
 Copyright ⓒ 2010 Future Technology Research Association International 1

Extensible Dependency Grammar for Education: Ideas

and Experiments

Maxim Mozgovoy

University of Aizu

Aizu-Wakamatsu, Japan

mozgovoy@u-aizu.ac.jp

Extensible dependency grammar (XDG) is a modern formalism for

declaring dependency relations between lexical entries, generally used

to construct natural language parsers. This work discusses how XDG

can be used to build computer-assisted language learning

instruments, such as a context-sensitive dictionary, a cases and

prepositions learning tool, and a grammar checking module. The

paper outlines several ideas, currently being researched by the author

and his colleagues, and some of the current experiments.

Keywords—natural language processing; parsing; word sense

disambiguation; computers in education.

I. INTRODUCTION

Most currently popular natural language parsers generate
phrase structures that represent constituent parts of input
sentences. However, in recent years there is a growing interest to
dependency-based representations of natural language texts [10].
Dependency-oriented formalisms suggest that syntactic structure
of a sentence consists of lexical elements linked by binary
asymmetrical relations called dependencies [1]. Such a
representation provides a number of advantages. For instance,
dependency links are closer to semantic relationships interpreted
on the subsequent text processing stages [2]. Since dependency-
based parser only connects existing words (and does not create
new nodes in the parse graph), the results are easier to analyze
and interpret. Furthermore, as noted in [1], dependency parsing is
often considered more adequate for languages with freer word
order than in English.

As of today, Ralph Debusmann’s XDK [3] is probably the
only full-fledged parser maker’s toolkit, aimed at producing
dependency-based parsers. Basically, it consists of a universal
parser that processes extensible dependency grammars
(XDG) [4]. The input grammar defines both word-linking
principles and operating parameters of the parsing algorithm. The
grammar can be either handcrafted or automatically generated.
While XDK (standing for “XDG Development Kit”) comes with
examples of handmade grammars, there was at least one attempt
to generate a grammar automatically from dependency treebank
data [5].

Our current experiments with XDG are primarily
concentrated on using handcrafted XDG-style grammars for the
purposes other than plain text parsing (we are mostly interested
in computer-assisted language learning). In the future, we also
plan to experiment with automatic grammar generation by
elaborating ideas proposed in [5].

In contrast to physics and chemistry, where educational
software has developed significantly from interactive electronic
books to complex virtual labs, computer-assisted language
learning still relies on relatively simple educational instruments
that provide few means to experiment with the language. We are
planning to supply the students with the following tools:

1) A context-sensitive bilingual dictionary. The basic idea of
the dictionary is to declare words with their potential dependents
in order to make translation less ambiguous. For example, a
typical English verb can have numerous translations, often
depending on its direct object. By declaring potential objects
explicitly, one can provide a possible context for each meaning of
the verb, which can be handy for the beginning language
learners.

2) A system for learning cases and prepositions. Case system
and prepositions pose a particular problem in learning foreign
languages. Schmied [12] mentions that traditional grammar
books and dictionaries present no detail information on
prepositions. However, prepositions and cases have specific
syntactic and semantic requirements and the choice of the correct
preposition/case is often dependent on the meaning of the
syntactic element that determines it. Context-sensitive grammar
definitions of cases and prepositions should help the learners to
improve their skills in these language features.

3) A basic grammar checking system. Most available
grammar-checking systems are not specifically tailored for the
needs of language learners. As Krishnamurthy notes, “As a result
of my testing, I am convinced that this feature [MS Word’s
spelling and grammar check] works well for good writers and not
for bad ones. Good writers follow most of the rules and this
feature can help them on the margins. If you are a bad writer
with a poor understanding of the rules, this feature will not help
you at all. This is, clearly, a problem. The feature does not help
those who can most benefit from it.” [13] Simpler systems with
more capabilities for language learners would be more
appropriate in educational environment (and there are attempts to
build such a tool [14, 15]).

