
4th International Conference and Workshops on Recent Advances and Innovations in Engineering, 27-29 November 2019

(IEEE Conference Record # 47735)

978-1-7281-2610-4/19/$31.00 ©2019 IEEE

Multiplatform Automated Software Testing:

Personal Experience of a Maintainer
Maxim Mozgovoy

Active Knowledge Engineering Lab

The University of Aizu

Aizuwakamatsu, Fukushima, Japan

mozgovoy@u-aizu.ac.jp

Abstract—Automated testing is an essential part of modern

software development pipeline. The extent of functionality to be

tested varies a lot from project to project, but at least some basic

testing capabilities are built into many current development

instruments, and automated testing practices are encouraged in

most guidelines. The goal of this paper is to share some personal

experience with automated smoke testing of a cross-platform

game application. Unlike works dedicated to the general picture

of testing tools and practices, this paper focuses on specific

details and challenges associated with setting up and

maintenance of day-to-day automated testing activities.

Keywords—quality assurance, automated testing, smoke

testing, agile development

I. INTRODUCTION

Testing is an integral part of software development
pipeline. Various types strategies of testing have been
discussed in literature at least from late 1960s [1]. However,
the practice of continuous automated testing as a part of daily
routine, and recognition of testing code as a part of project’s
codebase gained momentum much later, and is usually
associated with the “rediscovery” of test-driven development
by Kent Beck [2].

Daily testing, like other agile development practices, is
much easier to adopt with the support of specialized tools. For
example, one may argue that while it is not overly difficult to
setup a simple automated build server, the emergence of out-
of-the-box systems like Jenkins or TeamCity has greatly
contributed to the popularity of continuous integration
practices. Gradually, typical testing scenarios also received
external support — initially with testing frameworks like
xUnit, and later at the level of major development
environments (such as Visual Studio and IntelliJ IDEA) and
automated build systems.

 However, most readily available functionality is designed
to support mostly low-level unit testing, while setting up
testing of larger software components (integration testing)
still requires much effort from the developers. This is not
surprising, since integration tests are more project-specific,
and it is harder to provide a truly universal testing framework.

Still, the last two decades were marked with the
appearance of tools aimed to assist integration testing. For
example, the process of testing of a website functionality can
be greatly simplified with the use of Selenium WebDriver [3].
Thus, the task of setting up automated integration tests is
perhaps less daunting nowadays than ever.

The author of the present paper has first-hand experience
of setting up and maintaining an integration testing

scaffolding for a mobile game project. The general overview
of the system we designed and certain specific challenges we
had to overcome are discussed in our previous works [4–6].
Here I want to focus mostly on the issue of hidden costs, i.e.,
on technical issues we faced while setting up the testing
framework, and on regular maintenance activities, necessary
for its smooth operation.

Such topics are rarely discussed in literature. They are
often considered as “technicalities” not related directly to
central ideas of proper testing organization. Still, it is useful to
know potential issues that might appear in a project similar to
ours and be prepared to address them. Admittedly, discussion
of purely technical issues is like shooting at moving targets:
many of them quickly become irrelevant as technologies grow
mature. However, we can observe recurrent patterns in these
issues, indicating potentially problematic areas.

Automated testing framework has become an essential
component of our software development pipeline, so for us the
benefits associated with autotesting outweigh the cost of
efforts necessary to fine tune the system and keep it running.

II. FROM UNIT TESTING TO SMOKE TESTING

Testing strategy is one of the major topics to be clarified
during project preparation. Naturally, under ideal conditions
one might implement a procedure encompassing a wide range
of automated and manual tests, ensuring conformance of the
system as a whole and its individual components to specified
criteria. In practice, however, certain tradeoffs are inevitable.

Agile development practices often emphasize the role of
unit tests, designed to check individual functions and classes.
Unit tests are typically automated and integrated into a
continuous delivery pipeline. However, opinions on unit
testing are divided. Some experts like Robert Martin see test-
driven development (based on unit testing) as a strong
methodology for producing “clean, flexible code that
works” [7]. Others, like James Coplien, who calls most unit
testing “waste” [8], are more skeptical.

