
Unity Application Testing Automation with
Appium and Image Recognition

Maxim Mozgovoy and Evgeny Pyshkin

Tsuruga, Ikki-Machi, Aizu-Wakamatsu,
Fukushima, 965-8580, Japan

{mozgovoy,pyshe}@u-aizu.ac.jp

http://www.u-aizu.ac.jp

Abstract. This work is dedicated to the problem of integrating simple
functional tests (smoke tests) into the automated continuous integra-
tion pipeline. While functional testing is typically performed manually
by the QA staff members, there is a large number of scenarios that can
be automated, and readily available instruments, such as Appium and
Calabash, designed for this task. Automated smoke testing is especially
challenging for the applications with nonstandard GUI, such as games
made with Unity. The only viable option in this case is to analyze screen
content as a flat image and identify GUI elements with pattern match-
ing algorithms. This approach is not novel, but its practical applicability
and limitations are rarely discussed. We consider a case study of a mo-
bile tennis game project, developed in Unity and covered with a suite of
Appium-supported functional tests. We show how image matching ca-
pabilities of OpenCV library can be used in Appium tests to build a
reliable automated QA pipeline.

Keywords: GUI; testing; computer game; automation; non-native; smoke
test; OpenCV; Unity; Appium

1 Introduction

It is widely recognized that software quality assurance (QA) techniques appear at
nearly every stage of software lifecycle, beginning from discovering requirements
up to product deployment and maintenance. Specifically, professional software
development methodologies emphasize importance of testing as a major dynamic
software QA method. Particular attention is paid to testing automation which is
an integral part of continuous integration pipeline – a process of daily automated
build and deployment recommended by many experts for practical everyday
use [10]. Automated tests became a core of certain practical approaches such as
test-driven development (TDD) [7] or behavior-driven development (BDD) [18].
Simple automated tests are used for basic program elements, such as individual
class methods or separate functions. Nevertheless, detailed functional testing
(aimed to reveal whether a software meets requirement specifications) is still
a complicated (and partially manual) process, typically performed by the QA
staff.



2 Maxim Mozgovoy and Evgeny Pyshkin

However, certain relatively simple cases, known as smoke tests [15], can be
automated. Smoke tests are aimed at performing some basic checkups: whether
the program runs at all, is it able to open required windows, does it react properly
to user inputs, etc. Automated user interface (UI) smoke tests should be able
to access applications in the same way as users do, so they need to manipulate
application’s user interface. Specifically, testing graphical UI (GUI) provides
interesting and nontrivial case of testing automation.

An important aspect of testing automation complexity (which is particularly
significant for GUI testing) is a fragile test problem pointed by Meszaros as far
back as 2007 [16]. A fragile test is a test which does not compile or does not work
despite the fact that the code modification is not within the test scope. One of
possible effects of such a fragility is test sensitivity to the changes in the appli-
cation interface (especially in a case of GUI). The latter is one of reasons that
application functional logic should not be tested via application’s user interface,
despite the fact that this rule is often violated in real life.

2 Instruments for GUI Testing

Existing tools for testing automation provide features for testing GUI applica-
tions in regular cases. For example, Jemmy library [4] allows to access program-
matically many GUI elements: we can define and test situations conditioned
by appearance of certain GUI components or user controls on the screen and
by performing different operations such as pushing a button, selecting a menu
item, scrolling a window, hovering an area, and so on.

Below there is an example of a typical testing scenario for an interactive
computer game implemented in Java. Assume we have to test the initial prepa-
rations and assure that the game process goes to the end (in principle). First,
we might have to set up the application frame window:

Defining actions executed before each unit test

@Before

public void setUp() {

java.awt.EventQueue.invokeLater(new Runnable() {

public void run() {

new GameFrame();

}

});

// Attaching to the main frame

mainFrame = new JFrameOperator();

// Creating the object for event queue control

mainQueue = new QueueTool();

mainQueue.waitEmpty(200);

}

Then the mainFrame operator is attached to the application’s main frame
window, while mainQueue object is responsible for the operations with the event



Unity Application Testing Automation 3

queue. So, the next possible step is to define some testing scenario, for example,
a game start process. The test sequence consists of the following operations:

