
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Context-Awareness and Anticipation

in a Tennis Video Game AI System

Maxim Mozgovoy

School of Computer Science and Engineering

The University of Aizu

Aizu-Wakamatsu, Japan

mozgovoy@u-aizu.ac.jp

Abstract—This paper is dedicated to the problem of using

case-based reasoning AI in a commercial mobile game of lawn

tennis. We discuss the unavoidable manual game analysis stage,

aimed to represent user intentions accurately and supply them to

the machine learning procedure. We show how the right

combination of machine learning and manual effort helps to

construct a solid game AI system, able to play in human-like

manner. Our experience shows that the key factor of the

successful decision making and reasonable resource consumption

in mobile tennis is careful representation of context-aware

behavior and anticipation of opponents’ actions, exhibited by

real players.

 Keywords—case-based reasoning, game AI, mobile tennis

I. INTRODUCTION

Advanced decision making algorithms are rarely used in
the world of commercial game development. As Millington
and Funge summarize, “Most games use very simple decision
making systems: state machines and decision trees. Rule-based
systems are rarer, but important. In recent years a lot of
interest has been shown in more sophisticated decision making
tools, such as fuzzy logic and neural networks. However,
developers haven’t been in a rush to embrace these
technologies. It can be hard to get them working right.” [1].
Indeed, one needs a special reason for using any complex
approach in a commercial game, if a simple system works
reasonably well. Few games, however, have such reasons. One
of the most cited example is Lionhead’s Black & White that
integrates machine learning into core gameplay [2].

Making AI one of the cornerstones of the basic gameplay
process was also an early design decisions in a mobile tennis
game World of Tennis: Roaring ’20s, developed with active
participation of the author of this paper. In brief, the principal
goal we were trying to achieve was to design a multiplayer
mobile tennis game with as little hindrance to the game
process as possible. Virtually all existing multiplayer tennis
games suffer from connection lags and complicated
matchmaking. Tennis is a fast-paced game, so even minor
connection drops might cause annoyances during the matches.
In addition, people often play mobile games when commuting
or in public spaces, where internet connection might be
unstable. Next, the players have to compete against the
opponents who are currently online, have acceptable data

roundtrip time, and possess comparable ranks. In practice, it
means that often very few people would satisfy these criteria,
and thus even initiating a single match might be a problem.

To remedy the situation, we decided to use machine
learning. By playing the game, people train their virtual
characters (avatars) that can later substitute them in tennis
matches. In other words, people in World of Tennis:
Roaring ’20s compete with machine learning-based AI agents
rather than with real online opponents. (Similar reasoning lies
behind Drivatar AI in the Forza Motorsport series [3]).

This approach can be considered feasible, however, only if
the used algorithm is reasonably good. In our case, it means
that the virtual characters should: 1) exhibit a wide range of
diverse play styles and behavior patterns to appear human-like;
and 2) play on par with human opponents to provide sufficient
challenge for skillful players.

Our resulting system uses a combination of case-based
reasoning decision making with Markov chain-like database of
human actions. In a nutshell, agent knowledge is represented as
a graph, having individual game situations as vertices, and
actions as weighted edges. This way, it represents the fact that
a certain action switched the game from situation A to situation
B during the learning phase. Decision making algorithm tries
to find the best match for the current game situation, and acts
accordingly [4, 5]. Unsurprisingly, most efforts were dedicated
to the retrieval and reusal steps of case-based reasoning
process [6]. Since the occurrence of identical situations in
tennis is unlikely, we had to develop a simplified system of
features, reflecting only the most important game parameters,
and design an approximate matching algorithm that finds the
best-matching situations when the perfect match is not
available. Next, we had to decide whether the action we found
is still applicable in the current situation, and discard or adapt it
if necessary.

However, it turned out that successful learning was
impossible without revision of the basic learning process that
had to take into account context-awareness and anticipation,
apparently exhibited by human players. This forced us to
rethink what constitutes the input of the machine learning
algorithm. While this topic can be considered technical and
problem-specific, and thus rarely discussed in literature, we
believe that our case study can provide insights into the process
of learning user actions in a real mobile game. This step is

often overlooked as trivial, but we show that even in case of a
relatively simple tennis game a certain effort is required to
transform user intentions into virtual characters’ knowledge.

II. BASIC GAME MECHANICS

Before discussing the problems we faced, it is necessary to
get acquainted with the basics of the game mechanics of World
of Tennis: Roaring ’20s. We will consider a simplified game
description that includes only the elements, relevant for the
subsequent discussion. We will use the word player to refer to
the actual person playing the game, and reserve the word
character for the in-game player avatar.