Without going into the arguments of both parties, it is easy
to observe that different personal experiences of professional
developers are often caused by different nature of code under
testing. In particular, Coplien admits that unit testing can be a
sound strategy for procedural rather than object-oriented
programs. An interesting attempt to divide code according to
its “unit-testability” was made by Sanderson [9]. He divided
code into four groups (see Table 1) with different costs and
benefits of unit testing.

Smoke tests are often named as the most important tests to
write, especially in case of severe time and cost pressure [10–

12]. While basic smoke tests merely run the application and
check whether the main screen shows up as expected [12],
they can (and probably should) evolve into much more
complex combination of core system functionality checks.

TABLE I. “UNIT-TESTABILITY” OF CODE

Costs and benefits of

unit testing

Costs

Low High

Benefits

Low Trivial code Coordinators

High Algorithms
Overcomplicated

code

In our case, investing efforts into smoke testing turned out
to be a very effective strategy. Smooth operation of a
multiplatform online mobile game requires coordination of
many distinct subsystems, responsible for backend
communication, physics, animation, user interface and so on,
and even minor flaws in any of them cause severe
malfunctions, easily observable in simple test scenarios.

III. BASIC SETUP OF THE SMOKE TESTING SCAFFOLDING

Our testing infrastructure is based on Appium test
automation framework1. Appium uses Selenium WebDriver
API to provide uniform application testing capabilities for a
number of platforms, currently including Android, iOS,
Windows and Mac OS. Basic Appium setup consists of three
components:

• a target device actually running the software under testing;

• a test runner device executing user-supplied test scripts;

• a test server, running Appium software and serving as a
bridge between the test runner and the target device.

These components do not necessarily have to be installed
on separate devices. For example, in case of Windows desktop
applications testing, a single Windows machine can serve as a
host for all three components. However, in case of mobile app
testing, at least one mobile and one desktop device are needed.
Furthermore, iOS automation is only possible with a MacOS-
running desktop device.

Appium can be set up for operation in a hub/grid mode,
where a special load balancer component chooses
automatically the target device for running the next test script.
However, for the sake of simplicity and higher fault tolerance
we decided to run independent instances of a test server and a
test runner processes for each target device. Thus, in our case,
each new version of our game produced by the automated
build server is tested on the device i by an independent
combination

 test-runneri test-serveri target-devicei

Software components are hosted on three physical devices:

• a Windows machine hosting all test runner processes;

• a Mac machine hosting test server instances corresponding
to iOS devices;

• a Windows machine hosting test server instances
corresponding to Android devices and simultaneously
acting as a test server and a target device for the Windows
version of our app.

It must be noted that Appium provides only the capability
to execute a certain single test script on a certain connected

1 https://appium.io

target device. It is developer’s responsibility to integrate this
functionality into the production pipeline, which might require
considerable work. In our case, the resulting smoke testing
system is able, in particular, to:

• retrieve fresh builds from the automated build server;

• run test suites;

• repeat tests failed due to target platform failures;

• generate detailed test reports.

I believe that a large part of this functionality can be
implemented within a project-independent framework.
However, to the best of my knowledge, there is no such
framework available yet. Probably, the closest relevant project
is Smartphone Test Farm 2 that provides remote control
functionality for Android devices.

IV. POWERING A DEVICE FARM

While it is possible to connect Appium to target devices
via Wi-Fi, the only stable and officially supported method
requires a physical cable connection. Thus, for connecting a
potentially large number of mobile devices to a single machine
a USB hub will be required.

Running tests inevitably drains mobile devices’ batteries,
and the power supply is available only via the USB hub used.
Conventional USB hubs on the market can be classified into
“passive” (or bus-powered) and “active” (self-powered).

Passive hubs usually have few (3-4) USB ports and no
dedicated power adaptor. In this case, power is supplied by the
host machine and essentially shared between the connected
mobile devices. Since a data USB 3.0 port of a computer can
supply at most 900mA power current [13] (sec. 9.2.5.1),
mobile devices will eventually discharge under heavy use
(typical chargers supplied with mobile devices provide 1.0-
2.5A output current).

