
Declaring Local Contexts of Words with Extensible

Dependency Grammar

Maxim Mozgovoy

University of Aizu

Aizu-Wakamatsu, Japan

mozgovoy@u-aizu.ac.jp

Extensible dependency grammar (XDG) is a modern formalism for

declaring dependency relations between lexical entries, generally

used to construct natural language parsers. This work shows how to

use XDG to declare specific contexts of the words, thus turning

XDG parser into a word sense disambiguation module or a context-

sensitive bilingual dictionary. The capabilities of the proposed

method are shown on the example of small English to Finnish

dictionary, helpful for entry-level Finnish language learners.

Keywords—natural language processing; parsing; word sense

disambiguation; computers in education.

I. INTRODUCTION

Most currently popular natural language parsers generate
phrase structures that represent constituent parts of input
sentences. However, in recent years there is a growing interest
to dependency-based representations of natural language
texts [10]. Dependency-oriented formalisms suggest that
syntactic structure of a sentence consists of lexical elements
linked by binary asymmetrical relations called
dependencies [1]. Such a representation provides a number of
advantages. For instance, dependency links are closer to
semantic relationships interpreted on the next text processing
stage [2]. Also, dependency-based parser only connects
existing words (and does not create new nodes in the parse
graph), which makes parsing more straightforward.
Furthermore, as noted in [1], dependency parsing is often
considered more adequate for languages with freer word order
than in English.

As of today, Ralph Debusmann’s XDK [3] is probably the
only full-fledged parser maker’s toolkit, aimed at producing
dependency-based parsers. Basically, it consists of a universal
parser that processes extensible dependency grammars
(XDG) [4]. The input grammar defines both word-linking
principles and operating parameters of the parsing algorithm.
The grammar can be either handcrafted or automatically
generated. While XDK (standing for “XDG Development Kit”)
comes with examples of handmade grammars, there was at
least one attempt to generate a grammar automatically from
dependency treebank data [5].

The syntax of extensible dependency grammars is close to
the formalism, proposed in [6] for describing lexical entries of
a context-sensitive multilingual dictionary. The basic idea of
the dictionary is to declare words with their potential
dependents in order to make translation less ambiguous. For

example, a typical English verb can have numerous
translations, often depending on its direct object. By declaring
potential objects explicitly, one can provide a possible context
for each meaning of the verb.

The dictionary heavily relies on the existence of words
ontology, such as the one provided by EuroWordNet [7].
Instead of declaring specific dependent words, the formalism
allows to specify a word’s class (such as animal, musical
instrument, game, etc.) in the given ontology.

The work [6] discusses the declarative side of multilingual
dictionaries (inspired mostly by the approach of Tusov [11]),
but does not talk about practical aspects of implementation.
Providing a built-in parsing algorithm, XDK seems to be a
suitable solution for implementing such a dictionary.

The most notable drawback of extensible dependency
grammars in this task is the lack of hierarchical type system,
which makes direct usage of EuroWordNet-styled ontologies
impossible, thus requiring some technical tricks.

This paper shows how extensible dependency grammar can
be used to declare a context-sensitive bilingual dictionary, and
how a built-in XDK parser can process user queries. The
current work is tailored for the needs of entry-level language
learners due to two primary reasons. First, beginners need most
help in word sense disambiguation. Second, even small-scale
dictionaries, containing less than 1000 words can be still
valuable for the students who have very limited vocabulary and
word use scenarios.

In addition, it should be noted that ontological information
can be very useful not only for the proposed dictionary project.
We will see that ontology-based attributes can provide a parser
with valuable semantic information, which can potentially
increase the quality of parsing. Furthermore, this approach can
be considered as a basis for general-purpose word sense
disambiguation module.

II. XDG IN A NUTSHELL

XDG is a dependency grammar formalism used to describe
natural language structure for further processing by the XDK-
supplied parser. There are several basic ideas behind XDG:

Lexicalization. An elementary grammar entry is a natural
language word with its user-specified attributes. Each attribute
has a name and a value. The most commonly used value types
are “string” and “set of strings”.

Graph-level principles. By default, any word in the
sentence can be linked to any other word. To obtain reasonable
parse graphs, a grammar designer should specify a set or
restrictions for the links. These restrictions are called
principles. The simplest example is a tree principle: by
declaring it, the designer says that the resulting graph should be
a tree (technically XDK can build graphs of general form).
Other useful principles are valency principle and agreement
principle. We will consider them in more detail later in this
section.

Multidimensionality. Each word attribute is declared in a
certain user-defined namespace, known as dimension. Graph-
level principles are also set for a user-specified dimension.
Then the parser tries to build a parse graph for each dimension
independently. This architecture allows constructing different
“views” of the same sentence. For example, one dimension can
be used to establish word-to-word dependence links, while
another dimension can show linear precedence of words in the
sentence.

