
Using Image Recognition for Testing Hand-drawn Graphic User Interfaces 

Improving Mobile Game GUI Tests with OpenCV Pattern Matching Methods  

Maxim Mozgovoy, Evgeny Pyshkin 

School of Computer Science and Engineering, Division of Information Systems 

University of Aizu 

Aizu-Wakamatsu, Japan 

E-mail:{mozgovoy, pyshe}@u-aizu.ac.jp 

 

 
Abstract—This paper discusses the use of image recognition for 

constructing automated GUI tests for the applications with 

hand-drawn user interface components, such as mobile games. 

Specifically, this contribution addresses the use of OpenCV 

pattern matching algorithms and the choice of most 

appropriate combinations of methods for GUI testing of the 

upcoming Unity-based mobile game “World of Tennis: 

Roaring 20’s”. Our idea is to classify UI elements (including 

buttons, game control elements, static and movable objects) 

with respect to their appearance in different type of scenes 

present in the game, as well as to find pattern recognition 

methods providing the best similarity values to increase UI 

element recognition quality. 

Keywords-software testing; GUI; image recognition; 

similarity; mobile game. 

I.  INTRODUCTION 

Human-centric systems and the systems based on human-
computer interaction (HCI) technologies are substantially 
multidisciplinary [1]. Through the prospective of the HCI 
interdisciplinary analysis, we make the observation that 
models and methods originally developed in one research 
area (not necessarily “human-centric”) are often transferred 
and applied to a completely new distinct application domain 
[2]. In this work, we make an effort to examine a good 
example of such a transdisciplinary connection, which is a 
nontrivial case of using image recognition algorithms for 
improving software non-native graphic user interface (GUI) 
testing automation process. Mobile game development is a 
particular area where such an approach can be useful. 

Indeed, in mobile games (such as ongoing project “World 
of Tennis: Roaring 20’s” where we are involved in [3] (see 
Figure 1)), GUI is often designed with using hand-drawn 
components. It makes difficult developing standard 
automated GUI tests and basic functional smoke tests since 
all screen elements are in fact plain graphical images, in 
contrast to “classic” native GUI control elements that we can 
easily access programmatically nearly in the same way as 
users do, in test scripts [4]. Furthermore, non-native GUI 
elements can change their position on the screen and might 
look differently on different devices with different 
resolution. 

The paper has the following structure. In Section II we 
describe our approach in general. Section III describes how 
the experiments were organized. In Section IV we examine a 

number of problems to be resolved while implementing test 
scripts using pattern recognition methods. In Section V we 
briefly summarize the current state of this project and 
introduce the primary tasks for future work. 

II. APPROACH 

In our previous work, we demonstrated that identifying 
objects of interest on the screen (such as GUI elements or 
game characters) could not be completely reduced to the task 
of perfect matching of a bitmap image inside a screenshot 
[5]. There are several reasons: 

 Onscreen objects may be rendered differently for 
different GPU/rendering quality cases; 

 Screens vary in dimensions, so patterns might need 
scaling; 

 Onscreen objects often intersect with each other, so 
it happens that one object hides another one or can 
be distorted because of such an interaction. 
 

 

Figure 1.  Actual screen of the “World of Tennis: Roaring 20’s” mobile 

game. 

Thus, the most straightforward way is to rely on 
approximate pattern matching. There are several tutorials 
where an idea of using image matching in creating test 
scripts is discussed [6][7]. OpenCV library [8] provides a 
number of methods for pattern recognition and can serve as a 
typical tool used for searching and finding the occurrences of 
the given pattern in a larger image. Basic OpenCV pattern 
matching methods can be accessed by using 
matchTemplate() function with a parameter defining a 
specific method among the variety of supported pattern 
matching methods [9][10]: 



 
1. CV_TM_SQDIFF: square difference matching 

minimizing the squared difference between the 
pattern and the image area; 

2. CV_TM_SQDIFF_NORMED: normalized version 
of the square difference matching (normalized 
methods are typically used when the effects of 
lightning difference between a pattern and an image 
should be reduced [10]); 

3. CV_TM_CCORR: correlation matching method 
multiplicatively matching a template against the 
image and then maximizing the matched area;  

4. CV_TM_CCORR_NORMED: normalized version 
of the correlation matching method; 

5. CV_TM_CCOEFF: correlation coefficient matching 
method that matches a template against the image 
relative to their means and generates a matching 
score ranging from –1 (complete mismatch) to 1 
(perfect match); and 

6. CV_TM_CCOEFF_NORMED: normalized version 
of the correlation coefficient matching method. 

 
As we know from different sources (such as [11]) the 

matchTemplate() function slides a template over the given 
area and computes similarity value in a range of [0..1] for 
each pixel location, thus maximizing pattern matching 
similarity. The function yields the best value as the final 
recognition similarity, so we are able to analyze the result 
from the viewpoint of GUI elements recognition quality. 