World of Tennis: Roaring ’20s is a mobile version of a
conventional lawn tennis game. The player always controls the
bottom character, while the top character is controlled by the
AI system (see Fig. 1).

Fig. 1. Gameplay of World of Tennis: Roaring ’20s

The game process can be separated into four phases (as
seen by a human player):

Serve. The serving character is located in one of the serve
areas (A or B, shown in Fig. 2). By tapping the screen within
the current serve area, the player moves own character to the
left or to the right along the baseline. A tap within the
corresponding target area (D’ for A or E’ for B) initiates the
serve.

Recovery movement. When the ball is moving away from
the player’s character, the player can tap anywhere on the own
half of the court to initiate a recovery movement and occupy a
reasonable spot on the court before the opponent’s shot.

Returning a serve or a shot. Once the ball is shot towards
the player, the system automatically starts steering the
character to the optimal ball receive location. At this phase, the
player can tap anywhere on the opponent’s half of the court to
set the target point for the next shot. If the character is able to
receive the ball, the shot will be performed automatically. The
accuracy of the shot depends on the character’s skill values and
shot timing: the game encourages the player to set shot target
points early, as they have higher accuracy.

Preparing to receive a serve. The receiving character is
located in the area across the serving player: A for A’ or B for
B’. The player can move the character inside this area by
tapping the screen (as in the Serve phase), until a serve is
initiated.

The general motivation of these design decisions is to
facilitate tactical rather than pure arcade gameplay. The player
is encouraged to select winning shot and recovery target points,
while the game engine takes care of the rest. There is even a
capability to turn on the “AI control mode” instead of manual
control, so players might use this “autopilot” feature when
facing particularly weak opponents.

Fig. 2. Tennis Court Diagram

III. LEARNING AND DECISION POINTS

The cornerstone concept of case-based reasoning is a
(stored) case, i.e., “a previously experienced situation, which
has been captured and learned in such way that it can be
reused in the solving of future problems” [6]. This notion is
typically illustrated in literature with real-life examples, where
certain static situations are addressed with particular expert
decisions, thus forming “situation/decision” pairs.

However, in the world of an action game the logic of
pairing decisions with the corresponding situations becomes
more complex. Simply speaking, we do not know which
situation triggers a certain user action. We know the current
onscreen situation when a certain user input is detected, but
obviously, the real trigger has occurred earlier, since user
reaction is not instant.

Simply taking into account typical reaction times, known
from empirical research, is not sufficient either. In World of
Tennis: Roaring ’20s there is usually no reason to act as
quickly as possible. In most cases, the players have a chance to
think a bit longer before deciding the next shot or move. It is
also often possible to rethink the decision, i.e. to tap the screen
several times within the same game phase.

This observation leads to a related problem of decision
making: what are the appropriate moments of time for an AI-
controlled character to decide its actions? In theory, the AI
system can override its previous decision on each subsequent
frame, though this approach will most probably cause jittery
behavior and will greatly affect game performance (on most
modern smartphones the game runs at 60 frames per second).
The extreme opposite choice, i.e. making decisions early and
never overriding them will make AI unresponsive to the
actions of human players.

In the subsequent discussion, we will use the term learning
point to refer to a moment of time when the AI system is given
an observed (situation, action) pair to be recorded. The total
amount of learning points corresponds to the number of cases
processed by the machine learning algorithm. We will use the
term decision point to refer to a moment of time when the AI
system has to perform an individual act of decision making.

From our experience, the task of choosing appropriate
learning and decision points is not easy, and requires good
understanding of a particular game and its specifics. For
relatively simple games, such as classic Atari arcades, one may
adopt the “act on each k-th frame” approach [7]. However, this
method is hardly applicable in modern commercial game
projects (at least, due to performance considerations).

IV. LEARNING AND ACTING IN A MOBILE TENNIS GAME

The present design of the learning and acting algorithm is a
result of the whole series of iterations, reflecting our
understanding of the game process. Learning and acting is
handled differently in different game phases (the algorithm
used to switch the phases is shown in Fig. 3).

A. Serve phase

During serve, the player first moves to the chosen serve
position, and then shots the ball to the target location on the
opponent’s side of the court. To reduce possible pre-serve
walking, we impose a time limit on serve actions, which is
consistent with ATP rules of real tennis. When the player
initiates a serve, the AI learns this action with no associated
game situation. One may argue that the serving player must
take into account the position of the receiver. However, this
logic leads to undesired behavior: the receiver reacts to the
change of the position of the serving player, and the serving
player adjusts own position in response to the receiver’s move.
We decided that the AI system should presume that the
receiver can always adapt to the serving player’s position, and
thus the best strategy is to serve without looking at the
opponent. In addition, we discard all player movements made
before a serve. In other words, we do not treat pre-serve
walking as an essential part of the game, and learn only the last
movement to the final serve location.