1. Select the menu item Game—>New;

2. Select the level of players;

3. Push the button “Start game”;

4. Wait until the game is over (assuming that a game is over if its event queue
remains empty for several seconds).

Defining a sample GUI test

@Test

public void testStartGame() {

// Execute menu command

JMenuBarOperator menuBar = new JMenuBarOperator(mainFrame);

menuBar.pushMenuNoBlock(new String[] {"Game", "New" });

JDialogOperator dialog = new JDialogOperator(

"Select players");

assertTrue(dialog.isVisible());

mainQueue.waitEmpty(1000);

// Select levels

JRadioButtonOperator radio1 = new JRadioButtonOperator(

dialog, "Beginner", 0);

radio1.push();

mainQueue.waitEmpty(1000);

JRadioButtonOperator radio2 = new JRadioButtonOperator(

dialog, "Master", 1);

radio2.push();

mainQueue.waitEmpty(1000);

// Start the game

JButtonOperator start = new JButtonOperator(dialog, "Start");

start.push();

// Wait for the end of the game

mainQueue.waitEmpty(5000);

}

In process of test execution, we can see the windows appeared on the screen
and actions processed during the game. The test is finished as soon as there
are no more events in the event queue. We have to mention that the basic
idea implemented in the frameworks similar to Jemmy is to separate testing of
functional application logic from GUI testing. However, during testing of GUI
applications we have to consider factors that might conduce to appearance of
fragile or unstable tests.

On Windows one can also use Microsoft UI Automation [5]; similar solutions
are also available on mobile platforms, e.g., Android UI Automator [2].



4 Maxim Mozgovoy and Evgeny Pyshkin

3 The Problem of Custom GUI Elements

The idea of hiding platform-specific UI automation frameworks behind a uni-
versal façade interface was recently implemented in tools such as Appium [1]
and Calabash [3]. However, difficulties appear if an application does not rely on
natively rendered GUI components of an underlying operating system and does
not use standardized GUI libraries such as GTk, Qt, Swing, WinForms, etc.
Such a situation is typical for computer games, where GUI elements are often
hand-drawn and may change their onscreen positions. Furthermore, much of in-
teraction is performed with non-GUI onscreen game objects, such as buildings,
game characters, map elements, etc. As a result, a UI automation framework
recognizes the main window of such an application as a plain graphical image
containing no UI elements.

Similar problems might appear in non-game applications. One example is
text recognition applications where texts are effectively available as images (this
issue is specifically important for oriental languages [20]). Another case is check-
ing a hand-drawn design model against an implementation (on web sites, on
mobile applications running on a big variety of devices with different screens),
and resolving layout and localisation issues (for example, the text strings might
be out of pre-designed graphical area due to the particularities of a specific
language). Dealing with GUI elements as with images might be required in elec-
tronic maps. Finally (and here we come to our particular case), there is a big
domain of Unity-based applications.

In this contribution we discuss our experience in automating tests of a mobile
game application with Appium using image recognition technologies. We use
OpenCV library [8] in Appium test scripts to recognize game objects and hand-
drawn Unity GUI elements in plain graphical data. We show that despite certain
disadvantages this approach is feasible for a practical game project, and can
be used to implement smoke testing as an element of a continuous integration
pipeline in similar non-native GUI applications.

4 Unity GUI Testing with Appium

A developer of any automated GUI test suite needs to know whether the ap-
plication under testing uses native GUI elements. Typically, a GUI is created
with the help of numerous available frameworks; such frameworks are especially
helpful for cross-platform development, since they often provide a universal mul-
tiplatform API. In turn, GUI frameworks normally rely on API layering or GUI
emulation [9] (p. 5). The idea of API layering is to provide a universal wrapper for
native GUI elements, provided by the underlying operating system. While such
universal APIs usually implement only the most common GUI controls, found in
all supported operating systems, they ensure native look and feel, which can be
important or even required for business applications. An alternative approach,
GUI emulation, relies on screen drawing functions to visualize GUI controls.
This method ensures the same look and feel on each supported platform, and
imposes no platform-specific restrictions on the set of available GUI elements.