Active hubs solve this problem by relying on external
power supply. Unfortunately, most externally-powered hubs
are not designed to provide simultaneous fast charging and
data transfer capabilities. From our experience, it is very likely
that a randomly chosen externally-powered USB hub will not
be suitable for a mobile device farm. After a number of trials,
we opted for Plugable 7-port charging hubs. At least for the
mobile devices we use, they provide enough charging power
to keep the batteries full during tests.

Even if hubs provide sufficient power, certain mobile
devices might not be able to use it. This issue is not very
common, especially for recently released phones and tablets,
but we had experienced it twice: iPad 3 was unable to use full
hub charging capability (so long-running tests often ended
with a device shutdown), and Samsung Galaxy Tab E refused
to charge from any data transfer-enabled USB port.

V. OTHER HARDWARE ISSUES

Conventional mobile devices are not designed to stay
powered and run tests constantly. Thus, we expected to
encounter certain hardware failures. Surprisingly, most
devices so far exhibited almost no issues related to their
hardware. We had to remove only one device, Nexus 7, due to
a hardware failure (exhibited as sporadic shutdowns).
However, being constantly connected to a power source is an

2 https://openstf.io

issue for some devices. We experience regular battery
swelling on phones of Xiaomi and Doogee brands, and have
to replace the batteries every 7-9 months. Minor battery
swelling is also visible on iPad Mini 2. Most probably,
swelling in our case should be attributed to overcharging and
lack of cooling [14], but the differences between devices
working under the same conditions is remarkable.

VI. CHOOSING DEVICES

It is hardly reasonable for a small company to setup a
device farm with a large number of devices. Additional
devices increase overall costs without providing clear extra
benefits. Thus, we decided keep the total number of devices in
the farm under ten, and focus on diversity of their specs.

Our rationale for installing a particular selection of devices
was based on several considerations:

• There is no need to install devices already in possession of
our developers or testers.

• We should include devices with the lowest specs satisfying
the minimal hardware requirements for the product. It
would give us a chance to identify inadequate performance
and out-of-memory errors early.

• Different versions of mobile OSes should be present.

• A variety of screen resolutions, CPUs and GPUs should be
tested.

It is quite difficult to satisfy all these requirements given
the abundance of different devices, especially in case of
Android platform. However, there are much fewer mobile
chipsets (CPU/GPU combinations) available on the market, as
many different devices are built on top of the same chipset.
Furthermore, it seems that the fragmentation is decreasing
over time: for example, all major vendors are now retiring 32-
bit architectures and non-ARM processors.

Thus, our strategy was to shortlist the most popular
devices on the market and to make sure the game runs
smoothly on them. We also identified the lowest-performing
chipsets (according to publicly available benchmarks3), used
in certain specific devices we wanted to support, and obtained
them for the farm.

VII. MOBILE OS-SPECIFIC ISSUES

Many device failures, leading to false negative test reports,
are caused by specific quirks of particular operating systems.
We had no OS-related issues with the Windows desktop target
platform, but mobile OSes required additional attention.

A. Notes on iOS Testing

Apple-produced iOS-based devices aim to provide
uniform user experience, so we encountered no device-
specific problems so far. The only exception is related to a
certain issue in 32-bit iOS versions that caused failures in
long-running tests until a device is restarted. However, since
all 32-bit devices are now considered obsolete by Apple, this
problem is not relevant anymore.

The most persistent recurring issue is caused by Apple’s
insistence on regular updates. Each time the next OS update is
available, an iOS device shows the update confirmation

3 Such as

https://benchmarks.ul.com/compare/best-smartphones

dialog, blocking all incoming connections. Thus, a device
with this dialog active will not respond to Appium server’s
requests until the user confirms the update or chooses “Later”
option, causing the dialog to reappear later.

