
Visualizing Sentence Parse Trees with

WordBricks

Marina Purgina

Maxim Mozgovoy

The University of Aizu

Tsuruga, Ikki-machi, Aizuwakamatsu,

Fukushima, Japan

+0242-37-2664

{d8172102, mozgovoy}@u-aizu.ac.jp

Abstract—We address the task of visualizing machine-

readable natural language parser output in a graphical

form, convenient for users. While there are numerous

available tools implementing similar functionality, their

resulting diagrams are typically aimed at language

specialists, and are arguably difficult to understand for

inexperienced second language learners. In contrast,

our system uses a specialized language learning system

(WordBricks) as a visualization module, and is

deliberately designed to help language learners to

understand the structure of natural language sentences.

We hope that the resulting software tool (available for

the Android mobile platform) will be beneficial for

regular use in a variety of language learning scenarios.

Keywords—natural language processing; mobile-

assisted language learning; syntactic parsing;

visualization.

I. INTRODUCTION

Typically, natural language processing (NLP)
tools provide machine-readable output, not suitable
for subsequent manual analysis. Therefore, the task of
visualizing structured linguistic information for the
convenience of a user is widely discussed in literature
[1, 2]. Linguistic visualizations help to understand
language data and interact with it, and serve as an aid
in explaining language phenomena [21]. One of the
important subtasks of visualization in NLP is
graphical representation of the output generated by
language parsers. This problem is addressed in a
number of research projects [3–5].

However, it seems that these efforts are by large
ignored in language education. Most practical
textbooks describe sentence structure with informal
diagrams or plain-text explanations. Only relatively
advanced books that are specifically dedicated to
language syntax (such as [6]) provide sentence trees in
the form typically used in theoretical linguistics.

We believe that visual explanations of linguistic
structures can be helpful for a learner. At least, some
authors indeed employ informal diagrams to describe
certain language phenomena, and pictures/visual aids
in general are widely used, and considered as efficient
teaching materials [7–9]. Unfortunately, common
types of sentence structure diagrams require certain

effort and experience to be understood by the learners.
In principle, these diagrams were not designed to be
teaching aids, being primarily targeted at professional
linguists.

We see two main issues with traditional parse tree
diagrams, causing difficulties for beginners: (a)
diagrams do not preserve word order in the original
sentences; and/or (b) diagrams are cluttered with
arrows and auxiliary captions (see Fig. 1).

Our aim is to remedy the situation by substituting
standard parse trees with simplified block diagrams
that preserve most linguistic information. The
proposed representation keeps original linear structure
of sentences and uses shapes and colors instead of
additional visual elements to reduce the amount of
onscreen elements (see Fig. 2). We are assuming that
preserving linear structure of the sentences should
really support the learning process and give the
learners better understanding of sentence structure. In
particular, the learner is still able to see the sentences
in their natural form while understanding its structure
and inter-word relationships. “Linearization” is an
important property that is sometimes stated as a
deliberate design goal of a sentence structure
diagram [3].

Figure 1. Parse trees obtained with
AT&T GraphViz (above) [11] and ZPAR (below) [4].

This approach for representing parse trees is
implemented in our earlier system WordBricks that is
designed as a mobile-assisted instrument for second
language learning, and thus specifically aimed at
language learners [10]. The system has been tested
and evaluated in a real classroom environment, and
demonstrated promising results. In these experiments
we used WordBricks to visualize exercises and
sentences taken from the actual textbook used by the
students. In the present work, we use WordBricks as a
visualization module that can display a user-supplied
sentence as a simplified parse diagram.

Figure 2. Example of a complete sentence in WordBricks.

Word relations in WordBricks are based on the
dependency grammar formalism [DEPENDENCY
GRAMAR]. However, we tried to design lightweight
graphical elements that can be compactly displayed on
mobile devices and be aesthetically appealing to the
users, which is important for educational software.

II. WORDBRICKS: A QUICK OVERVIEW

The main purpose of WordBricks is to let the user
to combine words and phrases into grammatically
correct constructions, exploring the possibilities of
natural language grammar. This system supports two
modes of operation. In the free mode, WordBricks lets
the user to experiment with any known words and
word combinations to check which constructions are
admissible according to natural language grammar. In
the lesson mode, WordBricks displays a set of
predefined exercises. Each exercise consists of several
disjoint bricks the user needs to combine into correct
sentences.

Preliminary evaluation of WordBriks in real
classrooms showed that the students who used
WordBricks as a study aid scored higher on the exam
tests [10]. One of the reasons of WordBricks’
efficiency as a study aid lies in its simplicity as a
presentation medium for language grammar. In its
original version, WordBricks can only display words
and constructions defined by the authors of the
exercises (technically, the exercises are stored in static
XML files).