Learning point: as soon as the serve target is known.

Situation: none

Action: move to a specified serve position; serve to a
specified target point on the opponent side of the court.

Decision point: in the beginning of the Serve phase.

B. Recovery phase

During this phase, a player can freely move own character
on the bottom half of the court, so in theory this trajectory can
be quite complex. In practice, however, the task of the player is
to occupy a certain winning spot on the court to maximize own
chances of returning the opponent’s shot. At the same time, the
opponent is running towards the ball landing area, known to
the player, so the player can predict the opponent’s movements
already in the beginning of Recovery phase. Therefore, we
decided to keep only the last movement of the player,
discarding all earlier actions. This decision is still being
debated, and might be revised in the future. While erratic
recovery movements are probably not a part of the normal
game process, in theory they can be used as a stratagem to
confuse the opponent. In addition, their absence can be treated
by the players as a sign of artificial, robot-like behavior.

While working on this phase, we also had to discuss a
simple but important case of learning user intentions rather
than actions. When a player skips recovery (does not tap
anywhere), should we treat it as “do not move anywhere” or
“move to the point where the character is currently located”?
The answer is crucial for decision making. If a situation A is
considered similar to another situation B, then we should be
able to apply in B the same action as in A. If the player did
nothing during Recovery phase in A, what should we do if the
player character in B is located not in the same spot as in A?
One option would be to keep the character still (and thus treat
the absence of action as “do nothing”), but we can also move
the character to the location recorded in A. (The third option
would be to treat the “no action” situation as a player error and
do not learn it at all).

Our experiments with the game and the analysis of actual
play styles of our beta testers showed that the in most cases the
desired action was to move the character rather than to keep it
still. The cases of user errors were also rare: if a player does
not specify the next recovery point, it usually means that the
current location should be treated as a desirable target for the
recovery movement.

Learning point: as soon as the opponent hits the ball (end
of the Recovery phase).

Situation: includes the coordinates of both characters and
the ball target, taken at the beginning of the Recovery phase.

Action: move to the last specified position.

Decision point: at the beginning of the Recovery phase.

C. Return a serve/shot phase

This phase is perhaps the most important in the game, and
should be examined carefully, since making the right shots is
the essence of any tennis game. In our case, players face a

choice: on one hand, the game engine encourages early shot
actions, as they provide more accuracy; on the other hand, one
might prefer to wait a bit longer and to react to the opponent’s
recovery movement. In the present version of the system, we
decided to learn two actions during this phase. The first action
corresponds to an early decision, and is paired with the game
situation that lacks information about the opponent movement
direction. The second action corresponds to a decision made
when the ball is crossing the net, and includes opponent
direction value (“towards the ball target”, “from the ball target”,
“no movement relative to the ball target”).

In the decision making mode, the AI always sets the ball
target early in the beginning of the phase. When the ball
crosses the net, it requests the second decision and overrides
the first decision if the new decision is ranked higher according
to the situation similarity value, i.e. when the new decision is
considered closer to the play style of the human player.

Note that in this phase the user can also skip a turn, giving
no commands to own character. Unlike “implicit recovery
movements”, however, there are no “implicit shots”, so we
treat this situation as a user error, and do not learn anything in
these cases.

Learning point: as soon as the player hits the ball.

Situation 1: includes the coordinates of both characters,
and the ball target point, taken at the beginning of the phase.

Situation 2: includes all the features of Situation 1, and the
direction of the opponent character, taken when the ball was
crossing the net.

Action: shot the ball to the specified target point.

Decision point 1: at the very beginning of the phase.

Decision point 1: when the ball is crossing the net.

D. Prepare to receive a serve phase

While the serving player is moving to the desired serve
location, the receiver should occupy a convenient spot on the
court to receive a serve. There are three cases when we allow
the receiver to change its location: 1) at the beginning of the
phase; 2) when the serving character starts moving; 3) at the
end of the phase, when a serve is initiated. In practice, we
impose an additional minimum move distance in (2) to prevent
quick response of the receiver to every slight motion of the
serving player, which looks unnatural. We also decided to let
the learning algorithm know the target location of the serving
player’s movement. While this location is not visible to human
players (they merely see the direction of the move), we treated
it as an acceptable level of cheating for the AI: it merely
reduces the number of decision points in this phase, without
providing any real advantages.

Learning point: when the opponent’s serve is initiated.

Situation: includes the coordinates of both characters, and
the target point of the opponent’s movement, taken during the
last opponent’s movement before the serve.