This paper outlines the experiments we used to design the
prototypes of above mentioned instruments. The experiments
were performed in order to form a full-scale project proposal for
the EU-funded Seventh Framework Programme [9]. The intended
project is specifically dedicated to the use of NLP technologies in
educational environments.

2 Copyright ⓒ 2010 Future Technology Research Association International

II. XDG IN A NUTSHELL

XDG is a dependency grammar formalism used to describe
natural language structure for further processing by the XDK-
supplied parser. There are several basic ideas behind XDG:

Lexicalization. An elementary grammar entry is a natural
language word with its user-specified attributes. Each attribute
has a name and a value. The most commonly used value types are
“string” and “set of strings”. Typical attributes include
grammatical categories, such as gender, case, number, and
specifications for admissible dependent words (e.g., a noun can
link a dependent adjective).

Graph-level principles. By default, any word in the sentence
can be linked to any other word. To obtain reasonable parse
graphs, a grammar designer should specify a set or restrictions
for the links. These restrictions are called principles. The
simplest example is a tree principle: by declaring it, the designer
says that the resulting graph should be a tree (technically XDK
can build graphs of general form). Other useful principles are
valency principle and agreement principle. We will consider
them in more detail later in this section.

Multidimensionality. Each word attribute is declared in a
certain user-defined namespace, known as dimension. Graph-
level principles are also set for a user-specified dimension. Then
the parser tries to build a parse graph for each dimension
independently. This architecture allows constructing different
“views” of the same sentence. For example, one dimension can
be used to establish word-to-word dependence links, while
another dimension can show linear precedence of words in the
sentence.

A. Valency principle

Valency principle states that a link between words w1 and w2
can be established only if out attribute of w1 agrees with in
attribute of w2. Consider, for example, the following declaration:

defentry { dim lex { word: "eats"}

 dim syn {in: {} out: {subj obj adv*}}}

defentry { dim lex {word: "Peter"}

 dim syn {in: {subj? obj?} out: {} } }

defentry { dim lex {word: "spaghetti"}

 dim syn {in: {subj? obj?} out: {} } }

defentry { dim lex {word: "today"}

 dim syn {in: {adv?} out: {} } }

The specification of out attribute of the verb “eats” says that this
word can link one subject (subj), one object (obj) and an

arbitrary number of adverbials (adv*). The in-attribute
specification of “Peter” declares this word as a possible subject or
object. The same specification is provided for “spaghetti”. The
word “today” is described as potential adverbial. So if we parse
the sentence “Peter eats spaghetti today”, the resulting tree will
have “eats” as root, “Peter” and “spaghetti” will be linked to
“eats” as subjects or objects, and “today” will be linked to “eats”
as an adverbial. The order principle can be used to set the
priority of the first word (“Peter”) as a subject.

B. Agreement principle

Agreement principle requires the words to share some attribute
values in order to be linked. For example, we can say that the
verb “eats” should link a subject, having singular third-person

word form only. At the same time, the verb “eat” should link all
other word forms of a subject:

defentry { dim lex { word: "eats" }

 dim syn { ...

 agrs: {["3" sg]}

 agree: {subj} } }

defentry { dim lex { word: "eat" }

 dim syn { ...

 agrs: {["1" sg] ["2" sg]

 ["1" pl] ["2" pl] ["3" pl]}

 agree: {subj}}

Then the word “Peter” should be described as having singular,
third-person form:

defentry { dim lex { word: "Peter" }

 dim syn { ...

 agrs: {["3" sg]}

 agree: {}} }

As it is seen from these examples, extensible dependency
grammars do not directly support morphological variations in
words. Each of word forms (“eat” and “eats”) should have its
own grammar entry. This limitation, however, is not too strict,
since it is possible to generate grammar entries on the fly using
external morphology analysis modules.