WordBricks visualizes sentence structure with a
combination of nested colored bricks of different
shapes. Each brick is associated with a set of textual
attributes that unambiguously define the shape and the
color of a brick. A brick also contains a linear list of
child items, consisting of words and connectors. A
word is a static predefined textual element, drawn on a
brick background. Each connector is a placeholder for
a brick that forms a dependency relation with the
connector’s parent brick. Like bricks, connectors are
associated with textual attributes that define their
shapes. From the technical point of view, the classes

for bricks and connectors are based on the standard
Android framework (see Fig. 3). When a brick is
inserted into a connector, the respective BrickView
object is placed on the corresponding ConnectorView
object. This operation is possible since both classes
are inherited from the standard class RelativeLayout
that can work both as a graphical element, and as a
drawing canvas holding other View objects.

 A brick can be placed inside another brick’s
connector if that connector’s attributes form a subset
of the set of brick attributes. Let us state once again
that child bricks are displayed inside the connectors of
their parents, thus the whole structure preserves the
original linear form of a sentence. When WordBricks
is used as a visualization module, it displays a static
structure of already linked bricks, corresponding to a
user-supplied sentence.

Figure 3. Class diagram of bricks visualization subsystem

Since WordBricks performs no linguistic
processing of the input data, it can be adapted to a
variety of natural languages and grammar formalisms.
This design decision also makes it easy to use
WordBricks as a visualization module for any given
sentence structure, properly encoded in compatible
XML documents. Each XML file corresponds to a
single sentence and contains three sections. Brick
descriptions section defines the attributes, words and
connectors of each brick present in the given sentence.
Sentence tree section describes the sentence parse tree
generated by the parser (it lists all the bricks with their
associated dependent elements). Colors & shapes
section is a language-specific description that maps
linguistic attributes (such as part-of-speech tags) into
brick shapes and colors. Since the present version of
the system works only with English sentences marked
with Penn treebank-styled part-of-speech tags, this

Reserve for IEEE Copyright

class BrickView

class View

class

RelativeLayout class WordView

class Attribute

class ConnectorView

class WBView

List<BrickElement> children

List<Attribute> attrs

String name

String value

String word

List<Attribute> attrs

interface

BrickElement

section remains unchanged for any user-supplied
sentence.

It should be noted that in the present form
WordBricks can visualize projective relations only
(i.e., each word and its descendants should form a
contiguous substring of the sentence). This restriction
is nearly negligible for English [12], but for languages
with flexible word order such as Czech or German the
proportion of non-projective structures in real texts
can be higher than 23-27% [13].

III. CLIENT-SERVER ARCHITECTURE OF THE PARSE

TREE VISUALIZER

WordBricks is a lightweight mobile application,
consuming little computational and memory
resources. In order to preserve these attractive
features, we decided to implement all linguistic
processing on the remote server side. Therefore, the
resulting application consists of two separate modules:
a mobile WordBricks-based GUI, and a server
backend. On startup, the application displays an input
box prompting the user to provide any arbitrary
sentence. After the user taps the OK button, the
application sends a request to the server side. The
server returns an XML document describing the
desired brick configuration to be displayed on the
screen.

The GUI module (frontend) of the system is an
Android application, written in Java language. The
server side (backend) is a Python CGI script,
accessible via HTTP interface (see Fig. 4). Most of
linguistic processing is performed in external
executable modules, invoked by the CGI script.

The backend has to perform a number of
operations, transforming the input sentence into a tree
structure. They are invoked in the following order.

1. Tokenization. The input sentence is divided
into a number of tokens, corresponding to individual
words and punctuation marks of the sentence.
Tokenization treats contracted constructions as
separate tokens. For example, the sequences you’ll

and don’t are tokenized as you|’ll and do|n’t
respectively.

2. Part of speech (POS) tagging. The tokenized
sentence is marked with Penn Treebank-style part-of-
speech tags [14]. The tagger relies on the maxent

toolkit [15] that implements maximum entropy
modeling technique [16]. The tagger was trained on
the manually annotated part of Open American
National Corpus [17]. In our cross-validation
experiments the tagger exhibited 96.40% accuracy,
comparable to the state of the art.

3. Syntactic parsing. The sequence of tagged
tokens is passed to the dependency parser that
converts the input into a collection of dependency
trees, providing results as a CoNLL-U-formatted text
document [18]. Our parser is based on the source code
of Layer-Based Dependency Parser LDPar [19]. The
parser was trained on the WSJ section of Penn
Treebank [20]. The resulting accuracy can be
considered as acceptable: 84.54% for unlabeled, and
83.28% for labeled parsing.

4. XML generation. The final processing stage
involves conversion of the CoNLL-U data into the
XML document supported by WordBricks. Since
CoNLL-U format contains all required information
(word boundaries, part-of-speech tags, and labeled
syntactic dependencies), this operation is relatively
straightforward, and is performed by the main CGI
script.

