Mobile Farm for Software Testing

Maxim Mozgovoy
University of Aizu
Aizu-Wakamatsu, Japan
mozgovoy@u-aizu.ac.jp

Evgeny Pyshkin
University of Aizu
Aizu-Wakamatsu, Japan
pyshe@u-aizu.ac.jp

Paste the appropriate copyright statement here. ACM now supports three different
copyright statements:
« ACM copyright: ACM holds the copyright on the work. This is the historical
approach.
« License: The author(s) retain copyright, but ACM receives an exclusive
publication license.
« Open Access: The author(s) wish to pay for the work to be open access. The
additional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement assuming it is
single spaced in a sans-serif 7 point font.
Every submission will be assigned their own unique DOI string to be included here.

Abstract

We introduce an approach to user interface testing with

a particular focus on non-native GUI based mobile appli-
cations. We particularly address the domain of entertain-
ment and education software including mobile games. We
describe a prototype system based on inexpensive com-
ponents and open source software, intended to support
product development cycle for companies on lean budget.
On the base of a prototype system discussed in this paper
we expect to develop a distributed infrastructure that would
allow users to use facilities of users’ own computers and
connected devices as a part of a common testing frame-
work. The approach presented in this work is also suitable
for wider range of mobile applications with a high variety of
human-computer interaction mechanisms.

Author Keywords
Mobile application; non-native GUI; automated testing frame-
work; time-consuming test suites; smoke testing

ACM Classification Keywords

D.2.5. [Software Engineering]: Testing and Debugging;
H.5.2. [Information Interfaces and Presentation]: User in-
terfaces

GUI testing — software testing
process, where the test scripts
are developed to access the
GUI elements
programmatically, in order to
define and test situations
triggered by appearance of
certain user controls on the
screen.

Automated tests — tests
executed automatically with the
help of special testing
frameworks. Automated testing
is an important part of
continuous integration.

Smoke tests — restricted test
suites aimed at checking
whether the whole application
works and provides its basic
functionality and reacts to user
interface controls properly (the
term probably came from
plumbing testing) [13].

Non-native GUI — user
interface which is not based on
platform-native GUI. It is
usually developed without using
standard libraries. GUI
elements can be hand-drawn
(for example, in the applications
developed with Unity).

Introduction

In mobile applications, the user interface (Ul) is a crucial el-
ement of human-computer interaction (HCI). Regardless of
the type of software (whether the question is about desktop
or mobile applications), creating open platforms for soft-
ware development and testing automation is one of strate-
gic parts of software quality assurance [2]. That is why

the developers and researchers working in the domain of
software quality assurance appreciate the efforts to create
specifications for low cost, pragmatic, sharable and open
source-based solutions enabling scalable process of mobile
application testing [15]. Such efforts can be considered as
important steps towards creating a better “test automation
culture” [9] of application developers.

In particular, writing automated Ul tests needs features for
accessing applications similarly to software users. In turn,
graphical Ul (GUI) testing provides an interesting case of
testing automation for both desktop and mobile applica-
tions [15, 17]. Many testing automation frameworks (such
as Jemmy library') allows accessing GUI elements from
within the test scripts. This enables defining and testing sit-
uations triggered by appearance of certain user controls on
the screen, and to perform different user-side operations
such as pushing a button, selecting a menu item or tab,
clicking or hovering an area, and so on.

Though many testing automation approaches can be equally
used for different kinds of software applications, mobile soft-
ware has important particularities. On the one hand, be-
cause of large number of mobile devices with a big variety
of characteristics, developers want to be sure that the ap-
plication works on different devices. From various recent

Thttps://jemmy.java.net/

reports we know that the process of verification, whether a
mobile application (to be run on large number of devices)
behaves as expected, is still challenging and time consum-
ing [18, 7]. In such applications as mobile games, we might
have to run the relatively long-lasting process and to col-
lect many screenshots necessary for further analysis of
possible application failures. On the other hand, mobile ap-
plications often do not rely on a platform-native GUI, but
utilize hand-drawn elements designed without using stan-
dard GUI libraries. Apart from entertainment applications
(such as games), non-native GUI is often used in educa-
tional software. Another interesting case is a large number
of applications integrated with geographical maps relying on
graphical elements which are not commonly supported in
standard testing frameworks.