III. DECLARING LOCAL CONTEXT OF WORDS IN XDG

Extensible dependency grammars do not provide explicit
instruments to declare context-sensitive properties of words.
Such a possibility is handy, e.g., for electronic dictionaries. If the
user provides the word to be translated along with its dependents,
the dictionary would be able to find a more appropriate
translation.

The works [6] and [16] explain how word contexts can be
used in bilingual electronic dictionaries, and how to declare them
using XDG statements. The basic idea is to declare a
corresponding concept class for every word, listed in the
grammar. These classes can be taken from any existing system,
such as EuroWordNet’s [7] top ontology (see Figure 1). The
word’s class is listed as a user-defined attribute in the
corresponding XDG statement. Next, the XDG agreement
principle is extended to include word classes in addition to
grammatical categories. This idea can be illustrated with the
following simplified syntax:

// "to play" as in "to play football":

// class act, any subject, object of class game

PLAY_1 act(subj: any, obj: game))

// "to play" as in "to play piano":

// class act, any subject,

// object of class instrument

PLAY_2 act(subj: any, obj: instrument)

FOOTBALL game()

VIOLIN instrument()

(Here any, act, game, instrument are classes found in the
ontology). We should distinguish “to play football” from “to play
piano”, for example, in the case of electronic English to Finnish
dictionary, since in Finnish the corresponding verbs are different
(pelata for playing a game, and soittaa for playing a musical
instrument).

Unfortunately, current XDG syntax does not directly support
hierarchical types, so each word entry should be duplicated with

 Copyright ⓒ 2010 Future Technology Research Association International 3

all its possible superclasses. For example, the entry worker of
class any/people/profession will get three records in the grammar,
corresponding to the following dictionary declarations:

WORKER any/people/profession()

WORKER any/people()

WORKER any()

We consider this peculiarity as a minor disadvantage, since in
our experiments extensible dependency grammars are normally
auto-generated on the fly from higher-level descriptions.

Figure 1. Part of the EuroWordNet Concept hierarchy

IV. USING WORD DEPENDENCIES IN A CONTEXT-SENSITIVE

DICTIONARY AND A CASES/PREPOSITIONS LEARNING TOOL

In the previous section, we already mentioned the problem of
ambiguity of words to be translated (such as the verb to play).
This ambiguity becomes especially challenging for the language
learners in case of English prepositions. For example, English-
Russian LingvoUniversal dictionary lists 18 different definitions
of the preposition by (and 4 more definitions of by as an adverb).
Furthermore, the prepositions do not always have corresponding
words in the target language. For example, preposition to in the
expression “to travel to Helsinki” has no direct translation into
Finnish. Instead, it affects the form of a verb’s direct object:
“matkustaa Helsinkiin”. It can be noted here that the reverse
translation (from Finnish to English) is simply impossible in this
case without a specific context. One can translate “matkustaa”
and “Helsinki”, but it is harder to find in a conventional
dictionary that -in ending corresponds to English to.

A. Processing User Queries

The prototype of the XDG-powered English-to-Finnish
dictionary operates according to the following scenario:

1. The user enters a query (e.g. “we travel to Helsinki”).

2. An automated morphology analysis module tags each word
with a number of attributes, including base word form, part of
speech, person, number, etc. We used the module, developed by
Alexey Sokirko [8]. A word can have several different
morphological descriptions, since word context is not analyzed at
this stage.

3. On the basis of existing dictionary entries and obtained
morphological information, the preprocessing module generates
the XDG description that includes word entries for the given
sentence (see Table 1).

4. The built-in XDK parser processes the user query by means
of the generated grammar. As a result, a set of the parse trees for
the given sentence is constructed. Each tree node contains, in
particular, the translation of the corresponding word (specified as
a user-defined attribute of the word).

A list of possible translations for each word in the input
sentence is returned to the user. The simplified definitions of the
entries needed to translate the phrase “we travel to Helsinki” are
provided below (see [16] for more details).