IV. CONCLUSION

The task of visualizing the output of NLP tools,
and a natural language parser in particular, is a subject
of numerous research projects. Our approach to
display parse trees is powered with a custom
visualization module, based on WordBricks system.
The proposed solution possesses a number of
attractive features. It works on a mobile platform, and
thus can serve as a module of a mobile language
learning software system. It generates diagrams that
are easy to understand for beginner-level language
learners. The diagrams are very compact, and can be
shown on a relatively small smartphone screen. All
computationally expensive operations are performed
on a server, so the application remains lightweight,
and does not require hi-end devices to operate. We
hope the system will be useful both to the specialists
in natural language processing and foreign language
learners.

REFERENCES

[1] M. Munezero, C. S. Montero, M. Mozgovoy, and E.
Sutinen, “EmoTwitter – A Fine-Grained Visualization
System for Identifying Enduring Sentiments in Tweets,” in
International Conference on Intelligent Text Processing
and Computational Linguistics, 2015, pp. 78–91.

[2] C. Collins, S. Carpendale, and G. Penn, “Docuburst:
Visualizing document content using language structure,” in
Computer graphics forum, 2009, pp. 1039–1046.

[3] C. Culy, V. Lyding, and H. Dittmann, “Visualizing
Dependency Structures,” in Conference of the German
Society for Computational Linguistics and Language
Technology (GSCL), 2011, pp. 81–86.

[4] I. Ortiz, M. Ballesteros, and Y. Zhang, “ViZPar: A GUI for
ZPar with Manual Feature Selection,” Procesamiento del
Lenguaje Natural, vol. 53, pp. 181–184, 2014.

[5] M. Ballesteros and R. Carlini, “MaltDiver: A Transition-
Based Parser Visualizer,” in 6th International Joint
Conference on Natural Language Processing, 2013, pp.
25–28.

[6] A. Radford, An introduction to English sentence structure:
Cambridge University Press, 2009.

Figure 4. Architecture of the system.

[7] M. Akhlaghi and G. Zareian, “The Effect of PowerPoint
Presentation on Grammar and Vocabulary Learning of
Iranian Pre-University EFL Learners,” Academic Research
International, vol. 6, no. 1, pp. 160–165, 2015.

[8] I. Çakir, “Instructional Materials Commonly Employed by
Foreign Language Teachers at Elementary Schools,”
International Electronic Journal of Elementary Education,
vol. 8, no. 1, pp. 69–82, 2015.

[9] P. Krčelić and A. S. Matijević, “A Picture and a Thousand
Words: Visual Tools in ELT,” in 8th International
Language Conference on the Importance of Learning
Professional Foreign Languages for Communication,
2015.

[10] M. Park, M. Purgina, and M. Mozgovoy, “Learning
English Grammar with WordBricks: Classroom
Experience,” in Proceecings of the 2016 IEEE
International Conference on Teaching and Learning in
Education, 2016.

[11] M. Mozgovoy, “Grammar checking with dependency
parsing: a possible extension for LanguageTool,”
Informatica, vol. 35, no. 4, 2011.

[12] R. McDonald, F. Pereira, K. Ribarov, and J. Hajič, “Non-
projective dependency parsing using spanning tree
algorithms,” in Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural
Language Processing, 2005, pp. 523–530.

[13] J. Havelka, “Beyond projectivity: Multilingual evaluation
of constraints and measures on non-projective structures,”
in 45th Annual Meeting of the Association of
Computational Linguistics, 2007, pp. 608–615.

[14] B. Santorini, “Part-of-speech tagging guidelines for the
Penn Treebank Project (3rd revision),” Technical Reports
(CIS), Paper 570, University of Pennsylvania, Department
of Computer and Information Science, 1990.

[15] Z. Le, “Maximum entropy modeling toolkit for Python and
C++,” Natural Language Processing Lab, Northeastern
University, China, 2004.

[16] A. L. Berger, Pietra, Vincent J Della, and Pietra, Stephen A
Della, “A maximum entropy approach to natural language
processing,” Computational linguistics, vol. 22, no. 1, pp.
39–71, 1996.

[17] N. Ide, C. Baker, C. Fellbaum, and C. Fillmore, “MASC:
The manually annotated sub-corpus of American English,”
in In Proceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC), 2008.

[18] J. Nivre, CoNLL-U Format. Available:
http://universaldependencies.org/format.html.

[19] P. Jian and C. Zong, “Layer-Based Dependency Parsing,”
in PACLIC, 2009, pp. 230–239.

[20] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini,
“Building a large annotated corpus of English: The Penn
Treebank,” Computational linguistics, vol. 19, no. 2, pp.
313–330, 1993.

[21] V. Lyding, C. Culy, "Visualizing linguistic data: from
principles to toolkits for doing it yourself", AVML
Conference, 2012.