An automated test consists of the following steps: 

 Take a game screenshot (which is relatively time-
consuming process that might take up to several 
seconds depending on a target mobile device);  

 Detect the presence of a certain GUI element (using 
image recognition); 

 React properly; 

 Check the expected application behavior or program 
state; and 

 Repeat the process.  

III. FIRST EXPERIMENTS 

For the first implementation of test scripts, we used 
matchTemplate() function and the pattern matching method 
TM_CCOEFF_NORMED. After experimenting with a 
number of test scripts, we realized that pattern matching 
reliability significantly depends on a recognition task. For 
example, simple button-like GUI elements (buttons, menus, 
tabs) can be recognized with high degree of similarity 
(0.90..0.98), according to OpenCV reports. Similarity score 
decreases to (0.63..0.65) for certain elements interfering with 
the background like menu item placed against the sky with 
moving clouds. This makes perfect template matching 
impossible in principle. Worse similarity values might occur 
even for the objects that are not graphically complex, but 
contain patterns distorted during rescaling: Figure 2 shows 
an example of low similarity score achieved for a simple edit 
box component. 

 

Figure 2.  Template matching similarity varies for different UI elements. 

 

Figure 3.  Similary scores might differ depending on the device. 



Even in the simplest cases, the similarity scores might 
differ depending on the device where the code is running. As 
Figure 3 illustrates, the scores for OK button range from 0.94 
to 0.99 for different devices even if there is no any 
recognition complication such as “bad” background, 
surrounding or changing objects, etc. (apparently due to 
different screen resolutions and screen image scaling 
distortions). Table I summarizes this experiment. 

TABLE I.  EXPERIMENTING WITH OK BUTTON 

Case 
Description of the test case 

Device Screen  Tap size Similarity 

Figure 3 
(a) 

Xiaomi Redmi 
Note 3 Pro 

1920x1080 1920x1080 0.99 

Figure 3 

(b) 
iPad Air 2046x1536 1024x768 0.95 

Figure 3 

(c) 

Doogee X5 Max 

Pro 
1280x720 1280x720 0.94 

 
There are also false positive cases, when the pattern 

matching algorithm detects the presence of a certain UI 
element, actually not shown on the screen. 

Typically, such a false positive case might happen if 
some similar-looking graphical elements are confused with 
each other, especially when there are surrounding moving 
objects or complex background. One way to struggle with 
such cases is to try to match larger regions in order to include 
more context to a search request. For example, in the “World 
of Tennis: Roaring 20’s”, the Skip button is always placed 
next to a checkbox, so we can try to match the whole 
button/checkbox region. If there are several possible 
candidate elements, we can naturally report one having the 
highest similarity ratio with its identified match. 

In principle, for test engineers, there is no much 
importance in achieving high similarity scores: we do not 
have to know whether a GUI element exists on the screen or 
not. We know that it exists. However, we believe that 
improving GUI element recognition will definitely facilitate 
the process of writing reliable application tests.  

IV. PROBLEM STATEMENT 

In matter terms, we face a purely interdisciplinary 
problem: the procedures for non-native GUI based software 
testing automation require the combined use of several 
technologies including traditional automated feature tests, 
functional testing frameworks, information retrieval, and 
image recognition.  

As it follows from the observations mentioned in 
Section III, an important problem is to find optimal 
parameters of image recognition algorithms to maximize 
GUI elements recognition reliability, and therefore, to 
decrease the number of automated tests that might fail, not 
because of the software bugs, but due to the UI elements 
recognition defects. 

There is a number of issues deserving particular 
attention. A typical problem in the process of initiating 
interaction between a testing framework and a fullscreen 
mobile application is to detect whether the device screen is 
upside down (it happens sometimes, and is not always 

detected correctly without pattern matching). For example, 
the first screen visible to the user of the “World of Tennis: 
Roaring 20’s” is a “club view”, so we can take some 
fragments of clubs and try to find them in the screenshots. 
Examples of club view elements are presented in Figure 4. 
We can also try to search the rotated fragments in order to 
diagnose that the screen is not in the position required for 
testing. Preliminary experiments show that, for such a 
problem, false positive cases might be a significant issue.  

 

 

Figure 4.  Club view template examples that can be used for checking 

screen orientation. 

 

Figure 5.  Standard UI controls: buttons, tabs, static images. 