WE any/people()

 { finnish: "me" }

TRAVEL_1 act(any, preposition/to/place)

 { finnish: "matkustaa + [illatiivi]" }

TRAVEL_2 act(any, preposition/by/using)

 { finnish: "matkustaa + [adessiivi]" }

TRAVEL_3 act(any, preposition/by/across)

 { finnish: "matkustaa + [partitiivi]" }

TO preposition/to/place(any/place)

HELSINKI any/place()

In addition to context-based word sense disambiguation, this
approach allows declaring multiword expressions. For example,
the phrase bald eagle should be translated into Finnish as a single
word valkopäämerikotka. This fact can be declared in the
dictionary as follows:

EAGLE bird() { finnish: "kotka" }

EAGLE bird(property) { finnish: "kotka" }

EAGLE bird(property/bald)

 { finnish: "valkopäämerikotka" }

BALD property/bald() { finnish: "kalju" }

So if the user enters eagle with a dependent word found in the
concept class property/bald (containing the only word “bald”),
the dictionary should suggest valkopäämerikotka as a translation
of this expression.

4 Copyright ⓒ 2010 Future Technology Research Association International

Table 1. XDG statements for the phrase “we travel to Helsinki”.

Since the classes form a hierarchy, dependent words can be
addressed using broader or narrower classes. In the example
above, property/bald is a subclass of property. Therefore, the
word kotka is used as a translation of eagle in a broad context
(applicable to any kind of eagle), while valkopäämerikotka
applies to bald eagle only.

B. Learning Prepositions and Cases

By limiting word contexts with preposition + verb + noun
chains, we can obtain a tool for learning prepositions and case
system of the language. As already mentioned, this topic (verb

government) is challenging for most students, so a separate
educational instrument would be handy.

In the simplest scenario, the student can just enter the phrase,
and let the system check it. If the phrase is correct, the built-in
XDK parser will build a complete parse tree (see Figure 2).

Figure 2. Parse tree of the phrase “we travel to Helsinki”

Other relatively easily implementable scenarios include:

1) Helping the user to complete the phrase. For example, the
user enters “we travel”, and the system shows which are the
options (with explanations of the meaning of each alternative).

2) Asking the user to select the correct preposition and/or
verb form for a given subject — verb — object phrase. For
example:

(system)> me matkustamme Helsinkiin

 (we, travel, Helsinki) ?

(user)> we travel to Helsinki

(system)> correct!

For the second scenario, an additional module that generates

user-specified morphological forms is needed. For Finnish, we

used freely available Omorfi project [18]. For the simplest

grammatical constructions, the phrases to be translated by the

student can be even auto-generated, since the system has

sufficient knowledge about the words and the word-linking

rules.

C. Grammar Checking

Naturally, a high-quality automatic grammar checker is a
great support for any language learner. However, most grammar
checkers are intended to catch occasional mistakes, more typical
for native speakers than to language learners. Attempts to build
such a student-oriented grammar checker are rare [14, 15], while
general-purpose checkers cannot detect most of the mistakes,
made by the students [17].

XDK comes with several example grammars (of a limited
size) that can be used as grammar checkers: if the XDK parser
can build a complete tree for the given phrase, it is considered
grammatically correct. While we haven’t performed reliable
experiments yet, we believe that extensible dependency
grammars can serve as high-quality grammar checkers for the
needs of the novice language learners.