Unity Application Testing Automation 5

From the perspective of GUI testing, there are subsequent important dif-
ferences. Since the operating system manages native GUI controls, it “knows”
all onscreen GUI elements, and can potentially provide functions to manipulate
them. In contrast, an emulated GUI for an operating system is just a flat can-
vas, used to draw graphical primitives, such as lines and circles. Therefore, such
non-native GUI in general cannot be manipulated with the API of the underly-
ing operating system. Since Unity attempts to reproduce the same look and feel
on each supported platform, Unity applications normally follow GUI emulation
approach.

4.1 Basic Appium Setup

Appium is a test automation framework designed to assist functional testing
of compiled native (iOS, Android or Windows), and hybrid applications [11].
Appium-powered scripts access applications nearly the same way as end users
do: such scripts are able to press buttons, select check boxes or radio buttons,
enter text strings into edit boxes, examine content of labels, and proceed with
mouse clicking on arbitrary areas. Appium is implemented as a client-server
system where a server exposes a REST API. Particularly, Appium is responsible
for the following activities:

1. Receiving connections from a client;
2. Listening for commands;
3. Physical execution of those received commands from an application under

testing on Appium servers (directly or using external USB-connected mobile
devices in case of mobile applications);

4. Responding by using an HTTP response representing the result of the com-
mand execution.

Thus, remote Appium clients connect to the servers and run test scripts that
send commands for execution. Due to the supporting client libraries, test scripts
can be authored in a variety of popular languages, including Java, Ruby, Python,
PHP, JavaScript, and C#.

Native GUI elements of an application are accessed with a specialized API.
For example, if there is a single textbox and a single OK button on the Android
screen, one can simulate user input as follows:

User Input Simulation (Python)

e = appium.find_element_by_class_name

(’android.widget.EditText’)

e.send_keys("hello, world") ok =

appium.find_element_by_class_name

(’android.widget.Button’)

ok.click()

Appium scripts can also take and examine screenshots of applications, which
is a crucial ability in our case of custom Unity GUI elements.



6 Maxim Mozgovoy and Evgeny Pyshkin

4.2 Screenshot Analysis Using Image Recognition

At a glance it may seem that identifying objects of interest on the screen (such
as GUI elements or game characters) can be reduced to the task of perfect
matching of a bitmap image inside a screenshot. However, we can cite several
factors confirming that such a näıve exact matching is insufficient:

– Onscreen objects may be rendered differently by different GPUs or due to
different rendering quality settings;

– Since screens vary in dimensions, we need to scale pattern images, which
causes distortions;

– Onscreen objects often intersect with each other. Therefore, approximate
matching is necessary.

The idea of using image matching in Appium is discussed in several tutori-
als [13, 12]. Typically, authors suggest employing OpenCV library for approxi-
mate matching. We rely on OpenCV function matchTemplate() called with the
flag TM CCOEFF NORMED. This allows us to get image similarity coefficient
in a range of [0 . . . 1] in order be able to analyze testing results from the viewpoint
of UI elements recognition quality.

Unfortunately, matchTemplate() function is unable to match scaled patterns.
Since game may run on devices with different screen sizes, we scale the screen-
shots to match the dimensions of the original screen used to record graphical
patterns.

4.3 Smoke Tests in a Continuous Integration Pipeline

Let us remind that smoke tests are usually more complicated compare to regular
unit tests. At the same time, smoke tests are not detailed enough so as to provide
an exhaustive coverage of possible usage scenarios. What is nice about automated
smoke tests is that they are reproducible and they support regressive testing.
Moreover, a test suite may be extended as soon as some specific defects are
discovered as a result of other QA activities.

In our case, the continuous integration setup relies on a popular build server
TeamCity [14]. Since smoke tests might be time consuming, we do run them
asynchronously. The testing subsystem periodically polls TeamCity to detect
new finished builds, and and runs all the tests for them. All results are combined
into the HTML-based report, indicating test outcomes. It is also possible to
examine a detailed report (with screenshots) of each testing session, which helps
to identify found problems.

Figure 1 shows the general organization of the GUI smoke test automation
process implemented in our approach. The tests are executed on real mobile
devices, connected via USB cables to two computers, running Appium. The first
computer is a Mac mini that runs tests on iPad 3 and iPad Air. The second
computer is a Windows-based PC with five connected Android devices: Nexus
7, ASUS MeMO Pad 7, Kindle Fire 5th Gen, Doogee X5 Max Pro, and Xiaomi
Redmi Note 3 Pro. We use Plugable USB 3.0 7-port hubs that ensure simulta-
neous data transfer and battery charging.



