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Abstract—This paper is dedicated to the problem of using 

case-based reasoning AI in a commercial mobile game of lawn 

tennis. We discuss the unavoidable manual game analysis stage, 

aimed to represent user intentions accurately and supply them to 

the machine learning procedure. We show how the right 

combination of machine learning and manual effort helps to 

construct a solid game AI system, able to play in human-like 

manner. Our experience shows that the key factor of the 

successful decision making and reasonable resource consumption 

in mobile tennis is careful representation of context-aware 

behavior and anticipation of opponents’ actions, exhibited by 

real players. 
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I. INTRODUCTION 

Advanced decision making algorithms are rarely used in 
the world of commercial game development. As Millington 
and Funge summarize, “Most games use very simple decision 
making systems: state machines and decision trees. Rule-based 
systems are rarer, but important. In recent years a lot of 
interest has been shown in more sophisticated decision making 
tools, such as fuzzy logic and neural networks. However, 
developers haven’t been in a rush to embrace these 
technologies. It can be hard to get them working right.” [1]. 
Indeed, one needs a special reason for using any complex 
approach in a commercial game, if a simple system works 
reasonably well. Few games, however, have such reasons. One 
of the most cited example is Lionhead’s Black & White that  
integrates machine learning into core gameplay [2].  

Making AI one of the cornerstones of the basic gameplay 
process was also an early design decisions in a mobile tennis 
game World of Tennis: Roaring ’20s, developed with active 
participation of the author of this paper. In brief, the principal 
goal we were trying to achieve was to design a multiplayer 
mobile tennis game with as little hindrance to the game 
process as possible. Virtually all existing multiplayer tennis 
games suffer from connection lags and complicated 
matchmaking. Tennis is a fast-paced game, so even minor 
connection drops might cause annoyances during the matches. 
In addition, people often play mobile games when commuting 
or in public spaces, where internet connection might be 
unstable. Next, the players have to compete against the 
opponents who are currently online, have acceptable data 

roundtrip time, and possess comparable ranks. In practice, it 
means that often very few people would satisfy these criteria, 
and thus even initiating a single match might be a problem. 

To remedy the situation, we decided to use machine 
learning. By playing the game, people train their virtual 
characters (avatars) that can later substitute them in tennis 
matches. In other words, people in World of Tennis: 
Roaring ’20s compete with machine learning-based AI agents 
rather than with real online opponents. (Similar reasoning lies 
behind Drivatar AI in the Forza Motorsport series [3]). 

This approach can be considered feasible, however, only if 
the used algorithm is reasonably good. In our case, it means 
that the virtual characters should: 1) exhibit a wide range of 
diverse play styles and behavior patterns to appear human-like; 
and 2) play on par with human opponents to provide sufficient 
challenge for skillful players. 

Our resulting system uses a combination of case-based 
reasoning decision making with Markov chain-like database of 
human actions. In a nutshell, agent knowledge is represented as 
a graph, having individual game situations as vertices, and 
actions as weighted edges. This way, it represents the fact that 
a certain action switched the game from situation A to situation 
B during the learning phase. Decision making algorithm tries 
to find the best match for the current game situation, and acts 
accordingly [4, 5]. Unsurprisingly, most efforts were dedicated 
to the retrieval and reusal steps of case-based reasoning 
process [6]. Since the occurrence of identical situations in 
tennis is unlikely, we had to develop a simplified system of 
features, reflecting only the most important game parameters, 
and design an approximate matching algorithm that finds the 
best-matching situations when the perfect match is not 
available. Next, we had to decide whether the action we found 
is still applicable in the current situation, and discard or adapt it 
if necessary. 

However, it turned out that successful learning was 
impossible without revision of the basic learning process that 
had to take into account context-awareness and anticipation, 
apparently exhibited by human players. This forced us to 
rethink what constitutes the input of the machine learning 
algorithm. While this topic can be considered technical and 
problem-specific, and thus rarely discussed in literature, we 
believe that our case study can provide insights into the process 
of learning user actions in a real mobile game. This step is 



often overlooked as trivial, but we show that even in case of a 
relatively simple tennis game a certain effort is required to 
transform user intentions into virtual characters’ knowledge. 

II. BASIC GAME MECHANICS 

Before discussing the problems we faced, it is necessary to 
get acquainted with the basics of the game mechanics of World 
of Tennis: Roaring ’20s. We will consider a simplified game 
description that includes only the elements, relevant for the 
subsequent discussion. We will use the word player to refer to 
the actual person playing the game, and reserve the word 
character for the in-game player avatar. 