In the above mentioned cases, device emulators (being a
commonly used solution) are not enough. Real devices are
necessary because we have to check whether our software
works on them (and non only on simulators), including the
issue of potential intensive CPU and GPU load, in order to
reveal battery drain or low performance problems.

Non-Native GUI Applications in Frame of Recent

Mobile Software Testing Research

As of today, analysis of peculiar characteristics of mobile
software from the perspective of testing automation is one
of the common trends in software research agenda. Many
studies and practical solutions address the important issues
of mobile software testing automation.

In [7] the authors describe the AutoClicker, a system aimed
at automating tests of large-scale applications running

on multiple devices. This work introduces a system for
scheduling mobile tests with multiple connected devices
(both real and emulated) in parallel.

https://jemmy.java.net/

Continuous, Evolutionary
and Large-Scale: A New
Perspective for Automated
Mobile App Testing

“Current state of the art of
automated testing tools for
mobile apps posses limitations
that has driven a preference for
manual testing in practice. As
of today, there is no
comprehensive automated
solution for mobile testing that
overcomes fundamental issues
such as automated oracles,
history awareness in test
cases, or automated evolution
of test cases.” [11]

Major Concerns

Large-scale resource-intensive
applications; Multiple devices;
Tests are time and energy
consuming; Reducing costs;
Continuous integration is a
“must-have” part of the
process.

Objectives

Distributed infrastructure that
would allow users to use
facilities of users’ own
computers and connected
devices as a part of the whole
testing framework.

The focus of the work [3] is on reducing the costs of mobile
application testing by considering the possibility of test mi-
gration, which can be partially achieved for applications that
share some functionality or GUI components.

The study [5] addresses the challenges of time-consuming
energy tests. The problem of testing device energy con-
sumption is closely related to testing resource-intensive
applications: first, it is difficult to measure the energy con-
sumption of a device under test accurately, since the test
itself might be executed on a device and drain its battery;
second, if device is plugged to a power source (which is re-
quired for long-lasting tests), the collected data might be
inaccurate due to the impact of charging current.

The tool discussed in [14] detects the Android application
crashes and generates the reports containing the detailed
description of the application failure context (which includes
screenshots, failure reproduction steps, application excep-
tion stack traces, etc.). Support for making the failures re-
ported and reproduced is the essential component of a con-
tinuous integration pipeline.

Many existing automated Ul testing systems for mobile ap-
plications work well for native GUI applications (see, for
example, [1, 6]) but can not be directly used for the case of
non-native GUI based mobile software. Thus, testing non-
native applications serves as a good example of an open
issue among other challenging problems of mobile software
development that require particular attention from the com-
munity [11].

The standard approach for arranging mobile software tests
is to connect mobile devices to a server running some spe-

cial software, and to execute test scripts on a remote ma-
chine (Figure 1).

pa.

-~

New . mmmmm) Reports

build

Client Server

Figure 1: Client-server interaction in a mobile testing
environment.

For the server software, there are many known solutions,
such as Appium? and Calabash®. Practically, a test script is
a set of instructions similar to the following fragment:

wait 10 sec

tap location (100, 50)

assert that OK button appears
press 0K button

For native GUI applications, we can implement such scripts
relatively easily, since user controls can be accessed pro-
grammatically from within automated tests. Unfortunately,
in a case of non-native GUI applications (which do not use
standard GUI libraries), such a model does not work. Vari-
ous sources [19], including our own works [17, 16], suggest
to use pattern recognition methods to identify GUI elements
on the screen. This approach requires using pattern match-
ing and image transformation algorithms, and might cause
significant slowdowns of the testing process.