Turning on silent automatic updates for iOS might not be
the best strategy, as new iOS versions sometimes break
compatibility with Appium, and it often takes some time for
the Appium team to catch up with these changes 4 . Thus,
currently we opt for manual iOS updates, and install them only
after Appium compatibility is confirmed. Another strategy
would be to block automated updates completely. There is no
official way to do it, but certain methods still exist. Perhaps,
the easiest and most reliable one is to block all incoming
traffic from Apple servers on the wireless router providing
internet connectivity to iOS devices in the farm.

Comparing to Android platform, Appium/iOS interface is
considerably harder to configure. In case of Android, Appium
relies on Google-provided tool adb for automation. For iOS,

a large collection of independent tools is used, and their
configuration issues might be hard to resolve. In addition,
software certificates, required to run apps on iOS platform,
must be set up properly and updated when necessary.

It is also important to note that on iOS platform the testing
framework is allowed to control only the application under
testing, rather than access the user interface of the target
device. It means that on iOS the tests cannot interact with
system dialog boxes and change device settings (for instance,
it is not possible to turn internet connection on and off to check
how the application reacts to the loss of signal).

B. Notes on Android Testing

Android OS versions come in a large variety, but
automation interface is very stable. The default Appium
Android automation backend supports any mobile OS
compatible with Android 4.4 or later. Android setup is
relatively straightforward, and most issues we faced are
device- rather than OS-specific.

One problem experienced on a large variety of devices is
caused by unlimited growth of user data associated with
Appium cache and/or com.android.shell system app.

From the user’s perspective it is manifested as steady
consumption of available storage space until no new apps can
be installed. We solve this problem by running the following
cleaning script once a week:

adb -s <device-id>

 shell "pm clear com.android.shell"

adb -s <device-id> shell

 "rm -rf /data/local/tmp/appium_cache"

Several of our devices sometimes refuse to react to the
“unlock screen” command sent by Appium. This can be
solved by keeping the device’s screen always on (achieved
with the corresponding option in Android settings).

Some issues can be more subtle. For example, some of our
tests type a certain string into an application’s input box.
During this process, all mobile devices show a pop-up
keyboard. Some vendor-provided keyboards on Android
devices do not react properly to Appium commands, and this

4 A notable delay was caused by a substitution of Apple’s

UI Automation framework with XCTest in iOS 10.

test ends with a failure. On such devices we had to install a
third-party onscreen keyboard, compatible with our tests.

VIII. APPIUM MAINTENANCE AND TEST SCRIPTS

Appium consists of a number of loosely connected and
independently developed components. From a QA engineer’s
perspective, the most important parts are client libraries,
allowing to write tests in different programming languages,
backends, responsible for communicating with specific
platforms, and a Node.js-backed Appium server, serving as a
bridge between test scripts and target devices. In addition,
Appium depends on a variety of 3rd-party tools, assisting
target platform automation.

While the project in general has reached a relatively stable
state, individual components might cause issues that are
sometimes difficult to investigate and overcome. For example,
for months we had experienced sporadic Appium server
crashes, presumably due to memory leaks. The problem was
eventually resolved with an update to a newer Node.js version.

At least twice we were forced to update Appium for the
sake of compatibility with a newly released iOS version.
However, it turned out that the updated Appium server was
not compatible with the newest Windows driver. Such
incompatibilities between the newest stable and especially
beta versions of Appium components, unfortunately, occur.
Several times we had to use trial-and-error to find the right
combination of versions of Appium components to achieve
desired functionality.

One should also expect that certain testing capabilities
mentioned in the Appium documentation might not be
available due to limitations of the target platform, lack of
support in a particular client library or a particular backend
version. For example, Appium provides a way to simulate a
tap/click in the specified point (x, y) of the specified GUI
element. However, Windows driver did not support this
capability till Sept 2018.

From the perspective of test script development, it is good
to remember that mobile devices are not designed for stable
test automation. Quite often a failed test initialization step
(which involves waking up the target device, installing and
running the app) will finish successfully during the subsequent
attempt. Thus, test scripts should implement basic fault-
tolerance measures, especially during these initial actions.

