
THIS IS AN EXAMPLE OF HOW YOUR PAPER SHOULD LOOK FROM PAGE 2 ONWARDS

© EUROSIS-ETI

QUALITY ASSURANCE IN A MOBILE GAME PROJECT: A CASE STUDY

Maxim Mozgovoy
The University of Aizu

Tsuruga, Ikki-machi, Aizu-Wakamatsu,
Fukushima, 965-8580 Japan

mozgovoy@u-aizu.ac.jp

KEYWORDS

Quality assurance, mobile games, automated testing.

ABSTRACT

Quality assurance is an integral part of the software
development process. Game projects possess their own
distinctive traits that affect all stages of work, including
quality assurance. The goal of this paper is to share the
lessons learned during a three year-long mobile game
development project. I will discuss the techniques that turned
out to be most efficient for us: manual testing, automated and
manual runtime bug reporting, Crashlytics crash analysis, and
automated smoke testing. I will outline how these types of
testing address typical game-specific issues, and why they
can be recommended for a wide range of game projects.

INTRODUCTION

Quality assurance is a complex set of methods, used in all
stages of software development, ranging from requirements
engineering and software design to coding and testing.
Explicit quality assurance measures are found in all widely
used software development processes, from traditional
waterfall model to modern agile approaches [1].

Still, quality issues are common in resulting software
products. Khalid et al. [2] analyzed user reviews of 20 most
popular iOS apps of June 2012. They found that 26.68% or
user complaints are related to functional errors, and other
10.51% of complaints mention app crashing. Together with
“feature request”, they constitute top 3 complaint types.

One may argue that the best way to ensure software quality is
to maintain high standards of software development culture.
Indeed, poor design and planning, and somewhat relaxed
attitude to writing code is often mentioned as the primary
reasons for buggy software [3]. Thus, gradual improvement
of software development processes is a necessary, but
difficult and time-consuming measure.

I will concentrate on relatively simple, but cost-efficient “last
resort” measures, aimed to reveal bugs before they creep into
the release version, and to facilitate quick fixes of bugs not
identified during testing. While all these methods are well-
known, they deserve additional discussion within the process
of game development, since it has certain distinctive traits
that affected our views on quality assurance.

WORLD OF TENNIS: ROARING '20S GAME

The observations discussed in this paper were made during
the development of a mobile tennis game World of Tennis:
Roaring '20s. The most interesting aspect of the game is the

presence of machine learning-based AI system that observes
players’ behavior to substitute them in player-vs-player
matches [4]. This capability allows the players to compete
against each other at any time, and mitigates all negative
effects of poor internet connection.

From organizational point of view, World of Tennis a typical
mobile game project, developed by a small team during a
time span of three years. The game is written in Unity game
engine, and is currently available for iOS, Android, and
Universal Windows platforms. The game is free to play (i.e.,
supported by additional in-app purchases), and requires
internet connection for most actions.

GAME DEVELOPMENT-SPECIFIC FACTORS

The nature of a software product we create affects the whole
development process, including quality assurance. Game
development has its own peculiarities, discussed in
literature [5, 6]. The most significant factors that affected our
approach to quality assurance were the following.

1. Heavy reliance on unstable 3rd-party libraries and tools.

We have to use specific libraries to integrate with external
services (such as ad providers), and to rely on Unity for
internal game engine functionality. Some of 3rd-party
modules are quite complex, unstable, and may cause app
crashes. Often we have to decide whether to use a library that
provides a functionality needed for a certain feature, or to cut
this feature at all.

In practice, it means that our approach to functional errors
and crashes has to be nuanced. For example, we might decide
to tolerate a certain level of crashes if it lets us to integrate
with an ad provider or enable great-looking cloth simulation.

2. Diversity of hardware and software platforms.

Unity greatly simplifies the process of cross-platform
development, encouraging the developers to take advantage
of this capability, and to release the game on a wide range of
platforms. In turn, it means that the game has to be tested on
each platform separately.

Platform-specific errors typically occur in fragments of code
appearing in native binary libraries and in procedures calling
platform-specific SDKs (e.g., for in-app purchases).

Diversity of hardware and operating systems also imposes
challenges. Some distribution channels such as Apple and
Google stores allows the developers to specify the types of
compatible devices by providing the required OS version and
hardware configuration. It leads us again to treat known
flaws pragmatically: if the game does not work properly on
certain devices, it might be reasonable to consider them
incompatible rather than invest efforts into patches.

THIS IS AN EXAMPLE OF HOW YOUR PAPER SHOULD LOOK FROM PAGE 2 ONWARDS

© EUROSIS-ETI

3. Abundance of visual and sound issues.

A great number of bugs in games can only be revealed with
manual testing. For instance, we had situations when
shadows were not visible, the colors of clothes were wrong,
the characters had their feet below the ground level, some
text boxes overlapped with other GUI elements or were too
small to contain the corresponding text lines. Similar
observations can be made about animation and sound effects.