Today, a typical grammar checker works as follows. First, a
sentence is analyzed with a part of speech tagger and a syntactic
parser in order to get its structural representation. Next, the

defentry { dim lex { word: "we" tran: "me" }

 dim syn { in: {anypeople} out: {}

 agrs: {["1" pl]} }

}

defentry { dim lex { word: "we" tran: "me" }

 dim syn { in: {any} out: {}

 agrs: {["1" pl]} }

}

defentry {

 dim lex { word: "travel"

 tran: "matkustaa + [illatiivi]" }

 dim syn { in: {act}

 out: {any prepositiontoplace }

 agrs: {["1" sg] ["1" pl] ["2" sg]

 ["2" pl] ["3" pl] }

 agree: {any} }

}

defentry {

 dim lex { word: "travel"

 tran: "matkustaa + [adessiivi]" }

 dim syn { in: {act}

 out: {any prepositionbyusing}

 agrs: {["1" sg] ["1" pl] ["2" sg]

 ["2" pl] ["3" pl] }

 agree: {any} }

}

defentry {

 dim lex { word: "travel"

 tran: "matkustaa + [partitiivi]" }

 dim syn { in: {act}

 out: {any prepositionbyacross}

 agrs: {["1" sg] ["1" pl] ["2" sg]

 ["2" pl] ["3" pl] }

 agree: {any} }

}

defentry { dim lex { word: "to" tran: "_" }

 dim syn { in: {prepositiontoplace}

 out: {anyplace} }

}

defentry { dim lex { word: "to" tran: "_" }

 dim syn { in: {prepositionto}

 out: {anyplace} }

}

defentry { dim lex { word: "to" tran: "_" }

 dim syn { in: {preposition}

 out: {anyplace} }

}

defentry { dim lex { word: "Helsinki"

 tran: "Helsinki" }

 dim syn { in: {anyplace} out: {}

 agrs: {["3" sg]} }

}

defentry { dim lex { word: "Helsinki"

 tran: "Helsinki" }

 dim syn { in: {any} out: {}

 agrs: {["3" sg]} }

}

 Copyright ⓒ 2010 Future Technology Research Association International 5

obtained structures are checked against a set of “mal-rules” that
represent typical user-made errors [11]. In most cases the parser
is robust, i.e. it tries to build a parse tree even if the sentence is
incorrect (this behavior is entailed by the probabilistic nature of
most popular parsing algorithms that try to build the most
probable parse tree regardless of the phrase’s correctness).

In case of novice language learners with very limited active
sets of words and grammar rules exact rule-based XDG parsing
can be more beneficial, since:

(a) grammatically incorrect sentences are simply non-
parsable;

(b) for each grammatical error it is possible to point out its
exact reason (why a certain construction is incorrect and which
other options/rules are available in this case).

Here we should again emphasize that the beginner’s
vocabulary and grammar are very limited, so the manual creation
of the corresponding XDG system is feasible.

At the same time, there is an (already mentioned) alternative
method of creating an extensible dependency grammar: the
grammar rules can be extracted automatically from available
treebank data [5]. However, this technique is still not mature
enough to be used in real-life projects.

One should note, though, that the current version of XDK is
not well-tailored for grammar checking. It lacks error-reporting
capabilities (only partial information on parse errors is available),
and the parser output needs significant post-processing in order to
be used in a grammar checking module.

V. CONCLUSION

The creation of NLP-powered language learning tools is
challenging, mainly due to the following reasons:

- the current state of the art in NLP is not adequate for many
educational tasks;

- NLP software is often language-dependent and not tailored
for learners’ needs; (c) this work is very labor-intensive.

Nevertheless, as NLP technologies become more mature, it
seems quite natural to try to use them in educational software.
The ideas and experiments described in this paper are among
attempts to do it.

The core supporting technology for our research is XDK
framework, developed by Ralph Debusmann. As we discovered,
extensible dependency grammars are powerful enough to
describe local word contexts, necessary for a context-sensitive
bilingual dictionary and a preposition/cases learning tool that we
have presented in this work. Certain minor XDG disadvantages
(such as lack of hierarchical types) can be overcome with simple
technical tricks.

We also believe that XDG can be a powerful back-end for a
student-oriented grammar checking software, able to catch
common mistakes in simple natural language phrases.

On the other hand, XDG itself is just a language for writing
grammars. The key idea of our approach is to introduce
hierarchical object types into grammar statements. This technique

was never applied in the original XDK collection of example
grammars.

