

Abstract—This paper describes WordBricks project — an

intelligent computer-assisted language learning environment,

recently initiated at our institution. WordBricks is intended to

serve as a “virtual language lab” that supports open

experiments with natural language constructions. Being based

on dependency grammars, this instrument illustrates the use of

modern natural language processing technologies in language

learning.

I. INTRODUCTION

The use of computer-assisted language learning (CALL)

instruments is now widespread and well recognized both

by language teachers and language learners. Past decades

brought more powerful and accessible computers and

numerous CALL software packages; the level of techno-

logical awareness among teachers has also increased

greatly. At this point, it seems natural that researchers are

often more focused on the integration of existing technol-

ogies into language curricula and the development of

well-balanced teaching methods that combine theory,

technology, and pedagogy, rather than on purely techno-

logical advancements for CALL systems [1].

However, popular CALL systems still rarely incorpo-

rate modern achievements of natural language processing

technologies. For example, language learning software,

recently reviewed in PC Magazine [2], at best provide the

following capabilities: lessons with multimedia content,

word-based memory games, online tutoring, and pronun-

ciation training. Some packages were characterized as

being brilliantly designed, nicely organized (as a combi-

nation of traditional lessons, word drills, scenario-based

lessons/dialogues, etc.), or based on innovative educa-

tional concepts, such as involving a learner into a real text

translation project. Undoubtedly, these features are cru-

cial for a language learner, but in most cases they do not

make use of recent research advancements (probably, the

only exception is high-quality speech recognition).

The lack of intelligence in CALL systems is a well-

known problem, clearly formulated at least as early as in

1992 [5]. It has been suggested that a hypothetical intelli-

gent CALL (ICALL) system can be based on both tech-

nical (natural language processing, speech recognition,

feedback generation) and theoretical (pedagogy, cognitive

science) advancements. The review of ICALL instru-

ments conducted in 2002 identified at least 40 systems

that use artificial intelligence (AI) technologies to a cer-

tain extent [6]. The same paper admits that many capa-

bilities of ICALL systems cannot be reliably addressed

with state-of-the-art technologies. This is a likely reason

for a low interest in AI technologies for CALL today. As

noted in [7], “the development of systems using NLP

technology is not on the agenda of most CALL experts,

and interdisciplinary research projects integrating compu-

tational linguists and foreign language teachers remain

very rare”.

Examples of ICALL systems provided in [6] and [7]

show that AI technologies are most commonly used for

grammar checking, textual feedback generation, and au-

tomatic speech recognition. Still, these technologies rare-

ly address one of the major flaws of today’s CALL sys-

tems, lying in their strictly limited interactivity. Typically

a student accesses learning materials in the same way as

in case of traditional books and audiotapes, while having

little or no ways to experiment with language. One can

note a contrast between CALL instruments and educa-

tional software, available for natural sciences, such as

physics or chemistry. For these subjects, in addition to

browsing multimedia learning materials, a student can

often perform numerous experiments in a “virtual lab”

(such as, for example, The Virtual Physical Laborato-

ry [3] and The ChemCollective [4]).

Theoretically, numerous language learning activities

might benefit from students’ unrestricted experimentation

(checking the applicability of a certain construction in a

certain context, finding the best translation for the given

phrase, exploring word morphology and the rules of verb

government). In practice, many of these options are still

too challenging for today’s speech and language pro-

cessing technologies. Given these limitations, one might

consider an alternative approach: instead of fulfilling

pedagogical aims with immature technology, it makes

sense to try to implement scenarios that are technological-

ly doable, and still have pedagogical value.

The idea of a “virtual language lab” based on estab-

lished natural language processing technologies is the

starting point of a project recently initiated at our institu-

tion. In this paper, I will introduce this project, and dis-

cuss its expected advantages and drawbacks as well as

possible research directions. The first version of our soft-

ware will be English language-based, but in this paper I

will also use examples from other languages to illustrate

certain grammatical phenomena.

II. THE BASIC CONCEPT OF “WORD BRICKS”

We decided to devote our project to one specific type

of language learning activities: to the process of con-

Maxim Mozgovoy
University of Aizu

 Tsuruga, Ikki-machi, Aizu-

Wakamatsu, Fukushima, Japan

Email: mozgovoy@u-aizu.ac.jp

Towards WordBricks — a Virtual Language Lab

for Computer-Assisted Language Learning

structing grammatically correct phrases. A student with

initial vocabulary and some knowledge of grammar rules

might want to practice them by creating simple sentences.