In general, it is difficult to estimate a “typical” test dura-
tion: simple smoke tests can reveal the absence of crashes
within seconds, while stress tests, designed to check the
application stability in a long time interval, can take hours.

2http://appium.io
Shttp://calaba.sh

http://appium.io
http://calaba.sh

Server 1

Build server delivers

fresh builds to the Ii @ #54barSfedf5c
. #72749174865a

testing system

#dae5f9c68641
#5a442d6b6f9
#063451ec0afl

request new builds

Client

run tests

[====)

generate HTML report

i
00 000

run tests Se rver 2
£871e0cc06185, 2016-12-01 [start
Fragment of the eee — . i .
HTML . 21:51] FirstRun Clickable test names
repor “US M 7 .
A P 4 IASUS MeMO Pad 7 22:12) LeagueGames —— allow accessing the
which includes 22:34] BasAdvMirTrain

detailed test run lo
device names, 22:50) FistRun___ = g
test run times, iaomi Redmi Note 3 Prof23 16{T EengeGames

d test 2342} BasAdvMisTrain
and test names o ——

Kindle Fire 5th Gen 23:27 LeagueGames

Figure 2: Testing organization: a prototype.

Red highlighted test
failed

Furthermore, ideally every new build should be tested on a lean budget such a startup company or a freelance devel-
variety of mobile devices. oper. Assuming that the tests take at least 1 hour on each
device per build (and there might be several builds per day),
The easiest way to organize regular large-scale automated the costs for daily testing of fresh builds with only a dozen
testing on real mobile devices is to use a cloud mobile farm of devices may go up to 200-300 USD. Stress testing might
provider (such as Amazon Web Services, Bitbar, etc.). and require even higher expenses.
to obtain hassle-free setup, and availability of hundreds of
mobile devices. However, most providers still do not sup- Of course, before selecting an appropriate model of auto-
port an adequate variety of devices (in particular, with re- mated testing infrastructure (i.e., renting the cloud services
spect to different vendors). Variety of devices is a concern or building one’s own testing farm), one has to evaluate the
for own test platform setup too, however, one can select the cost of deploying and running such a mobile farm against
most interesting devices for a particular case easier. the costs of using the facilities provided by the cloud, includ-
ing hardware expenses and workload required to set up,
The cloud farm testing might be up to 0.14-0.17 USD per run and maintain the system.

minute per device, and costs are quite high for a team on

Figure 3: A prototype mobile farm
with eight connected devices.

Figure 4: Non-native GUI based
mobile game.

Our Approach, Its Implementation and Evaluation

Figure 2 shows the architecture of our prototype farm. The
system provides a functionality of getting builds from a build
machine (such as TeamCity [12]), running all tests on all
connected devices, generating HTML reports with applica-
tion action logs and screenshots, as well as sending all the
report-related data to the subscribed users of the system
(developers, testers, administrating staff, etc.).

The current implementation allows us to analyze a num-
ber of important issues related to the problem of building

a framework for automated testing of mobile applications
on real devices, including differences in how the devices
manage the installed software (with respect to different op-
erating systems), and how to connect a reasonable number
of devices to a powered hub (with respect to possible bat-
tery draining, difference in charging/connection interfaces,
charging rate and time, the capability to charge and transfer
data at the same time, etc.).

Currently we have a prototype (partially shown in Figure 3),
consisting of the following components:

1) Testing server: a Windows-based mini-PC, used to run
Appium test scripts.

2) Appium server-1: a Windows-based mini-PC, running
Appium server software for Android devices. Currently it
runs two instances of Appium, thus allowing to perform test-
ing on two Android devices simultaneously.

3) Appium server-2: a Mac mini computer, running Appium
server software for iOS devices. Running iOS tests on the
devices connected to non-macOS machines is impossible.

4) Testing devices: Five Android devices by five different
vendors, connected to the first Appium server, and three dif-
ferent iOS devices, connected to the second Appium server.