Another important technology for our project is automatic
morphology analyzer and word form generator, i.e. a module that
can discover morphological attributes of a given word form or
generate a word form, given a base form and a set of attributes.
We used AOT [8] for English and Russian, and Omorfi [18] for
Finnish.

We plan to develop our tools further to full-fledged
educational instruments. We also hope to motivate more research
projects aimed at adapting NLP methods for the use in
educational software.

REFERENCES

[1] J. Nivre, "Dependency grammar and dependency parsing.

Technical Report 05133," MSI report, 2005.

[2] M. Covington, "A Fundamental Algorithm for Dependency

Parsing," Proc. of the 39th Annual ACM Southeast Conference,

2001, pp. 95-102.

[3] R. Debusmann, D. Duchier and J. Niehren, "The XDG Grammar

Development Kit," Lecture Notes in Computer Science, 2004, vol.

3389, pp. 190-201.

[4] R. Debusmann, D. Duchier and G. Kruijff, "Extensible

Dependency Grammar: A New Methodology," Proc. of the

COLING 2004 Workshop on Recent Advances in Dependency

Grammar, 2004.

[5] O. Bojar, "Czech Syntactic Analysis Constraint-Based, XDG:

One Possible Start," Prague Bulletin of Mathematical Linguistics,

2004, vol. 81, pp. 43-54.

[6] M. Mozgovoy and T. Kakkonen, "An Approach to Building a

Multilingual Translation Dictionary that Contains Case,

Prepositional and Ontological Information," Proc. of the 12th

International Conference on Humans and Computers, 2009, pp.

135-139.

[7] P. Vossen, L. Bloksma, H. Rodriguez, S. Climent, N. Calzolari,

A. Roventini, F. Bertagna, A. Alonge and W. Peters, "The

EuroWordNet Base Concepts and Top Ontology," Deliverable

D017D034D036 EuroWordNet LE2-4003, 1997.

[8] A. Sokirko, "Morphological modules on the website www.aot.ru

(in Russian)," Proc. of Dialog'04 International Conference, 2004,

pp. 559-564.

[9] European Commission, "Seventh Framework Programme,"

http://cordis.europa.eu/fp7, 2009.

[10] S. Kübler, R. McDonald, J. Nivre, "Dependency Parsing,"

Morgan & Claypool Publishers, 2009, 127 p.

[11] A. Arppe, "Developing a grammar checker for Swedish," The

12th Nordic Conference of Computational Linguistics, 2000,

pp. 13-27.

[12] J. Schmied, “Learning English prepositions in the Chemnitz

Internet Grammar,” Language and Computers, vol. 48(1), 2003,

pp. 231-247.

[13] S. Krishnamurthy, “A Demonstration of the Futility of Using

Microsoft Word’s Spelling and Grammar Check,”

http://faculty.washington.edu/sandeep/check/

6 Copyright ⓒ 2010 Future Technology Research Association International

[14] O. Knutsson, T. Pargman, K. Eklundh, “Transforming Grammar

Checking Technology into a Learning Environment for Second

Language Writing,” Proc. of the HLT-NAACL 03 Workshop,

2003, pp. 38-45.

[15] E. Bender, D. Flickinger, S. Oepen, A. Walsh, T. Baldwin,

“Arboretum: Using a precision grammar for grammar checking in

CALL,” Proc. of InSTIL/ICALL Symposium, 2004.

[16] M. Mozgovoy, “Declaring Local Contexts of Words with

Extensible Dependency Grammar,” Proc. of the 3rd Int’l

Conference on Human-centric Computing, 2010, pp. 1-5.

[17] J. Johannessen, K. Hagen, P. Lane, “The performance of a

grammar checker with deviant language input,” Proc. of the 19th

International Conference on Computational linguistics, 2002,

pp. 1-8.

[18] “Open Morphology for Finnish Language”,

http://gna.org/projects/omorfi