Even with relatively simple buttons (like those presented 
in Figure 5) there could be some problems: 

a) Sometimes the game designers slightly change the 
buttons (in order to beautify them, make them 
slightly larger or smaller, change fonts, colors, etc.); 

b) Sometimes buttons might be disabled, and the test 
scripts should be accurate enough to discern enabled 
and disabled buttons; 

c) Sometimes there could be additional elements shown 
next to the button captions. 

The challenge is to make sure that we still can match 
changing buttons in (a) and (c), but be able to distinguish 
them in (b).  

There are also numerous moving objects on the screen. 
Suppose the test script needs to press on the character’s head 
in the pictures shown in Figure 6. An animated head might 
make a perfect match difficult not only because of changes in 
object view itself, but also because of possible changes in the 
adjacent screen area (e.g., an airplane appeared in the sky, in 



our case). Hence, it might be required to work with a set of 
different images related to the same UI element and to 
perform a matching process for all of them. We have to 
consider a possibility to work with a larger region providing 
necessary context to avoid false positive recognition results.  

 

 

Figure 6.  Moving objects: the object view changes and the surrounding 

area might change as well. 

Our hypothesis is that experimenting with different 
pattern matching algorithms will allows us to provide a 
number of recommendation for test script developers. These 
recommendations will provide hints, which algorithms are 
better to use in which test contexts. 

V. CONCLUSIONS AND FUTURE WORK 

Let us note that image recognition algorithms are rarely 
discussed within the scope of software testing, so we believe 
that advancing and improving the quality of the proposed 
approach will provide a feasible solution to be used as a part 
of integration pipeline in software development and testing. 
The special focus of this approach is on developing mobile 

applications (including mobile games) characterized by the 
presence of hand-drawn or non-native GUI components (for 
example, applications developed with Unity). 

Our primary task is to arrange a number of experiments 
with real UI elements of different kind, real game screens of 
different size and resolutions and integrated with the tests 
running on real devices. 

A big variety of UI components designed for the “World 
of Tennis: Roaring 20’s” allows us to classify them in a 
number of classes including the following UI types:  

 Button-like elements: buttons, edit boxes or similar; 

 Static images: player portraits, field, etc.; 

 Dynamic objects: moving player figures or similar. 
We have to run pattern-matching algorithms for 

significantly different usage contexts: for example, in player 
settings window, club selection window, game selection 
window, ongoing game window, etc. We expect that for 
every combination (algorithm, UI element, usage context), 
the reported similarity values could give us better 
understanding how to improve the quality of test scripts and, 
therefore, how to make the next steps toward building a 
testing automation framework for mobile applications based 
on hand-drawn or non-native GUI components.  

REFERENCES 

[1] H. R. Hartson, “Human–computer interaction: 
Interdisciplinary roots and trends,” Journal of Systems and 
Software, 1998 Nov 30, vol. 43(2), pp/ 103-118. 

[2] E. Pyshkin, “Designing Human-Centric Applications: 
Transdisciplinary Connections by Examples,” In Proc. of 
2017 3rd IEEE International Conference on Cybernetics 
(CYBCONF), Exeter, UK, Jun 21-23, 2017, pp. 455-460. 

[3] “World of tennis. project homepage,” accessed: Jul 10, 2017. 
[Online]. Available: http://worldoftennis.com/. 

[4] “Automating user interface tests,” accessed: Jul 7, 2017. 
[Online]. Available:https://developer.android.com/training/ 
testing/ui-testing /index.html. 

[5] M. Mozgovoy and E. Pyshkin, “Unity application testing 
automation with appium and image recognition,” in Tools and 
Methods of Program Analysis (TMPA-2017), 3rd 
International Conference on, 2017, in press. 

[6] V. V. Helppi, “Using opencv and akaze for mobile app and 
game testing,” (January 2016), accessed: Jul 7, 2017. 
[Online]. Available: http://bitbar.com/using-opencv-and-
akaze-for-mobile-app-and-game-testing. 

[7] S. Kazmierczak, “Appium with image recognition,” (February 
2016), accessed: Jul 7, 2017. [Online]. Available: 
https://medium.com/@SimonKaz/appium-with-image-
recognition-17a92abaa23d\#.oez2f6hnh. 

[8] “OpenCV Library,” accessed: Jul 8, 2017. [Online]. 
Available: http://opencv.org/. 

[9] “OpenCV: Template Matching, accessed: Jul 8, 2017. 
[Online]. 
Available:”http://docs.opencv.org/master/de/da9/tutorial_tem
plate_matching.html. 

[10] G. Bradski and A. Kaehler, “Learning OpenCV: Computer 
vision with the OpenCV library,” O’Reilly Media, Inc., 2008. 

[11] R. Laganière, “OpenCV Computer Vision Application 
Programming Cookbook,” 2nd ed., Packt Publishing, 2014. 

 