5) USB hubs: testing devices are connected with comput-
ers via Plugable USB hubs that support simultaneous data
transfer and charging with charging rate up to 1.4 A de-
pending on the device.

6) Device stand: all mobile devices are placed on the Fle-
Pow 10-port charging station dock, which is used simply as
a convenient shelf; its charging capabilities are not used.

Project-specific test scripts are managed by the in-house
developed coordination system that monitors project changes
in TeamCity, runs tests for the fresh builds, and generates
HTML reports. Both Appium servers run Appium v.1.6.5.

Software developers evaluate a number of factors when
choosing a testing framework. Among the most commonly
mentioned criteria, the following can be cited [4]: 1) func-
tionality — the sheer number of actions supported by the
framework; 2) portability — the ability to test apps under
different platforms; 3) language bindings — support of test
scripts written in different programming languages; and 4)
non-intrusiveness — the ability to test user-end versions of
the apps rather than additionally instrumented for tests.

Sometimes test engineers also take into account such fac-
tors as execution speed, simplicity of setup and operation,
and reliability of the framework [10]. Since our system is
based on Appium, it shares all the strengths and weak-
nesses of this platform. Our main emphasis is on extending
existing Appium functionality for integration with a build ma-
chine, parallel multi-device test execution, and fine-tunable
customized test scenarios, required by the developers.

Summary of Achievements

1. Mobile testing farm
architecture.

2. Working prototype of a
distributed mobile testing
farm that supports
Windows, Android, and
iOS devices.

3. Appium extensions for
handling app distribution
across testing devices,
load balancing and
additional types of Ul
interaction, not supported
in the current Appium
implementation.

4. Practical approach for
integrating automated
smoke testing into the
process of cross-platform
mobile software
development as an
element of the
continuous integration
pipeline.

5. Pattern matching-based
technique for handling
non-native GUI elements
in mobile apps.

Assessment and Lessons Learned

We used the above described mobile farm implementation
in the extensive testing process in the project “World of Ten-
nis: Roaring '20s” 4. This is a mobile game being developed
with Unity (Figure 4 shows a sample game scene screen-
shot containing a number of hand-drawn Ul elements). This
project illustrates well many above mentioned concerns of
resource and time consuming GUI testing.

Some months of experiments taught us a few useful facts
about mobile farms:

» A mobile testing framework helps to identify the spe-
cific target platforms in advance. The most recent
version of Appium supports Android 4.2+ and iOS
9.3+. Older operating systems are also supported,
but they require different setup and significant changes
in testing scripts. Old Apple devices with non-retina
screens also have to be handled differently from mod-
ern iPhones and iPads.

» Mobile devices discharge while testing. One might
think that it is enough to plug a device into a com-
puter or a USB hub to keep the level of battery at an
acceptable level. Unfortunately, typical USB charg-
ing rates in this case are inadequate: the devices will
eventually discharge. Even powered USB hubs can
be insufficient; one needs a hub specifically designed
for simultaneous charge and data transfer. Even in
this case specific devices will refuse to charge (such
as Samsung Galaxy Tab E that needs a wall charger)
or will charge very slowly (such as iPad 3).

“http://worldoftennis.com/

« While Appium is considered a mature project with a
significant user base, there are still numerous issues
that can lead to hangs, crashes, and in general un-
reliable test execution. However, there is definitely
a progress in this project, and we have seen some
issues fixed very recently.

» Each device has its own quirks. There are issues
related to a particular version of the operating sys-
tem, firmware, or even default onscreen keyboard.
For example, one of our devices had random crashes
until we installed CyanogenMod. Another device re-
ported the lack of free space after several dozens of
install/uninstall cycles of the application under testing.
A mere reboot could help, but the ultimate solution
was to install an alternative Android version.

* In addition to the physical infrastructure some intel-
ligent algorithms can be used for post-processing of
test report data. For example, on the base of battery
drain statistics, we can make necessary adjustments
in running tests on particular devices.

