

Abstract—This paper describes a possible extension of well-

known open source grammar checking software LanguageTool.

The proposed extension allows the developers to write

grammar rules that rely on natural language parser-supplied

dependency trees. Such rules are indispensable for the analysis

of word-word links in order to handle a variety of grammar

errors, including improper use of articles, incorrect verb

government, and wrong word form agreement.

I. INTRODUCTION

rammar checking is a well-recognized problem of

natural language processing. Grammar checkers are

helpful in a variety of scenarios, such as text authoring and

language learning. The purpose of such tools is to find

grammatical errors in the input text: incorrect use of person,

number, case or gender, improper verb government, wrong

word order, and so on. A grammar checker normally works

in combination with a spellchecker — a module that detects

spelling errors in individual words. As a rule, spell checker

cannot correct even basic grammatical flaws, such as

erroneous choice of article (like in the expression “an box”).

While a spellchecker is already an essential part of a

modern text authoring system, a grammar checking module

is still found only in large commercial packages like

Microsoft Office or WordPerfect Office. Certain grammar

checkers are also available as additional software packages

or online services, offered by independent companies [1-3].

This situation is slowly changing nowadays. With the

growing popularity of open source software, more natural

language processing systems should become available for

wider use. Open spellchecking libraries, such as JOrtho and

GNU Aspell already exist, and anyone can extend own

software with their capabilities. Grammar checking is a more

challenging task, and most open projects are still far beyond

well-established proofing tools, such as offered in MS Word.

I. Rule-Based Grammar Checking

Probably, the predominating approach to grammar

checking today consists in testing the input text against a set

of handcrafted rules [4, 5]. For example, the rule

I + Verb (3rd person, singular form)

corresponds to the incorrect verb form usage, as in the

phrase “I has a dog”. In order to emphasize the nature of

such rules as erroneous patterns, they are often called “mal-

rules”.

This method has several attractive features: (a) rules can

be easily added, modified or removed; (b) every rule can

have a corresponding extensive explanation, helpful for the

end user; (c) the system is easily debuggable, since its

decisions can be traced to a particular rule; (d) the rules can

be authored by the linguists, possessing limited or no

programming skills. An obvious disadvantage of a rule-

based system is a large amount of manual work, needed to

build an extensive rule set.

An alternative approach is represented with several

varieties of statistical systems that analyze existing

collections of grammatically correct and incorrect texts,

attempting to find word patterns and/or text features that

correspond to correct sentences [6, 7]. The simplest

statistical grammar algorithm consists in analyzing N-grams

— chains of N consecutive words [8]. If a certain word

chain is common in the master text corpus, it is considered

correct.

Statistical grammar checkers have their own advantages

and drawbacks, but their analysis is beyond the scope of this

article.

II. Introducing LanguageTool

The purpose of the present work is to design a possible

extension for LanguageTool grammar checker [9].

LanguageTool is a modern rule-based open source grammar

checking system, available both as a plug-in for

OpenOffice.org and as a downloadable library, which makes

it ready for use in any software projects. Currently

LanguageTool supports 21 languages, though the number of

ready grammar rules ranges from 4 for Lithuanian to 1810

for French (as of April, 2011). The rules can be authored by

any interested contributors.

Unfortunately, the syntax of rules in LanguageTool does

not allow formulating certain grammatical phenomena. In

the subsequent sections, we will consider these limitations

and a possible method to reduce them.

G

Dependency-Based Rules for

Grammar Checking with LanguageTool

 Maxim Mozgovoy
University of Aizu

Tsuruga, Ikki-machi, Aizu-Wakamatsu,

Fukushima, 965-8580 Japan

Email: mozgovoy@u-aizu.ac.jp

II. BASIC DESIGN PRINCIPLES OF LANGUAGETOOL

LanguageTool defines an XML-based language for

describing mal-rules. In its simplest form, a mal-rule is just a

sequence of tokens to be matched in the text:

<!-- "all be it" instead of "albeit" -->

<pattern>

 <token>all</token>

 <token>be</token>

 <token>it</token>

</pattern>

<message>Did you mean 'albeit'?</message>

The syntax of the rules is flexible and powerful: it is

possible to use OR and NOT logic operations (“match token

A or token B”; “match any token except C”), skip optional

tokens, and, to some extent, use regular expressions.

Several syntactic elements are backed with additional

linguistic modules — sentence splitter and part-of-speech

tagger. Sentence splitter determines the boundaries of each

sentence, thus allowing the user to find certain tokens

exactly at the beginning or at the end of a sentence:

<!-- "another words," instead of

 "in other words,"

 at the beginning of a sentence -->

<pattern>

 <token postag="SENT_START"></token>

 <token>another</token>

 <token>words</token>

 <token>,</token>

</pattern>

<message>Did you mean

 'in other words'?</message>

Part-of-speech tagger determines every word‟s part of

speech, helping the user to find tokens that belong to a

certain class:

<!-- "ca" + [personal pronoun] instead of

 "can" + [personal pronoun] -->

<pattern>

 <token>ca</token>

 <token postag="PRP"></token>

</pattern>

<message>Did you mean 'can'?</message>

LanguageTool makes use of third-party libraries for

splitting and tagging the input text. Fortunately, a number of

ready solutions are available for this purpose (e.g.,

Ratnaparkhi‟s MXPOST and MXTERMINATOR [10, 11]).