At this stage, it is important to make sure that the sen-

tences are built properly, and if not, the student gets nec-

essary feedback. By creating sentences, the student in the

simplest case can test hypotheses about the correctness of

certain constructions. In more advanced scenario, the

feedback might include hints on the proper use of words

and word combinations. For example:

 A student can check whether a certain word is appro-

priate in a certain context. Suppose the student knows

that one can ride a horse, but can one ride a car?

 A student can find the correct word form for the given

syntactical context. In English, the verb form depends

on the subject’s person, so the student has to choose

between the base form of the verb and the 3rd person

singular form. For other languages these rules can be

more complicated. For example, Russian verbs are

conjugated according to the subject’s person and

number in the present tense, but to the subject’s gen-

der and number in the past tense.

 A student can find correct prepositions and/or gram-

matical cases for the given context. For example, in

Finnish some verbs require that the object noun is al-

ways set into a certain form (so the verb “governs” the

noun). This verb / noun form list has to be memorized.

The idea of incorporating a grammar checker into CALL

software is not new. Such an automated feedback genera-

tion system was implemented, e.g., in Robo-Sensei Japa-

nese tutoring system [8]. However, today’s grammar

checkers are not very helpful in open experiments with

language constructions. As noted in [7], grammar check-

ers are usually aimed at native speakers, and do not pro-

vide sufficient feedback for language learners. One possi-

ble way to solve this problem is to restrict user input. This

approach is implemented in Robo-Sensei: the system asks

the student to answer a specific question, and then com-

pares the response with an “answer schema” that specifies

the pattern of the expected correct response.

We believe that free experiments with language con-

structions are possible without traditional grammar

checking technologies. Consider the following analogy. A

programmer, working with traditional programming lan-

guages, has to write plaintext code that is translated into

low-level machine instructions. It is a job of a compiler or

interpreter to parse the code, and to identify possible syn-

tactic errors. Unlike them, visual programming systems,

often used for teaching programming to kids, store pro-

grams in graphical flowcharts (see, e.g., Flowol [9]), thus

eliminating the need of parsing and error checking. One

can draw a flowchart that corresponds to a wrong algo-

rithm, but the flowchart itself cannot be “syntactically

incorrect”, since the visual editor allows no illegal links

between the elements.

In a sense, flowcharts represent “parsed” programs,

stored in the form that directly reflects their syntactic and

semantic structure. Natural language sentences also can

be represented in a parsed tree-like form with phrase-
structure grammars or dependency grammars [10]. Our

idea is to let the students compose parsed sentences di-

rectly instead of traditional writing.

III. GENERAL DESIGN OF THE SYSTEM

Currently, we are developing the system with the fol-

lowing image in mind. A student is given a number of

“word bricks” that represent single words. The student

can connect individual bricks to form phrases and sen-

tences. Every brick has typed incoming and outgoing

“connectors”, ensuring that only grammatically correct

links are possible.

We believe that dependency links are easier to under-

stand, since they connect words of a sentence directly,

and do not require additional non-word bricks, as in case

of phrase-structure links. The dependency link from the

word A to the word B can be informally explained as a

question that contains A, and has B as an answer. For ex-

ample, in the phrase he likes apples there is a dependency

link from likes to he, since it is possible to construct a

question who likes apples?, having he as an answer. This

idea is illustrated in Fig. 1 that shows the parse tree of the

phrase Tomorrow we go to Tokyo.

Fig. 1. The parsed phrase Tomorrow we go to Tokyo.

At this point one may ask how the student would be

able to see the resulting phrase in its conventional, non-

parsed form. The process of conversion of parsed repre-

sentation into an ordinary word chain is known as tree
linearization, and well covered in literature (see,

e.g. [11, 12]). By employing a linearization algorithm, we

can show the resulting sentence in real-time. However, it

might be reasonable to provide also manual word rear-

rangement functions, so the student can also practise the

topic of word ordering.

IV. FROM BASIC BRICKS TO TYPED BRICKS

Even a simple software tool that allows drawing de-

pendency parse trees (such as shown in the Fig. 1) with-

out any restrictions on word-word links has some peda-

gogical value, since it visualizes sentence structure
1
.

Our next aim is to restrict possible connections, so the

student cannot produce ungrammatical sentences. The

formalism of dependency grammars allows us to specify

the type of word-word relationship, such as verb-subject,

verb-object, noun-modifier, and so on. If we know the

1
 One may ask whether the student needs to know this

structure. Let us postpone the discussion of this question for

a while.

Tomorrow
we

go

to

Tokyo

when

? who?

where?

type of this relationship, we can decide which restrictions

should be applied in the given case.

Perhaps, the development of such word linking con-

straints for each relationship type is the most challenging

part of our project. These rules vary greatly from lan-

guage to language, and might require morphological or

even semantic information about the words to be linked.

