (for the sake of 
brevity, this procedure was omitted in Section II). To do 
it, we try to match certain elements of the initial “club 
view” scene against regular and flipped patterns. Our 
experience shows that this step often provides false 
positives, as both types patterns are found by OpenCV. 

b) When the game designers slightly change the buttons (in 
order to beautify them, make them slightly larger or 
smaller, change fonts, colors, etc.), our tests stop 
recognizing them. It happens even with simple elements 
like buttons shown in Figure 6. 

c) When buttons have two states (enabled/disabled), 
visually shown with different colors, the tests often fail to 
recognize them accurately. 

d) Additional elements shown on or next to GUI elements 
(such as checkboxes or numbers) might prevent the tests 
to recognize them properly. 
The challenge is to make sure that we still can match 

changing GUI elements, but be able to distinguish them. 
 



 

Figure 6.  Static UI controls: buttons, tabs, check boxes, static images, etc. 

There are also numerous moving objects on the screen. 
Suppose the test script needs to press on the character’s 
model in the pictures shown in Figure 7.  

 

 

Figure 7.  Moving objects: the object view changes and the surrounding 

area might change as well. 

An animated head might make a perfect match difficult 
not only because of changes in object view itself, but also 
because of possible changes in the adjacent screen area (e.g., 
an airplane appeared in the sky, in our case). Hence, it might 
be required to work with a set of different images related to 

the same UI element and to perform a matching process for 
all of them. We have to consider a possibility to work with a 
larger region providing necessary context to avoid false 
positive recognition results. 

Our hypothesis is that experimenting with different 
pattern matching algorithms will allow us to provide a 
number of recommendations for test script developers. These 
recommendations will provide hints on what are the better 
algorithms to use in certain test contexts. 

IV. EXPERIMENTS WITH DIFFERENT UI ELEMENTS 

A large variety of UI components designed for the 
“World of Tennis: Roaring ’20's” allows us to classify them 
in a number of classes including the following UI types:  

 UI widgets: buttons, edit boxes, tabs, etc. 

 Static images: player portraits, court fragments, 
popup message boxes. 

 Dynamic objects: moving player figures, onscreen 
hints. 

 
As discussed in Section II, for the first implementation of 

test scripts, we used OpenCV matchTemplate() function and 
a number of built-in pattern matching methods. After 
experimenting with a number of test scripts, we realized that 
pattern matching reliability significantly depends on a 
recognition task. For example, simple button-like GUI 
elements (buttons, menus, tabs) can be recognized with high 
degree of similarity (0.90..0.98), according to OpenCV 
reports. Similarity score decreases to (0.63..0.65) for certain 
elements interfering with the background like menu item 
placed against the sky with moving clouds. This makes 
perfect template matching impossible in principle. Lower 
similarity values might occur even for the objects that are not 
graphically complex, but contain patterns distorted during 
rescaling (as Figure 8 shows). 

 

Figure 8.  Template matching similarity varies for different UI elements. 

Even in the simplest cases, the similarity scores might 
differ depending on the device where the code is running. As 
Table I illustrates, the scores for OK button range from 0.94 
to 0.99 for different devices even if there is no any 
recognition complication such as “bad” background, 
surrounding or changing objects, etc. (apparently due to 
different screen resolutions and screen image scaling 
distortions).  

Table I lists a selection of devices used in this 
experiment, their screen characteristics and reported 
similarity scores. 



TABLE I.  EXPERIMENTING WITH OK BUTTON USING 

TM_CCOEFF_NORMED ALGORITHM 

Case 
Description of the test case 

Device Screen  Tap size Similarity 

Figure 3 

(a) 

Xiaomi Redmi 

Note 3 Pro 
1920x1080 1920x1080 0.99 

Figure 3 

(b) 
iPad Air 2046x1536 1024x768 0.95 

Figure 3 
(c) 

Doogee X5 Max 
Pro 

1280x720 1280x720 0.94 

 
In certain tests, the system reported the presence of UI 

elements that are actually not shown on the screen. Such 
false positive cases typically happen if some similar-looking 
graphical elements are confused with each other, especially 
when they are surrounded by moving objects or complex 
background. One way to struggle with such cases is to try to 
match larger regions in order to include more context into the 
pattern. For example, in our tennis game application, the 
Skip button is always placed next to a checkbox, so we can 
try to match the whole button/checkbox region. 

One more approach that can be used to decrease 
interference with the complex background is to apply image 
transformations for both the grabbed screenshot and the 
pattern. We were experimenting with a number of edge 
detection filters including Laplace algorithm and Canny edge 
detection algorithm [25]. Samples of image transformations 
are shown in Figure 9. We used the GNU Image 
Manipulation Program [26] for Laplace edge detection and 
the online tool “Imaging Web Demonstrations” [27] for 
Canny edge detection algorithm. 

 

 

Figure 9.  Samples of filtered templates. 

Preliminary experiments show that the use of 
transformed images does not significantly improve 
recognition of UI elements when an element is present on the 
screen. However, such transformations may be useful in 
struggling with false positive cases. 

 

Figure 10.  Scenes used for experimenting with false postive cases. 

In Table II, we summarized our experiments with the 
TM_COEFF_NORMED algorithm. For the experiments, we 
used 10 game scene screenshots (Figure 10) and 11 test 

fragments. 10 fragments ware taken from the above-
mentioned screenshots (hence, each fragment exists exactly 
in one scene). We also used one pattern fragment which does 
not belong to any of 10 screenshots. Thus, from 110 possible 
combinations only 10 correspond to true positive cases. 