World of Tennis: Roaring ’20s is a mobile version of a 
conventional lawn tennis game. The player always controls the 
bottom character, while the top character is controlled by the 
AI system (see Fig. 1). 

Fig. 1. Gameplay of World of Tennis: Roaring ’20s 

 

The game process can be separated into four phases (as 
seen by a human player): 

Serve. The serving character is located in one of the serve 
areas (A or B, shown in Fig. 2). By tapping the screen within 
the current serve area, the player moves own character to the 
left or to the right along the baseline. A tap within the 
corresponding target area (D’ for A or E’ for B) initiates the 
serve. 

Recovery movement. When the ball is moving away from 
the player’s character, the player can tap anywhere on the own 
half of the court to initiate a recovery movement and occupy a 
reasonable spot on the court before the opponent’s shot. 

Returning a serve or a shot. Once the ball is shot towards 
the player, the system automatically starts steering the 
character to the optimal ball receive location. At this phase, the 
player can tap anywhere on the opponent’s half of the court to 
set the target point for the next shot. If the character is able to 
receive the ball, the shot will be performed automatically. The 
accuracy of the shot depends on the character’s skill values and 
shot timing: the game encourages the player to set shot target 
points early, as they have higher accuracy. 

Preparing to receive a serve. The receiving character is 
located in the area across the serving player: A for A’ or B for 
B’. The player can move the character inside this area by 
tapping the screen (as in the Serve phase), until a serve is 
initiated. 

The general motivation of these design decisions is to 
facilitate tactical rather than pure arcade gameplay. The player 
is encouraged to select winning shot and recovery target points, 
while the game engine takes care of the rest. There is even a 
capability to turn on the “AI control mode” instead of manual 
control, so players might use this “autopilot” feature when 
facing particularly weak opponents. 

Fig. 2. Tennis Court Diagram 

 

III. LEARNING AND DECISION POINTS 

The cornerstone concept of case-based reasoning is a 
(stored) case, i.e., “a previously experienced situation, which 
has been captured and learned in such way that it can be 
reused in the solving of future problems” [6]. This notion is 
typically illustrated in literature with real-life examples, where 
certain static situations are addressed with particular expert 
decisions, thus forming “situation/decision” pairs. 

However, in the world of an action game the logic of 
pairing decisions with the corresponding situations becomes 
more complex. Simply speaking, we do not know which 
situation triggers a certain user action. We know the current 
onscreen situation when a certain user input is detected, but 
obviously, the real trigger has occurred earlier, since user 
reaction is not instant. 



Simply taking into account typical reaction times, known 
from empirical research, is not sufficient either. In World of 
Tennis: Roaring ’20s there is usually no reason to act as 
quickly as possible. In most cases, the players have a chance to 
think a bit longer before deciding the next shot or move. It is 
also often possible to rethink the decision, i.e. to tap the screen 
several times within the same game phase. 

This observation leads to a related problem of decision 
making: what are the appropriate moments of time for an AI-
controlled character to decide its actions? In theory, the AI 
system can override its previous decision on each subsequent 
frame, though this approach will most probably cause jittery 
behavior and will greatly affect game performance (on most 
modern smartphones the game runs at 60 frames per second). 
The extreme opposite choice, i.e. making decisions early and 
never overriding them will make AI unresponsive to the 
actions of human players. 

In the subsequent discussion, we will use the term learning 
point to refer to a moment of time when the AI system is given 
an observed (situation, action) pair to be recorded. The total 
amount of learning points corresponds to the number of cases 
processed by the machine learning algorithm. We will use the 
term decision point to refer to a moment of time when the AI 
system has to perform an individual act of decision making. 

From our experience, the task of choosing appropriate 
learning and decision points is not easy, and requires good 
understanding of a particular game and its specifics. For 
relatively simple games, such as classic Atari arcades, one may 
adopt the “act on each k-th frame” approach [7]. However, this 
method is hardly applicable in modern commercial game 
projects (at least, due to performance considerations). 

IV. LEARNING AND ACTING IN A MOBILE TENNIS GAME 

The present design of the learning and acting algorithm is a 
result of the whole series of iterations, reflecting our 
understanding of the game process. Learning and acting is 
handled differently in different game phases (the algorithm 
used to switch the phases is shown in Fig. 3). 