We will not discuss here all possible types of grammatical

relationships and all kinds of challenges that arise in the

task of linking constraints declaration, but it makes sense

to consider several illustrative examples.

Noun-adjective link. In English, we can establish a

link between any noun and any adjective (answering the

which?-question). In Russian and Spanish this noun-

adjective link can be established only if the adjective

agrees in number and gender with the noun:

libro rojo (red book)
libros rojos (red books)

rosa roja (red rose)

rosas rojas (red roses)

Verb-object link. In English, normally any noun or

pronoun in objective case can be used as an object of a

verb:

I like cars.

I like her. (‘her’ is an objective case of ‘she’)

In Russian, we need to know whether the object repre-

sents something alive. For animate things the word form

of the object is identical to the genitive case form, while

for inanimate things the nominative case form should be

used.

Verb government. The examples above describe gen-

eral grammatical rules that hold for wide classes of word

pairs. However, there are also verb-object relationships

that depend on particular verbs. For example, the verb to

buy requires an indirect object with the preposition in:

I buy fish in a shop.

This fact is not as trivial as it might seem: in Finnish

language one buys something from a shop (and this is

expressed without any prepositions; the corresponding

form of the word shop is used instead). So the choice of

prepositions and word forms of verb objects is not obvi-

ous. It depends on a particular verb, such as to buy.

Semantics-driven links. The discussed above link

types can be used to ensure grammatical correctness of

phrases. However, they do not prevent improper word

use. Consider the following example. In English, one can

break the cup and break the law. The student, familiar

with English, may try to reproduce the same pattern in

Russian, but this is incorrect: in Russian, it is impossible

to use the same verb in these two distinct contexts.

We believe this problem can be addressed with addi-

tional constraints on word types, as suggested in [13],

though we did not decide yet whether we are going to

implement this functionality, as it requires considerable

amount of work. The idea is to introduce a hierarchy of

word classes. Having this ontology, we can specify that

one can break only breakable things, drive only drivable

things, and so on. Several such ontologies are already

available and can be used (see, for instance, the system of

WordNet categories [14]).

V. PROS AND CONS

In the previous sections I have outlined specific tech-

niques for addressing particular language phenomena.

Now let us discuss the potential advantages and draw-

backs of our “virtual language lab”, affecting its pedagog-

ical value.

At present, we see the following positive sides of our

approach:

Supporting “virtual labs” in language learning. As

mentioned above, the idea of open experimentation is

supported in numerous educational software projects.

However, in computer-assisted language learning this

“virtual lab” approach is clearly underrepresented.

Formalized explanations. Typed word bricks provide

a natural way to explain such language phenomena, as

morphology, homonymy, cases and prepositions, verb

government, and proper word use. Students can see how

the choice of a word form affects brick type; how subjects

and objects are linked to verbs, and so on.

Understanding underlying structures. Parse trees

show the structure of sentences, thus contributing to

deeper understanding of grammar rules and word-linking

principles.

Contextualized assistance. Since the system knows

internal structure of phrases, being constructed by stu-

dents, it can provide numerous context-dependent hints.

For example, it can automatically select the proper verb

form for the given subject-verb word pair; it can provide

a list of prepositions and grammatical cases, used with the

given verb; it can display a list of breakable things used

with the verb to break or a list of drivable things used

with the verb to drive, and so on.

Unfortunately, our approach has also serious disad-

vantages, whose impact can be evaluated only in real-life

experiments:

Unnatural constructions. Lucien Tesnière, who pio-

neered dependency grammars, distinguished the concepts

of words as syntactic elements and of nuclei as complex

elements carrying the same role as words [15]. For exam-

ple, both the word sees and the word combination will
have been seeing correspond to single nuclei. In a sense,

“will have been seeing” is logically a single word, syntac-

tically made up of separate tokens.

Dependency trees provide a convenient and natural

way to link nuclei, but the situation becomes less obvious

for the words inside a single nucleus. What kind of links

connect the words will, have, been, and seeing? There are

many such confusing sentence elements: complex objects

that consist of and-, or-, or comma-separated elements;

quotations; prepositions and articles; proper names; punc-

tuation marks. Researchers have developed consistent

guidelines that assist constructing dependency trees (see,

e.g., Stanford typed dependencies manual [16]), but the

need of knowing these technicalities is an unnecessary

burden for a language learner. One may argue that even

the parsed representation itself is a burden, so these com-

plications with word linking rules make the system im-

practical.

Dependency grammars were also criticized for little

support of word ordering rules. There are attempts to ad-

dress this defect (see, e.g., [17]), but currently it is unclear

how to incorporate word ordering into our system in a

natural, pedagogically sound way.