Unity Application Testing Automation 7

Fig. 1. Testing organization

5 Case Study: World of Tennis

We implemented automated smoke testing for the upcoming mobile tennis game
World of Tennis [6], used in our previous experiments with believable and ef-
fective AI agents [19, 17]. Initially we planned to test only the most basic game
functionality, such as creating a new user account and starting a training match.
Later we managed to rely on automated GUI tests for a variety of needs:

– First run and tutorial. On the first run, the game performs the following
actions: register a new online user account; show a tutorial; ask the user to
test the system of character upgrades; play a training match. Therefore, the
first game run requires several core subsystems to work properly. Successful
first run is more than just a smoke test, it is a good indicator of a stable
game build.

– Online league games. By playing several league matches, the testing system
checks the stable work of a typical game routine.

– Stress tests. At night time, the system plays a large number (10–20) of league
games to make sure the game is stable during prolonged (1.5–2.5 hour) game
sessions.

– Graphics and framerate control. Since autotests produce detailed step-by-
step reports with screenshots, it is convenient to use them to spot graphical
glitches, texture distortions, and poor framerate (a framerate counter is dis-
played in each screenshot). Our experience shows that graphical glitches are
often device-dependent, and framerate may drop unexpectedly in certain
game situations due to behavior of a particular GPU, so automated tests
can greatly assist, if not substitute, manual QA work scenarios.

Since game GUI elements are all hand-drawn, there is no option to rely on
native UI automation capabilities. One may try to hardcode coordinates of UI



8 Maxim Mozgovoy and Evgeny Pyshkin

elements in the tests, but this method can only assist game control, while we also
need to recognize game events and the presence of certain onscreen elements to
react accordingly. Furthermore, different devices have different screen sizes and
aspect ratios, which makes coordinate-based approach fragile.

In general, all our tests follow the same routine: take a screenshot, detect the
presence of certain GUI elements (see Figure 2), react accordingly, repeat. The
largest performance bottleneck in this scenario is the process of acquiring the
next screenshot, which might take up to several seconds depending on a device.

Fig. 2. Examples of UI elements and game characters

Our experiments show that the reliability of pattern matching in the scripts
varies depending on a task. Static GUI elements (such as buttons or menus) can
be almost always reliably recognized with high degree of similarity (0.90 . . . 0.98),
according to OpenCV reports. Certain elements interfere with the background
and thus yield lower ratios of (0.63 . . . 0.65) (currently we consider an image
matched if the similarity ratio of its best match is 0.60 or higher). For example,
the main menu icon (see Figure 2) is placed against the sky with moving clouds,
making perfect template matching impossible. When variations of the same GUI
elements cause mismatches, we keep a list of several common images, and match
all of them before reporting the absence of the element on the screen.

The opposite case is false positive, when the system detects the presence of
a certain element, actually not shown on the screen. Typically, a false positive is
triggered when small similar-looking graphical elements are confused with each
other. To prevent this situation, we try to match larger regions providing more
context. For example, in World of Tennis, the Skip button is always placed next
to a checkbox, so we match the whole button/checkbox region. If this method
still does not work, we match all possible candidate elements, and report the
element having the highest similarity ratio with its identified match.

Figure 3 demonstrates a test report generated for a certain stage of World of
Tennis testing process performed for a selection of Android and iOS devices. In
Figure 4 you can see a series of fragments from the detailed report for an example
of LeagueGames test run for Kindle Fire 5th Gen Android device. In case of test
failure the analysis of such a detailed report allows us to understand the reasons



Unity Application Testing Automation 9

Fig. 3. Fragments from test run reports for a number of Android and iOS devices

of a discovered failure and makes possible to reconstruct the situation followed
by this failure.

Our experience shows that most test failures are caused with unwanted
changes between two consecutive actions. For example, the test script detects a
certain onscreen element and tries to click it, but during this action the element
happens to be covered by an unexpected pop-up modal dialog or by another
game element. However, modal dialogs may disrupt any GUI testing script, so
this problem is not specific for our approach.

6 Discussion

Our experiments show that the procedures for testing automation of the appli-
cations with non-native GUI require the combined use of several technologies
including traditional automated unit tests, functional testing frameworks (Ap-
pium in our case) and image recognition (OpenCV).