Therefore, automated testing in game projects is applicable
to a relatively narrow set of cases. Ironically, this factor
motivated us to automate as many scenarios as we could to
give our testing team more time to find nontrivial bugs.

4. Large proportion of high-cost unit testing code.

Literature on agile development speaks in favor of unit
testing, but one should note that the associated costs are
distributed unevenly. Sanderson [7] identifies two types of
code with high cost of unit testing: complex code with many
dependencies, and trivial code with many dependences
(“coordinators” between other code units). According to
Sanderson, complex code with many dependencies should be
refactored to separate algorithms from coordination.

Our experience shows that a game project has a large
proportion of both types of high-cost unit testing code. I
believe the primary reason for it is that the most cost-
efficient type of code (“complex code with few
dependencies” in Sanderson’s scheme) belongs to the game
engine such as Unity and 3rd-party libraries. The problem is
further aggravated with the fact that “complex code with
many dependences” is rarely refactored in practice and thus
also cannot be unit-tested efficiently.

It might be tempting to attribute the lack of refactoring and
frequently noted substandard design of system architecture in
game projects to low culture of development. However, there
are objective factors contributing to this situation. In
particular, games have to be entertaining and provide
excitement — requirements that can hardly be satisfied with
traditional planning methods. Therefore, game programming
requires much experimenting, and it is not surprising that the
developers tend to view much of their work as “throwaway
code”, poorly engineered and rarely refactored [5].

5. Deep integration of GUI and animation

Automated tests (especially unit tests) often rely on the
possibility to separate entities. One might want to test game
physics separately from animation or GUI independently
from underlying logic. However, it might be virtually
impossible to do in a game. For instance, in Unity animation
is an integral part of character motion model. To check the
changes in character’s coordinates during movement, one has
to play the related animation sequence. The notion of “user
interface” is also vague in games, as any clickable onscreen
object can be considered a part of interface. Furthermore,
typical user controls like buttons or edit boxes are often
hand-drawn in games and thus inaccessible through standard
automation interfaces (such as UI Automator in Android or
XCTest in iOS).

QUALITY ASSURANCE IN WORLD OF TENNIS

This section is dedicated to a more detailed discussion of
some specific measures we implemented in the project. We
consider them useful and cost-efficient, and are willing to
adhere to the same practices in the future.

Crashlytics Crash Reporting. As mentioned in the previous
section, we take a pragmatic approach to errors. With
numerous 3rd-party modules we use, Unity as a game engine,
and a variety of supported platforms and devices,
malfunctions are inevitable. Our task from the early stages of
development was not only to identify faults, but also to
assess their severity for the product.

One of our first decisions was to integrate Crashlytics crash
reporting service1. It embeds special crash reporting code
into the application, which sends crash details into a central
server. As developers, we can analyze the reasons of crashes
and the list of devices where crashes occur.

In particular, Crashlytics helped us to identify devices with
inadequate amount of RAM. On mobile platforms, a task
scheduler can kill a foreground application if it consumes too
much memory, which is practically equivalent to a crash.
However, it is hard to decide where exactly one has to draw a
line, since numerous devices belong to a “gray area” where
crashes are possible, but not certain. Actual statistics from
Crashlytics helped us to make a well-grounded decision.

Autobugs and Manual Bugs. Developers widely use
assertions to check assumptions about certain points in code.
Assertions can be seen as a part of “design by contract”
approach [8]. There is a general agreement that assertions
should be used during development as a method for both in-
code documentation and quality assurance, but the practice
of keeping assertions in production code is debatable [9].
The arguments often depend on what assertions actually do,
and the typical presumption is that a failed assertion shows
an error message and terminates the application.

In our game, each failed assertion and each raised exception
is reported to us. We presume the presence of internet
connection on user devices, thus error reporting is easy to
automate. Our task and bug tracker Teamwork2 has a
capability to create tasks via email messages, which we use
to gather information about failed assertions and raised
exceptions. Each report contains basic information about the
build, user device, and current user account. It also contains
a link to the detailed session report stored on our server.

The same technology is used for reporting “manual bugs”.
The users marked as beta-testers in the system have an option
to pause the game at any moment and send a bug report. It
will be posted to Teamwork in the same manner along with
the session report and with a user-supplied description. As
noted above, massive manual testing in games is inevitable,
so we started recruiting beta-testers one year before release.

Manual Testing. Our approach to manual testing is
straightforward. As soon as we get a new build that is
considered “stable”, we ask our testers to play several game
sessions, noting any problems they encounter. All game

1 https://crashlytics.com
2 https://www.teamwork.com

THIS IS AN EXAMPLE OF HOW YOUR PAPER SHOULD LOOK FROM PAGE 2 ONWARDS

© EUROSIS-ETI

sessions are recorded as video clips, and the testers illustrate
their findings with links to particular video fragments. Since
our QA team is small (only two people test regularly), we
also rely on a professional QA company to check our major
release builds on a variety of devices and platforms.