Limitations of error prevention system. The pro-

posed system is not bullet-proof. By design, it analyzes

local contexts of words only, so it cannot detect errors

that appear at paragraph level. For example, the system is

generally unable to detect improper article use (except

simple cases with precise phrase-level rules, such as “do

not use articles with people’s names”). The system is also

unable to detect semantic errors, when the sentence is

grammatically correct, but the meaning is wrong.

Technical difficulties. The complete set of word-

linking rules, described in Section IV, is most probably

too large for manual implementation. For the proof-of-

concept system, we plan to limit ourselves with a small

vocabulary, and to declare rules manually. However, for a

full-sized system we will need to learn rules automatical-

ly from treebank data
2
. Currently, it is hard to estimate

how challenging this process is.

VI. CONCLUSION

In this paper I have outlined basic design ideas of

WordBricks — a new virtual language lab project, recent-

ly initiated at the University of Aizu. We are trying to

implement a tool for open experimentation with language

constructions. Such ICALL instruments are still very rare

today.

Throughout the paper, we have seen how various lin-

guistic phenomena, such as word agreement, verb gov-

ernment, cases and prepositions can be handled, and how

dependency parse trees can be used by students to con-

struct phrases and sentences. We believe that such a visu-

al representation of sentence structure is helpful for deep-

er understanding of human language grammar rules.

This year we are planning to conduct first experiments

in a real classroom environment and to make grounded

conclusions about the feasibility of our approach. We are

aware of potential limitations and drawbacks, but many of

them are caused with objective complications of human

language, and there is no way to overcome them com-

pletely.

REFERENCES

[1] N. Garrett, “Computer-Assisted Language Learning Trends and Issues

Revisited: Integrating Innovation,” The Modern Language Journal,

vol. 93, pp. 719-740, 2009.
[2] J. Duffy, “The Best Language-Learning Software,” PC Magazine,

April 12, 2012.

URL: http://www.pcmag.com/article2/0,2817,2381904,00.asp
[3] The Virtual Physical Laboratory.

URL: http://www.colpus.me.uk/vplabd/
[4] The Chemistry Collective. URL: http://chemcollective.org/

[5] M. Swartz and M. Yazdani (Eds.), Intelligent Tutoring Systems for

Foreign Language Learning. Springer Verlag, 1992.
[6] J. Gamper and J. Knapp, “A Review of Intelligent CALL Systems”,

Computer Assisted Language Learning, vol. 15(4), pp. 329-342, 2002.

[7] L. Amaral and D. Meurers, “On Using Intelligent Computer-Assisted
Language Learning in Real-Life Foreign Language Teaching and

Learning,” ReCALL, vol. 23(1), pp. 4-24, 2011.

2
 A treebank is the collection of manually parsed sentences.

[8] N. Nagata, “Robo-Sensei’s NLP-Based Error Detection and Feedback

Generation,” Calico Journal, vol. 26(3), pp. 562-579, 2009.

[9] Flowol. URL: http://www.flowol.com

[10] O. Rambow and A. Joshi, “A Formal Look at Dependency Grammars

and Phrase-Structure Grammars, with Special Consideration of Word-
Order Phenomena,” Recent Trends in Meaning-Text Theory, vol. 39,

pp. 167-190, 1997.

[11] K. Filippova and M. Strube, “Tree Linearization in English:
Improving Language Model Based Approaches,” Proc. of Human

Language Technologies, pp. 225-228, 2009.

[12] E. Ringger et al., “Linguistically Informed Statistical Models of
Constituent Structure for Ordering in Sentence Realization,” Proc. of

the 20th Int’l Conf. on Computational Linguistics, pp. 673-679, 2004.

[13] M. Mozgovoy and T. Kakkonen, “An Approach to Building a
Multilingual Translation Dictionary that Contains Case, Prepositional

and Ontological Information,” Proc. of the 12th Int’l Conf. on Humans

and Computers, pp. 135-139, 2009.
[14] P. Vossen et al., “The EuroWordNet Base Concepts and Top

Ontology,” Technical report 1998-TR-004, Centre National de la

Recherche Scientifique, France, 1998.
[15] S. Kahane, “If HPSG were a dependency grammar…,” Proc. of the

3rd TALN Conf., pp. 45-49, 1996.

[16] M.-C. de Marneffe and C. Manning, “Stanford Typed Dependencies
Manual,” Stanford University, 2008.

[17] D. Duchier and R. Debusmann, “Topological Dependency Trees : A

Constraint-Based Account of Linear Precedence,” Proc. of the 39th
Annual Meeting on Association for Computational Linguistics,

pp. 180-187, 2001.