As we can see from the results listed in Table II, edge 
filtering does not affect true positive cases. However, the 
number of false positive cases with substantially high scores 
significantly decreases if the pattern matching method 
receives filtered images as input. 

TABLE II.  RECOGNIZING A SELECTION OF SAMPLE FRAGMENTS WITH 

TM_CCOEFF_NORMED METHOD IN PLAIN CASE AND WITH EDGE 

DETECTION FILTERS 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

True 

positive 

(normal 

images) 

0 0 0 0 0 0 1 0 1 8 

True 
positive 

(Canny) 

0 0 0 0 0 0 1 0 1 0 

False 
positive 

(normal 

images) 

0 0 14 19 32 22 13 0 0 0 

False 

positive 

(Canny) 

58 37 5 0 0 0 0 0 0 0 

 
Figure 11 provides visual demonstration of the fact that 

the scores for false positive cases are shifting to the lower 
ranges after applying an edge detection filter to both scene 
and template images. 

 

 

Figure 11.  Struggling with false positive cases using Canny edge filtering. 

In principle, there is no necessity to strive for the highest 
similarity scores in the situations where the GUI elements 
are present on the screen. Our primary goal is to minimize 
the number of both false positive and false negative errors, 
so what we need is an algorithm that separates the scenes 
with and without target GUI elements reliably. 

We have to run pattern-matching algorithms for 
significantly different usage contexts: in player settings 
window, club selection window, game selection window, 
ongoing game window, etc. We expect that for every 



combination (algorithm, UI element, usage context), the 
reported similarity values could give us better understanding 
how to improve the quality of test scripts and, therefore, how 
to make the next steps towards building a testing automation 
framework for mobile applications based on hand-drawn or 
non-native GUI components. 

V. DISCUSSION 

The approach to GUI testing we describe above is 
applicable to a large variety of applications implementing 
custom (non-native) user interface. They include desktop and 
mobile games, HTML5 Canvas-based web applications, and 
many specialized instruments such as graphical or audio 
editors or mapping software. Accessing UI elements via the 
API of the underlying operating system is the preferable way 
for interacting with application for most tests. However, it is 
not available if application UI is not based on standard 
widgets. 

One may argue that using pattern recognition leads to 
fragile tests, since any changes in application GUI might 
break test scripts. While this is certainly the case, we have to 
note that all kinds of GUI tests are prone to fragility, and 
might fail due to reorganization, renaming, or addition of 
new user interface elements. Writing robust GUI tests is a 
challenging task regardless of the approach used. 

Reliance on screenshot processing slows down the testing 
process considerably. First, the process of screenshot 
generation on a mobile platform might take several seconds 
depending on a particular device. Second, the screenshot 
needs to be transferred to the machine running the test 
scripts, which requires fast and reliable connection. Third, 
pattern recognition is also computationally intensive, though 
in our experiments with five concurrent test processes the 
largest performance bottlenecks were still caused by the 
procedure of taking and transferring the next screenshot to 
the testing machine. 

However, let us note that screenshots provide a useful 
graphical log of the testing process, and we often resort to it 
for debugging purposes. So one might consider taking 
screenshots regardless of the method of accessing GUI. 
Furthermore, accessing UI elements with conventional 
methods (such as using XPath locators in Appium) is can 
also be slow, and might take several seconds per query 
depending on a particular situation. 

VI. CONCLUSION AND FUTURE WORK 

Let us note that image recognition algorithms are rarely 
discussed within the scope of software testing, so we believe 
that advancing and improving the quality of the proposed 
approach will provide a feasible solution to be used as a part 
of integration pipeline in software development and testing.  

Current frameworks such as Appium [28] allow running 
smoke tests on real mobile devices. However, they do not 
provide built-in capabilities for managing multiple-device 
tests and for integration of smoke testing into continuous 
delivery pipeline. Several companies, such as Bitbar and 
Amazon that offer “mobile test farm” services. They are also 
used and evaluated by academic researchers [29, 30]. 
However, they are expensive for small developers, offer a 

limited range of mobile devices, and lack flexibility. There is 
also an open Smartphone Test Farm initiative [31], but its 
primary goal is to provide remote control options for 
Android devices rather than to build an automated cross-
platform smoke testing facility. We also have to mention a 
number of commercial service providers, such as Amazon, 
Xamarin, and Bitbar supporting heterogeneous multiple-
device farm facilities 

Our further goal is to create an open source framework 
for small-scale mobile farms. The aim of this framework is 
to let anyone to quickly connect their own iOS / Android 
devices into a fully functional mobile farm, and integrate it 
into existing continuous delivery pipeline. Our software will 
make smoke testing of mobile apps easier to set up for the 
developers, and thus will increase the popularity of 
automated testing methods, and, consequently, will 
contribute to the improved quality of software. We believe 
that a practical testing framework should implement the 
following capabilities: 

1. Concurrent tests on several mobile devices. 
2. Automated detailed reports of test results with app 

screenshots and activity logs. 
3. Health monitoring of the devices for early detection 

of battery drain or device malfunction. 
4. Manual and event-driven test runs. 
We expect that the approach can be advanced towards 

designing the architecture of a farm as a distributed system 
allowing geographically dispersed teams to use their devices 
effectively. We specifically address the tasks of automating 
apps with non-native GUIs, such as apps written in Unity (a 
popular instrument for cross-platform development of games 
and multimedia software). The project can be considered a 
transdisciplinary human-centric research [32] that requires 
applying the solutions achieved in areas such as pattern 
recognition, intelligent interfaces and usability to a distinct 
application domain (mobile software testing), rather than 
straightforward integrated use of available tools and 
methods. 
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