IX. CONCLUSION

Automated testing became an integral part of a modern
software development pipeline. One of the most cost-effective
types of automated testing is smoke testing, aimed to confirm
the basic functionality of the complete system with a series of
simple scenarios. Smoke testing is especially useful in cross-
platform development, where manual testing imposes a
considerable additional burden on team members.

Automated smoke testing can be implemented with the
help of available third-party frameworks. The choice is more
limited for mobile devices, and today Appium is probably the

only real option for writing universal tests, executable on
Android, iOS, Mac, and Windows.

In contrast to automated unit tests, smoke tests are harder
to setup. With the present tools, it’s still the developer’s
responsibility to organize the process of automated testing,
including triggering tests for freshly available builds, load
balancing, and reporting of test results. In addition, setting up
a mobile device test farm can be a tricky process, fraught with
numerous unobvious pitfalls. Certain investment of efforts
into regular maintenance is also inevitable.

However, in spite of these challenges, we treat our
personal experience as largely positive. Automated smoke
tests facilitated early error detection and enabled our testers to
concentrate on serious rather than trivial issues in the game.
The landscape of mobile platforms became less fragmented in
the recent years, while frameworks like Appium reached
maturity, and are sufficiently stable now for daily use.

Personally, I hope that scaffolding for automated smoke
testing will be eventually as accessible as software for file
hosting or automated building. It will be greatly beneficial for
the whole community of professional software developers.

REFERENCES

[1] A. I. Llewelyn and R. F. Wickens, “The testing of computer

software,” in NATO Software Engineering Conference, Garmisch,

Germany, 1968, pp. 7–11.
[2] K. Beck, Test Driven Development. New Jersey: Pearson Education

(US), 2002.
[3] P. Ramya, V. Sindhura, and P. V. Sagar, “Testing Using Selenium

Web Driver,” in 2nd International Conference on Electrical,

Computer and Communication Technologies, Coimbatore, 2017.
[4] E. Pyshkin and M. Mozgovoy, “So You Want to Build a Farm: An

Approach to Resource and Time-Consuming Testing of Mobile

Applications,” ICSEA 2018, 2018.
[5] M. Mozgovoy and E. Pyshkin, “Mobile farm for software testing,” in

Proceedings of the 20th International Conference on Human-

Computer Interaction with Mobile Devices and Services Adjunct,
2018, pp. 31–38.

[6] M. Mozgovoy, “Quality Assurance in a Mobile Game Project: a

Case Study,” in Proceedings of the 14th Central and Eastern
European Software Engineering Conference (SECR'2018), 2018.

[7] R. C. Martin, “Professionalism and test-driven development,” Ieee

Software, vol. 24, no. 3, pp. 32–36, 2007.
[8] J. Coplien, Why Most Unit Testing is Waste. [Online] Available:

https://rbcs-us.com/documents/Why-Most-Unit-Testing-is-Waste.pdf.

[9] S. Sanderson, Selective Unit Testing – Costs and Benefits. [Online]
Available: https://blog.stevensanderson.com/2009/11/04/selective-

unit-testing-costs-and-benefits/.

[10] G. Mustafa, A. A. Shah, K. H. Asif, and A. Ali, “A strategy for
testing of web based software,” Information Technology Journal, vol.

6, no. 1, pp. 74–81,

http://www.docsdrive.com/pdfs/ansinet/itj/2007/74-81.pdf, 2007.
[11] Microsoft Corp., Guidelines for Smoke Testing:

https://msdn.microsoft.com/en-us/library/ms182613(v=vs.90).aspx.

[12] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation (Adobe

Reader): Pearson Education, 2010.

[13] Hewlett-Packard Company, Intel Corporation, Microsoft

Corporation, NEC Corporation, ST-NXP Wireless, Texas

Instruments, Universal Serial Bus 3.0 Specification.

[14] V. Challa, Why Do Lithium-Ion Batteries Swell? [Online] Available:
https://www.dfrsolutions.com/blog/why-do-lithium-ion-batteries-

swell.