Action: move to the last specified position.

Decision point 1: at the beginning of the phase.

Decision point 2: when the serving player starts moving.

Decision point 3: when a serve is initiated.

V. DISCUSSION

The previous section clearly shows that adopting machine
learning-based AI even for a relatively simple game of one-
versus-one lawn tennis is not a straightforward task. Here we
skip the discussion of the algorithm itself and concentrate only
on defining input and output data, and the principles of
choosing learning and decision points. This seemingly
technical procedure, often overlooked in literature, has grown
into a significant module, fundamental to proper AI
functioning. This means that there is a notable entry threshold
for using machine learning in real games, which reduces its
attractiveness as a method of minimizing manual work.

On the positive side, the right combination of manual game
analysis and machine learning technology, and a careful choice
of learning and decision points is able to produce very
satisfactory results. Our main goal was to implement a human-
like AI system, able to substitute real online opponents
transparently, and we believe that some users do not even
realize that they play against AI. The game is currently in the
soft-launch phase, and is being played by around one thousand
users daily. We regularly get players’ feedback, and there are
virtually no complaints about the AI.

It is important to note that one of the strong points of our
AI system is its implicit ability to anticipate opponents’
actions. This is achieved by learning human actions in pairs
with earlier game situations (rather than with the situations,
perfectly corresponding to user input). In general, we use the
earliest situations that have enough data to react to the
opponent, and ignore actual user input delay. This makes AI-
controlled characters somewhat stronger than people, who
cannot react immediately. On the other hand, people are more
flexible in their strategy, and our current experiments show no
clear advantage of AI over people and vice versa.

However, as game designers we see at least, two directions
for future improvements. We noticed that people often predict
actions of familiar opponents, i.e., adjust their game strategy
when facing a particular player. Currently, our AI does not
distinguish opponents. Another important human trait is the
ability to learn quickly on the go. If some action leads to a
quick victory or a defeat against a particular opponent, people
notice it and adjust their actions accordingly. Implementing
this ability would require some variation of reinforcement
learning, which we have in plans.

VI. CONCLUSION

Machine learning and case-based reasoning methods are
often described and used in discrete environments with clearly
defined input and output data, and streamlined decision-
making process. In the domain of computer games, these
assumptions often do not hold, so the game designers have to
perform a thorough analysis to entwine machine learning with
game logic. Much of this work is dedicated to transforming

user intentions into actual (situation, action) pairs that make
sense in the given game world, and agree with its rules. Even
in relatively simple games we see that user actions are largely
dictated by context-dependent tactics and anticipation of
opponents’ actions. We believe that automating this work is
hardly feasible with current state-of-the-art methods, especially
in commercial computer games that require reasonable
decision making as well as low consumption of processor and
memory resources. It means that “automatic” methods of
constructing behavior of non-player characters (such as a
combination of learning by observation with case-based
reasoning) in practice still come with a large amount of manual
effort, and thus their use should be well justified. In case of
World of Tennis: Roaring ’20s we had a special reason to use
these methods, and we are satisfied with the obtained results.

VII. REFERENCES

[1] I. Millington and J. D. Funge, Artificial Intelligence for

Games, 2nd ed. Burlington: Morgan Kaufmann

Publishers, 2009.

[2] A. Champandard, Top 10 Most Influental AI Games:

AIGameDev.com. Available:

http://aigamedev.com/open/highlights/top-ai-games.

[3] D. Takahashi, How Microsoft’s Turn 10 fashioned the

A.I. for cars in Forza Motorsport 5. Available:

https://venturebeat.com/2013/11/06/how-microsofts-

turn-10-fashioned-the-ai-for-cars-in-forza-motorsport-5-

interview.

[4] M. Mozgovoy and I. Umarov, “Behavior Capture with

Acting Graph: A Knowledgebase for a Game AI

System,” in Databases in Networked Information

Systems (DNIS): 7th International Workshop, S.

Kikuchi, A. Madaan, S. Sachdeva, and S. Bhalla, Eds,

Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,

pp. 68–77.

[5] M. Mozgovoy, M. Purgina, and I. Umarov, “Believable

Self-Learning AI for World of Tennis,” in 2016 IEEE

Conference on Computational Intelligence and Games,

2016, pp. 1–7.

[6] A. Aamodt and E. Plaza, “Case-based Reasoning:

Foundational Issues, Methodological Variations, and

System Approaches,” AI communications, vol. 7, no. 1,

pp. 39–59, 1994.

[7] V. Mnih et al, “Playing Atari with Deep Reinforcement

Learning,” in NIPS Deep Learning Workshop, 2013.

Fig. 3. Game Phases Diagram