III. INTRODUCING DEPENDENCY-BASED RULES

Despite the high expressive power and flexibility,

LanguageTool‟s rule system has a notable shortcoming: it

treats the input text as a sequence of tokens, ignoring tree-

like nature of natural language sentences.

Consider, for example, the following problem. In English,

a/an article should never be used with a noun in a plural

form. The current LanguageTool rule to detect such a case is

defined as follows:

<!—"a/an" article, then a plural noun -->

<pattern>

 <token regexp="yes">a|an</token>

 <token postag="NNS|NNPS"</token>

</pattern>

<message>Don't use indefinite articles

 with plural words.</message>

However, this rule ignores the fact that there can be any

number of words between a/an and the corresponding noun

(“a box”, “a wooden box”, “a simple wooden box”). The

rule definition can be improved if we allow any number of

optional adjectives between the article and the noun, but in

general case this solution is inadequate.

In order to handle such problems, the grammar checker

should analyze nonlinear structure of the phrase. An article

is logically linked with a noun, regardless of any words

between them. This nonlinear structure can be obtained with

an additional module, known as dependency parser. This

instrument represents the structure of every sentence with a

parse tree, having words as nodes and logical links between

them as edges (see Fig. 1).

Fig. 1 Parse tree for the phrase “I made a simple wooden box”.

As it can be seen, the article “a” is linked directly to the

noun “box”. Having such a tree, it is possible to extend the

syntax of LanguageTool grammar rules, enabling the

developers to analyze word-word relationships.

IV. TECHNICAL APPROACH

In order to achieve our goals, we had to solve three

subproblems: 1) select a suitable dependency parsing

instrument; 2) develop an appropriate syntax for

dependency-based rules; 3) design the corresponding rule-

matching algorithm.

I. Selecting a Practical Dependency Parser

After examining currently available solutions, we decided

to use one of two parsers: MaltParser [12] or LDPar [13].

Both of them are high-quality dependency parsers, available

as open source.

MaltParser is written in Java, and thus suits better for the

use in combination with the current implementation of

LanguageTool, also made with Java. LDPar distribution

contains cross-platform C++ code, providing compilable

efficient implementation. Both parsers are based on machine

learning: the parser first has to be trained with a collection of

correctly parsed sentences (a treebank). MaltParser and

LDPar also share the same format of input and output data.

II. Suggested Syntax for Dependency-Based Rules

Dependency-based rules should provide syntactic means

for the following basic functions:

1) Match a link between two given words, optionally

labeled with a given label. This function should be

generalizable to the matching of the whole subtree.

2) Make sure that a certain word appears before or after

another word, in order to control word precedence.

3) Ensure the absence of the given subtree in the parse

tree.

In order to satisfy these requirements, we suggest the

following syntax for an individual dependency-based rule.

The rule definition is split into chunks, each representing a

separate subtree to be matched:

CHUNK1

CHUNK2

...

CHUNKN

Every CHUNKi is represented with a sequence of tokens,

defined with token XML tag:

<token [attributes]>token-value</token>

Currently our system supports the following attributes:

- pos: the token should belong to the specified part-of-

speech class;

- label: the link to the token‟s parent (according to the

parse tree) should has the specified label;

- parent: the token should have the specified token as a

parent (according to the parse tree);

- except: the token‟s value should not match token-

value;

- before: the token should appear in the sentence before

the specified token;

- after: the token should appear in the sentence after the

specified token;

- chunk_start: start-of-chunk marker;

- inverse: the current chunk (subtree) should not be

found in the parse tree.

Attributes parent, before, and after expect a token‟s

cardinal number within the current chunk as an argument.

By default, every chunk of the rule has to be matched in the

parse tree in order to satisfy the rule.

III. Examples

The following examples illustrate the capabilities of

dependency-based rules:

<!-- Example 1:

 in non-interrogative sentences

 the subject should be placed before

 the predicate -->

<token pos="VB|VBP|VBZ|VBD"

 label="ROOT"></token>

<token after="1" label="SUB"></token>

<token chunk_start="" inverse=""

 label="ROOT"></token>

<token parent="1">?</token>

The first chunk ensures that the system has found a

subject (labeled SUB), placed after the main verb. The

second chunk asserts the absence of „?‟ mark, linked to the

tree root.

<!-- Example 2:

 "a/an" should not be used

 with plural nouns -->

<token>a|an</token>

<token pos="NNS|NNPS" parent="1"></token>

This mal-rule finds a/an articles, linked to plural nouns

(marked as NNS or NNPS by a part-of-speech tagger). Note

that the determiner (such as an article) is always directly

linked with the corresponding word, even if they are not

adjacent in the original sentence.