Automated Smoke Testing. Smoke testing is a type of
functional testing aimed to reveal failures in a complete
system by covering a broad product features with simple
automated test scenarios [10]. We automate testing of simple
routine actions, such as: 1) create a new user and pass the
tutorial; 2) play a league match against the next opponent; 3)
upgrade your character’s skills using available experience
points; 4) link your Facebook account to the game; 5) change
current club / character / clothes / equipment. These actions
require most subsystems of the game to operate correctly, so
it can be expected that such automated testing would identify
many critical bugs.

Technically, mobile smoke tests can be set up using an
external service, such as Bitbar Testing3 or AWS Device
Farm4. However, we found them too expensive for daily use,
and set up our own mobile farm of one Windows, three iOS,
and four Android devices [11]. The testing farm is fully
integrated into our pipeline. When a new build is available
on the build machine, the system runs predefined test scripts
on all devices in the farm.

The scripts interact with our mobile devices via Appium
framework5 and use image recognition to identify clickable
GUI elements. Test logs are available as HTML reports with
screenshots, illustrating ongoing actions. If a certain test
fails, it is easy to identify the cause in most cases.

These automated tests can also generate autobugs, so even if
there are no obvious faults reported by the test, it still might
detect errors via the mechanism of assertions and exceptions.

DISCUSSION

Mobile free-to-play games is a special kind of product. They
require long-term experiments with game mechanics,
monetization techniques and new features, thus exhibiting the
traits of both games and non-game applications.

Research shows that game programmers believe there are
substantial differences in their work practice comparing to
the work practice of non-game developers [5]. In particular,
game projects suffer from loosely formulated requirements,
frequent changes of core system elements, heavy reliance on
manual testing, and little incentive to improve architecture,
since much of the work is seen as disposable code. In a
sense, a game is like a movie: once it is ready, nobody needs
props anymore.

Mobile free-to-play games is not an exception in regards to
coding practice, but they require strict and reliable quality
assurance process to make sure that regular updates do not
break the game. It is incredibly difficult to establish a place

3 https://bitbar.com/testing
4 https://aws.amazon.com/device-farm
5 http://appium.io

in a hyper-competitive environment of modern mobile app
stores, and bugs may cause a quick descent.

Therefore, I believe that games would benefit from a more
comprehensive approach to testing that takes into account
specific issues related to game development. Not all
commonly recommended practices are well suitable for game
developers, and the right answer to this challenge would be
to identify the practices that work best.

CONCLUSION

Numerous objective factors have a negative effect on mobile
game projects. However, they cannot serve as an excuse for
functional errors and crashes, haunting many games. Instead,
they should be seen as challenges for more comprehensive
and streamlined quality assurance procedures, based on cost-
efficient measures that take into account the distinctive
nature of game projects. In our mobile game World of
Tennis: Roaring '20s, a combination of crash reporting,
autobugs and manual bugs, manual testing, and automated
smoke testing is used. All these elements work together,
providing a clear cumulative effect. Most of these
subsystems are easy to setup, and can be implemented in a
small team on lean budget.

REFERENCES

[1] M. Huo, J. Verner, L. Zhu, and M. A. Babar, “Software
quality and agile methods,” in The 28th IEEE
International Conference on Computers, Software
& Applications, 2004, pp. 520–525.

[2] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What
do mobile app users complain about?,” IEEE Software, vol.
32, no. 3, pp. 70–77, 2015.

[3] C. C. Mann, “Why software is so bad,” Technology Review,
vol. 105, no. 6, pp. 33–38, 2002.

[4] M. Mozgovoy, M. Purgina, and I. Umarov, “Believable Self-
Learning AI for World of Tennis,” in 2016 IEEE Conference
on Computational Intelligence and Games, 2016, pp. 1–7.

[5] E. Murphy-Hill, T. Zimmermann, and N. Nagappan,
“Cowboys, ankle sprains, and keepers of quality: How is
video game development different from software
development?,” in Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 1–11.

[6] L. Pascarella, F. Palomba, M. Di Penta, and A. Bacchelli,
“How Is Video Game Development Different from Software
Development in Open Source?,” in MSR Conference, 2018.

[7] S. Sanderson, Selective Unit Testing – Costs and Benefits.
Available: https://bit.ly/2tVIUcx.

[8] B. Meyer, “Applying ’design by contract’,” Computer, vol.
25, no. 10, pp. 40–51, 1992.

[9] W. Bright, Assertions in Production Code. Available:
https://digitalmars.com/articles/b14.html.

[10] C. Kaner, J. Bach, and B. Pettichord, Lessons learned in
software testing: A context-driven approach. New York:
Wiley, 2002.

[11] M. Mozgovoy and E. Pyshkin, “Unity application testing
automation with Appium and image recognition,” in
International Conference on Tools and Methods for Program
Analysis, 2017, pp. 139–150.