A. Serve phase 

During serve, the player first moves to the chosen serve 
position, and then shots the ball to the target location on the 
opponent’s side of the court. To reduce possible pre-serve 
walking, we impose a time limit on serve actions, which is 
consistent with ATP rules of real tennis. When the player 
initiates a serve, the AI learns this action with no associated 
game situation. One may argue that the serving player must 
take into account the position of the receiver. However, this 
logic leads to undesired behavior: the receiver reacts to the 
change of the position of the serving player, and the serving 
player adjusts own position in response to the receiver’s move. 
We decided that the AI system should presume that the 
receiver can always adapt to the serving player’s position, and 
thus the best strategy is to serve without looking at the 
opponent. In addition, we discard all player movements made 
before a serve. In other words, we do not treat pre-serve 
walking as an essential part of the game, and learn only the last 
movement to the final serve location. 

Learning point: as soon as the serve target is known.  

Situation: none 

Action: move to a specified serve position; serve to a 
specified target point on the opponent side of the court. 

Decision point: in the beginning of the Serve phase. 

B. Recovery phase 

During this phase, a player can freely move own character 
on the bottom half of the court, so in theory this trajectory can 
be quite complex. In practice, however, the task of the player is 
to occupy a certain winning spot on the court to maximize own 
chances of returning the opponent’s shot. At the same time, the 
opponent is running towards the ball landing area, known to 
the player, so the player can predict the opponent’s movements 
already in the beginning of Recovery phase. Therefore, we 
decided to keep only the last movement of the player, 
discarding all earlier actions. This decision is still being 
debated, and might be revised in the future. While erratic 
recovery movements are probably not a part of the normal 
game process, in theory they can be used as a stratagem to 
confuse the opponent. In addition, their absence can be treated 
by the players as a sign of artificial, robot-like behavior. 

While working on this phase, we also had to discuss a 
simple but important case of learning user intentions rather 
than actions. When a player skips recovery (does not tap 
anywhere), should we treat it as “do not move anywhere” or 
“move to the point where the character is currently located”? 
The answer is crucial for decision making. If a situation A is 
considered similar to another situation B, then we should be 
able to apply in B the same action as in A. If the player did 
nothing during Recovery phase in A, what should we do if the 
player character in B is located not in the same spot as in A? 
One option would be to keep the character still (and thus treat 
the absence of action as “do nothing”), but we can also move 
the character to the location recorded in A. (The third option 
would be to treat the “no action” situation as a player error and 
do not learn it at all). 

Our experiments with the game and the analysis of actual 
play styles of our beta testers showed that the in most cases the 
desired action was to move the character rather than to keep it 
still. The cases of user errors were also rare: if a player does 
not specify the next recovery point, it usually means that the 
current location should be treated as a desirable target for the 
recovery movement. 

Learning point: as soon as the opponent hits the ball (end 
of the Recovery phase). 

Situation: includes the coordinates of both characters and 
the ball target, taken at the beginning of the Recovery phase. 

Action: move to the last specified position. 

Decision point: at the beginning of the Recovery phase. 

C. Return a serve/shot phase 

This phase is perhaps the most important in the game, and 
should be examined carefully, since making the right shots is 
the essence of any tennis game. In our case, players face a 



choice: on one hand, the game engine encourages early shot 
actions, as they provide more accuracy; on the other hand, one 
might prefer to wait a bit longer and to react to the opponent’s 
recovery movement. In the present version of the system, we 
decided to learn two actions during this phase. The first action 
corresponds to an early decision, and is paired with the game 
situation that lacks information about the opponent movement 
direction. The second action corresponds to a decision made 
when the ball is crossing the net, and includes opponent 
direction value (“towards the ball target”, “from the ball target”, 
“no movement relative to the ball target”). 

In the decision making mode, the AI always sets the ball 
target early in the beginning of the phase. When the ball 
crosses the net, it requests the second decision and overrides 
the first decision if the new decision is ranked higher according 
to the situation similarity value, i.e. when the new decision is 
considered closer to the play style of the human player. 

Note that in this phase the user can also skip a turn, giving 
no commands to own character. Unlike “implicit recovery 
movements”, however, there are no “implicit shots”, so we 
treat this situation as a user error, and do not learn anything in 
these cases. 

Learning point: as soon as the player hits the ball. 

Situation 1: includes the coordinates of both characters, 
and the ball target point, taken at the beginning of the phase. 