10 Maxim Mozgovoy and Evgeny Pyshkin

Fig. 4. LeagueGames test: detailed report fragments with a number of screenshots
saved during the game run



Unity Application Testing Automation 11

As we demonstrated in our World of Tennis case study, there could be recog-
nition failures (false positive and false negative matches), however, most of them
can be solved with reasonable efforts. Our difficulties were mostly caused with
other factors, such as complex application logic or Appium / iOS / Android
quirks. From the viewpoint of efficiency analysis, It should be noted that due
to using graphical information, this approach requires massive amounts of data
to be sent over the network, so it may not be applicable if Appium clients and
servers communicate via slow channels.

Started with simple smoke tests, we realized that the designed system has
more potential, and can help us in other scenarios, most notably stress testing.
Appium tests can play dozens of tennis matches with no breaks, thus providing
enough proof that a particular build is stable. We also found the resulting HTML
reports to be helpful in quick performance and graphical sanity analysis, since
the framerate value is shown on every screenshot, and graphical glitches are easy
to spot.

Image recognition algorithms are not often examined within the scope of
software testing, so we believe that the proposed approach providing a feasible
solution for everyday automated smoke testing could be considered as a possible
extension of a discourse connected to tools and methods for software analysis
and verification automation.

References

1. Appium. project homepage, http://appium.io, accessed: Nov 1, 2016
2. Automating user interface tests, https://developer.android.com/training/

testing/ui-testing/index.html, accessed: Nov 1, 2016
3. Calabash. project homepage, http://calaba.sh, accessed: Nov 1, 2016
4. Jemmy framework. project homepage, https://jemmy.java.net/, accessed: Nov

20, 2016
5. Microsoft ui automation, https://msdn.microsoft.com/en-us/library/

windows/desktop/ee684009.aspx, accessed: Nov 1, 2016
6. World of tennis. project homepage, http://worldoftennis.com/, accessed: Nov

20, 2016
7. Beck, K.: Test Driven Development: By Example. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA (2002)
8. Bradski, G., Kaehler, A.: Learning OpenCV: Computer vision with the OpenCV

library. ” O’Reilly Media, Inc.” (2008)
9. Dalheimer, M.: Programming with Qt: Writing Portable GUI Applications on Unix

and Win32, 2nd Ed. O’Reilly Media (2002)
10. Duvall, P., Matyas, S., Glover, A.: Continuous integration: improving software

quality and reducing risk (2007)
11. Hans, M.: Appium Essentials. PACKT (2015), https://www.packtpub.com/

application-development/appium-essentials/

12. Helppi, V.V.: Using opencv and akaze for mobile app
and game testing (January 2016), http://bitbar.com/

using-opencv-and-akaze-for-mobile-app-and-game-testing, accessed: Nov 2,
2016



12 Maxim Mozgovoy and Evgeny Pyshkin

13. Kazmierczak, S.: Appium with image recognition (February 2016), https:

//medium.com/@SimonKaz/appium-with-image-recognition-17a92abaa23d\#.

oez2f6hnh, accessed: Nov 2, 2016
14. Mahalingam, M.: Learning Continuous Integration with TeamCity. Packt Publish-

ing Ltd (2014)
15. McConnell, S.: Daily build and smoke test. IEEE software 13(4), 144 (1996)
16. Meszaros, G.: xUnit test patterns: Refactoring test code. Pearson Education (2007)
17. Mozgovoy, M., Purgina, M., Umarov, I.: Believable self-learning ai for world of

tennis. In: Proceedings of the IEEE Conference on Computational Intelligence in
Games (CIG 2016). pp. 247–253. IEEE, IEEE (Sep 2016)

18. North, D.: Behavior modification: The evolution of behavior-driven development.
Better Software 8(3) (2006)

19. Umarov, I., Mozgovoy, M.: Creating believable and effective ai agents for games and
simulations: Reviews and case study. Contemporary Advancements in Information
Technology Development in Dynamic Environments pp. 33–57 (2014)

20. Wong, F., Chao, S., Chan, W.K., Li, Y.P.: Recognition of chinese character in
snapshot translation system. In: Audio Language and Image Processing (ICALIP),
2010 International Conference on. pp. 821–825. IEEE (2010)