Conclusion

As noted in [15], for mobile software running on multiple
differently configured devices in different execution con-
texts, continuous testing is an essential component of the
development process to ensure the quality of mobile appli-
cations.

The reason why companies charge so much for mobile test-
ing frameworks is that it is not easy to build them. The main
goals of this project are to define a methodology, to build a
working system, to design a set of sample applications us-
ing this testing framework, and to collect some evaluation
results of testing the professional software products.

http://worldoftennis.com/

Creating a mobile testing farm is not always better than
renting the alternative cloud facilities. However, it is par-
ticularly important that our approach is not to implement
only smoke testing, but to make it a mandatory stage of a
continuous integration pipeline, similar to unit testing and
automated builds.

Our primary experiments show that the procedures for test-
ing automation of the non-native GUI based-applications
require the combined use of several technologies including
traditional automated unit tests, functional testing frame-
works, and even image recognition, so we believe that the
proposed approach provides a feasible solution for every-
day automated smoke testing and can be considered as a
possible extension of tools and methods for mobile software
analysis and verification automation.

Pragmatically, our current proof-of-concept implementation
helped us in resolving some problems of organizing exten-
sive testing of the software components developed for the
ongoing project of mobile game. The prototype allowed us
to arrange a big number of experiments. The outcome of
these experiments is twofold. First, we got an infrastruc-
ture to support the concrete project and to save time and
resources required for testing. Second, we got a solution
which demonstrated its applicability to many practical situ-
ations where our approach can be helpful, including devel-
oping mobile applications that are Ul intensive, as well as
hybrid applications [8].

As a future work, we expect to integrate all the parts (smoke
test automation, continuous integration pipeline, image
recognition, recommendations on choosing the appropri-
ate test servers and hardware components) and to create a
distributed infrastructure that would allow users to use facil-
ities of users’ own computers and connected devices as a
part of the whole testing framework.

Acknowledgment

This work is partially supported by the grant 17K00509 of
Japan Society for the Promotion of Science (JSPS) and by
the University of Aizu competitive research grant P-26.

REFERENCES
1. Domenico Amalfitano, Anna Rita Fasolino, and Porfirio
Tramontana. 2011. A gui crawling-based technique for
android mobile application testing. In Software testing,
verification and validation workshops (icstw), 2011 ieee
fourth international conference on. IEEE, 252—261.

2. Domenico Amalfitano, Anna Rita Fasolino, Porfirio
Tramontana, and Bryan Robbins. 2013. Testing android
mobile applications: Challenges, strategies, and
approaches. In Advances in Computers. Vol. 89.
Elsevier, 1-52.

3. Farnaz Behrang and Alessandro Orso. 2018.
Automated test migration for mobile apps. In
Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings.
ACM, 384-385.

4. Avni Gupta. 2017. Mobile Automation: Why We Chose
Appium. (January 2017).
https://www.axelerant.com/resources/team-blog/

mobile-automation-why-we-chose-appium Accessed:
Jun 22, 2018.

5. Reyhaneh Jabbarvand and Sam Malek. 2017.
Advancing energy testing of mobile applications. In
Software Engineering Companion (ICSE-C), 2017
IEEE/ACM 39th International Conference on. |EEE,
491-492.

6. Mona Erfani Joorabchi, Ali Mesbah, and Philippe
Kruchten. 2013. Real challenges in mobile app
development. In Empirical Software Engineering and

https://www.axelerant.com/resources/team-blog/mobile-automation-why-we-chose-appium
https://www.axelerant.com/resources/team-blog/mobile-automation-why-we-chose-appium

10.

11.

12.

13.

14.

Measurement, 2013 ACM/IEEE International
Symposium on. IEEE, 15-24.