<!-- Example 3:

 the gerund should be used in conjunction

 with auxiliary verbs -->

<token pos="VBG" label="ROOT"></token>

If a gerund (verb ing-form) is considered a parse tree root,

this means the absence of an obligatory auxiliary verb (such

as “is”, “was”). If an auxiliary verb is present, it becomes a

root element of the tree.

<!-- Example 4:

 improper personal verb form used -->

<token pos="VBZ"></token>

<token parent="1"

 label="SUB">I|we|you|they</token>

If the subject of a certain verb is I/we/you/they, the verb

should not be in the 3
rd

 person singular form.

Concerning the design of the actual subtree matching

algorithm, it is implemented as a straightforward recursive

depth-first search routine.

V. DISCUSSION

LanguageTool is a good example of an extensible rule-

based grammar checker. Basic grammatical rules can be

expressed by means of standard regular expressions. If their

expressive power is insufficient to describe a certain rule,

one can make use of additional natural language processing-

powered syntactic elements, backed with sentence splitter

and part-of-speech tagger.

This architecture can be extended further by incorporating

other language processing modules. An obvious candidate

for this role is natural language parser that shows immediate

word-word relationships. We have demonstrated several

examples of grammar errors, detectable with parser-powered

mal-rules.

Since we consider rule-based grammar checking to be an

established technology, the discussion of its advantages and

drawbacks is beyond the scope of our work. However, our

experiments have revealed weak points of the language tools

we use (parser and part-of-speech tagger, mainly).

Normally, these tools, being based on machine learning

algorithms, need initial training on annotated text data. Most

such training collections are represented with grammatically

correct sentences. Thus, ungrammatical phrases may contain

previously unseen patterns, causing incorrect results. For

example, a part-of-speech tagger cannot reliably determine a

tag for the word “like” in the phrase “he like dogs”, since

such a pattern never appears in the training collection.

Since processing ungrammatical sentences is a crucial

feature for a grammar checking module, this issue needs

further research. One of the possible solutions would be to

extend the training collection with ungrammatical sentences.

VI. CONCLUSION

We have designed and implemented the mechanism of

natural language parser-backed rules for a LanguageTool-

based grammar checking module. Our syntax allows writing

rules that analyze word-word dependencies in a given

phrase. We have shown real examples of language

phenomena, where such rules are much more helpful than

built-in LanguageTool instruments.

REFERENCES

[1] J. Burston, "Bon Patron: An Online Spelling, Grammar, and

Expression Checker," CALICO Journal, vol. 25, no. 2, pp. 337-347,

2008.

[2] H.J. Chen, "Evaluating Two Web-based Grammar Checkers-

Microsoft ESL Assistant and NTNU Statistical Grammar Checker,"

International Journal of Computational Linguistics & Chinese

Language Processing, vol. 14, no. 2, pp. 161-180, 2009.

[3] B. O‟Regan, A. Mompean and P. Desmet, "From Spell, Grammar

and Style Checkers to Writing Aids for English and French as a

Foreign Language: Challenges and Opportunities," Revue francaise

de linguistique appliquee, vol. 15, no. 2, pp. 67-84, 2010.

[4] E.M. Bender et al., "Arboretum: Using a precision grammar for

grammar checking in CALL," Proceedings of the InSTIL/ICALL

Symposium: NLP and Speech Technologies in Advanced Language

Learning Systems, pp. 83-86, 2004.

[5] M. Milkowski, "Developing an open-source, rule-based proofreading

tool," Software: Practice and Experience, vol. 40, no. 7, pp. 543-566,

2010.

[6] M.J. Alam, N. UzZaman and M. Khan, "N-gram based statistical

grammar checker for Bangla and English," Proceedings of ninth

International Conference on Computer and Information Technology

(ICCIT 2006), 2006.

[7] J. Wagner, J. Foster and J. van Genabith, "Detecting grammatical

errors using probabilistic parsing," Workshop on Interfaces of

Intelligent Computer-Assisted Language Learning, 2006.

[8] J. Sjobergh, "The Internet as a Normative Corpus: Grammar

Checking with a Search Engine," Technical Report, KTH Nada,

 2006.

[9] D. Naber, "A rule-based style and grammar checker," Master's thesis,

University of Bielefeld, 2003.

[10] A. Ratnaparkhi, "A maximum entropy model for part-of-speech

tagging," Proceedings of the conference on empirical methods in

natural language processing, vol. 1, pp. 133-142, 1996.

[11] J.C. Reynar and A. Ratnaparkhi, "A maximum entropy approach to

identifying sentence boundaries," Proceedings of the fifth conference

on Applied natural language processing, pp. 16-19, 1997.

[12] J. Nivre et al., "MaltParser: A language-independent system for data-

driven dependency parsing," Natural Language Engineering, vol. 13,

no. 2, pp. 95-135, 2007.

[13] P. Jian and C. Zong, "Layer-Based Dependency Parsing,"

Proceedings of the 23rd Pacific Asia Conference on Language,

Information and Computation (PACLIC 23), pp. 230-239, 2009.