Situation 2: includes all the features of Situation 1, and the 
direction of the opponent character, taken when the ball was 
crossing the net. 

Action: shot the ball to the specified target point. 

Decision point 1: at the very beginning of the phase. 

Decision point 1: when the ball is crossing the net. 

D. Prepare to receive a serve phase 

While the serving player is moving to the desired serve 
location, the receiver should occupy a convenient spot on the 
court to receive a serve. There are three cases when we allow 
the receiver to change its location: 1) at the beginning of the 
phase; 2) when the serving character starts moving; 3) at the 
end of the phase, when a serve is initiated. In practice, we 
impose an additional minimum move distance in (2) to prevent 
quick response of the receiver to every slight motion of the 
serving player, which looks unnatural. We also decided to let 
the learning algorithm know the target location of the serving 
player’s movement. While this location is not visible to human 
players (they merely see the direction of the move), we treated 
it as an acceptable level of cheating for the AI: it merely 
reduces the number of decision points in this phase, without 
providing any real advantages. 

Learning point: when the opponent’s serve is initiated. 

Situation: includes the coordinates of both characters, and 
the target point of the opponent’s movement, taken during the 
last opponent’s movement before the serve. 

Action: move to the last specified position. 

Decision point 1: at the beginning of the phase. 

Decision point 2: when the serving player starts moving. 

Decision point 3: when a serve is initiated. 

V. DISCUSSION 

The previous section clearly shows that adopting machine 
learning-based AI even for a relatively simple game of one-
versus-one lawn tennis is not a straightforward task. Here we 
skip the discussion of the algorithm itself and concentrate only 
on defining input and output data, and the principles of 
choosing learning and decision points. This seemingly 
technical procedure, often overlooked in literature, has grown 
into a significant module, fundamental to proper AI 
functioning. This means that there is a notable entry threshold 
for using machine learning in real games, which reduces its 
attractiveness as a method of minimizing manual work. 

On the positive side, the right combination of manual game 
analysis and machine learning technology, and a careful choice 
of learning and decision points is able to produce very 
satisfactory results. Our main goal was to implement a human-
like AI system, able to substitute real online opponents 
transparently, and we believe that some users do not even 
realize that they play against AI. The game is currently in the 
soft-launch phase, and is being played by around one thousand 
users daily. We regularly get players’ feedback, and there are 
virtually no complaints about the AI. 

It is important to note that one of the strong points of our 
AI system is its implicit ability to anticipate opponents’ 
actions. This is achieved by learning human actions in pairs 
with earlier game situations (rather than with the situations, 
perfectly corresponding to user input). In general, we use the 
earliest situations that have enough data to react to the 
opponent, and ignore actual user input delay. This makes AI-
controlled characters somewhat stronger than people, who 
cannot react immediately. On the other hand, people are more 
flexible in their strategy, and our current experiments show no 
clear advantage of AI over people and vice versa. 

However, as game designers we see at least, two directions 
for future improvements. We noticed that people often predict 
actions of familiar opponents, i.e., adjust their game strategy 
when facing a particular player. Currently, our AI does not 
distinguish opponents. Another important human trait is the 
ability to learn quickly on the go. If some action leads to a 
quick victory or a defeat against a particular opponent, people 
notice it and adjust their actions accordingly. Implementing 
this ability would require some variation of reinforcement 
learning, which we have in plans. 

VI. CONCLUSION 

Machine learning and case-based reasoning methods are 
often described and used in discrete environments with clearly 
defined input and output data, and streamlined decision-
making process. In the domain of computer games, these 
assumptions often do not hold, so the game designers have to 
perform a thorough analysis to entwine machine learning with 
game logic. Much of this work is dedicated to transforming 



user intentions into actual (situation, action) pairs that make 
sense in the given game world, and agree with its rules. Even 
in relatively simple games we see that user actions are largely 
dictated by context-dependent tactics and anticipation of 
opponents’ actions. We believe that automating this work is 
hardly feasible with current state-of-the-art methods, especially 
in commercial computer games that require reasonable 
decision making as well as low consumption of processor and 
memory resources. It means that “automatic” methods of 
constructing behavior of non-player characters (such as a 
combination of learning by observation with case-based 
reasoning) in practice still come with a large amount of manual 
effort, and thus their use should be well justified. In case of 
World of Tennis: Roaring ’20s we had a special reason to use 
these methods, and we are satisfied with the obtained results. 
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