Taeyeon Ki, Alexander Simeonov, Chang Min Park,
Karthik Dantu, Steven Y Ko, and Lukasz Ziarek. 2017.
Fully Automated Ul Testing System for Large-scale
Android Apps Using Multiple Devices. In Proceedings
of the 15th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 185-185.

Dominik Kipar and others. 2014. Test automation for
mobile hybrid applications: using the example of the
BILD App for Android and iOS. (2014).

Pavneet Singh Kochhar, Ferdian Thung, Nachiappan

Nagappan, Thomas Zimmermann, and David Lo. 2015.

Understanding the test automation culture of app
developers. In Software Testing, Verification and
Validation (ICST), 2015 IEEE 8th International
Conference on. |IEEE, 1-10.

Tomi LAmsa. 2017. Comparison of GUI testing tools for
Android applications. (2017). http://jultika.oulu.
fi/files/nbnfioulu-201706142676.pdf

Mario Linares-Vasquez, Kevin Moran, and Denys
Poshyvanyk. 2017. Continuous, evolutionary and
large-scale: A new perspective for automated mobile
app testing. In Software Maintenance and Evolution
(ICSME), 2017 IEEE International Conference on.
IEEE, 399-410.

Manoj Mahalingam. 2014. Learning Continuous
Integration with TeamCity. Packt Publishing Ltd.

Steve McConnell. 1996. Daily build and smoke test.
IEEE software 13, 4 (1996), 144.

Kevin Moran, Mario Linares-Vasquez, Carlos
Bernal-Cardenas, Christopher Vendome, and Denys

15.

16.

17.

18.

19.

Poshyvanyk. 2017a. Crashscope: A practical tool for
automated testing of android applications. In Software
Engineering Companion (ICSE-C), 2017 IEEE/ACM
39th International Conference on. |IEEE, 15—-18.

K. Moran, M. L. Vasquez, and D. Poshyvanyk. 2017b.
Automated GUI Testing of Android Apps: From
Research to Practice. In 2017 IEEE/ACM 39th
International Conference on Software Engineering
Companion (ICSE-C). 505-506. DOI:
http://dx.doi.org/10.1109/ICSE-C.2017.166

Maxim Mozgovoy and Evgeny Pyshkin. 2017. Using
Image Recognition for Testing Hand-drawn Graphic
User Interfaces. In 17th International Conference on
Mobile Ubiquitous Computing, Systems, Services and
Technologies (UBICOMM 2017). 1ARIA, IARIA, 25-28.
https://thinkmind.org/index.php?view=article&
articleid=ubicomm_2017_2_20_10083

Maxim Mozgovoy and Evgeny Pyshkin. 2018. Unity
Application Testing Automation with Appium and Image
Recognition. In Tools and Methods of Program
Analysis, Vladimir Itsykson, Andre Scedrov, and Victor
Zakharov (Eds.). Springer International Publishing,
Cham, 139-150.

Sergiy Vilkomir. 2018. Multi-device coverage testing of
mobile applications. Software quality journal 26, 2
(2018), 197-215.

Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller.
2009. Sikuli: Using GUI Screenshots for Search and
Automation. In Proceedings of the 22nd Annual ACM
Symposium on User Interface Software and
Technology (UIST '09). ACM, New York, NY, USA,
183-192. DOI:
http://dx.doi.org/10.1145/1622176.1622213

http://jultika.oulu.fi/files/nbnfioulu-201706142676.pdf
http://jultika.oulu.fi/files/nbnfioulu-201706142676.pdf
http://dx.doi.org/10.1109/ICSE-C.2017.166
https://thinkmind.org/index.php?view=article&articleid=ubicomm_2017_2_20_10083
https://thinkmind.org/index.php?view=article&articleid=ubicomm_2017_2_20_10083
http://dx.doi.org/10.1145/1622176.1622213

	Introduction
	Non-Native GUI Applications in Frame of Recent Mobile Software Testing Research
	Our Approach, Its Implementation and Evaluation
	Assessment and Lessons Learned
	Conclusion
	REFERENCES