A. Valency principle

Valency principle states that a link between words w1 and
w2 can be established only if out attribute of w1 matches with
in attribute of w2. Consider, for example, the following
declaration:

defentry { dim lex { word: "eats"}

 dim syn {in: {} out: {subj obj adv*}}}

defentry { dim lex {word: "Peter"}

 dim syn {in: {subj? obj?} out: {} } }

defentry { dim lex {word: "spaghetti"}

 dim syn {in: {subj? obj?} out: {} } }

defentry { dim lex {word: "today"}

 dim syn {in: {adv?} out: {} } }

The specification of out attribute of the verb “eats” says that
this word can link one subject (subj), one object (obj) and an

arbitrary number of adverbials (adv*). The in-attribute
specification of “Peter” declares this word as a possible subject
or object. The same specification is provided for “spaghetti”.
The word “today” is described as potential adverbial. So if we
parse the sentence “Peter eats spaghetti today”, the resulting
tree will have “eats” as root, “Peter” and “spaghetti” will be
linked to “eats” as subjects or objects, and “today” will be
linked to “eats” as an adverbial. The order principle can be
used to set the priority of the first word (“Peter”) as a subject.

B. Agreement principle

Agreement principle requires the words to share some attribute
values in order to be linked. For example, we can say that the
verb “eats” should link a subject, having singular third-person
word form only. At the same time, the verb “eat” should link
other word forms of a subject:

defentry { dim lex { word: "eats" }

 dim syn { ...

 agrs: {["3" sg]}

 agree: {subj} } }

defentry { dim lex { word: "eat" }

 dim syn { ...

 agrs: {["1" sg] ["2" sg]

 ["1" pl] ["2" pl] ["3" pl]}

 agree: {subj}}

Then the word “Peter” should be described as having singular,
third-person form:

defentry { dim lex { word: "Peter" }

 dim syn { ...

 agrs: {["3" sg]}

 agree: {}} }

As it is seen from these examples, extensible dependency
grammars do not directly support morphological variations in
words. Each of word forms (“eat” and “eats”) should have its
own grammar entry. This limitation, however, is not too strict,
since it is possible to generate grammar entries on the fly using
external morphology analysis modules.

III. BASIC PRINCIPLES OF A CONTEXT-SENSITIVE

DICTIONARY

The work [6] points out the lack of contextualization in
commonly used electronic dictionaries. While being adequate
for experienced language users, these dictionaries do not
provide enough help for beginners to choose the correct
translation of a given word in a given context.

Figure 1. Part of the EuroWordNet Concept hierarchy

For example, the verb to play can be translated into Finnish
language with, at least, three different words: pelata (to play a
game), soittaa (to play a musical instrument) and leikkiä (to
play as kids do, e.g. to play police, to play hospital, etc.) The
correct word choice depends on the verb’s direct object.

This problem is especially clear when dealing with English
prepositions. For example, English-Russian LingvoUniversal

dictionary lists 18 different definitions for the preposition by
(and four more definitions for by as an adverb). Furthermore,
the prepositions do not always have corresponding words in the
target language. For example, preposition to in the expression
“to travel to Helsinki” has no direct translation into Finnish.
Instead, it affects the form of a verb’s direct object: “matkustaa
Helsinkiin”. It can be noted here that the reverse translation
(from Finnish to English) is simply impossible in this case
without a specific context. One can translate “matkustaa” and
“Helsinki”, but it is harder to find in a conventional dictionary
that -in ending corresponds to English to.

The work [6] suggests to address this problem by declaring
a set of dependent words for a given word explicitly. Each
word is considered as belonging to a certain class in a chosen
ontology (see Figure 1). Polysemic words can have more than
one entry: a table is found both in furniture (kitchen table) and
in mathematical objects (Excel table).

Dictionary entries are declared (using a grammar-like
syntax) with their classes and the classes of their potential
dependents as follows:

verb PLAY act(any, game)) pelata

verb PLAY act(any, NOT(instrument))

verb PLAY act(any, instrument) soittaa

verb PLAY act(any, phone)

verb PLAY act(any) leikkiä

verb PLAY act(any, child-game)

noun FOOTBALL game()

noun VIOLIN instrument()

noun PHONE phone()

noun POLICE institution()

noun POLICE child-game()

(Here any, act, game, instrument, phone, institution, and child-
game are classes found in the Concept hierarchy.) For example,
the declarations say that the verb to play, translated as soittaa,
has one subject of class any and one object of class instrument
or phone.

In the following subsections, we will also use “extended”
class names that include the names of the base classes. For
example, if class A is derived from B, and B is derived from C,
we can address A as C/B/A to avoid additional explanations of
relations between these classes.

The proposed formalism includes also means for dealing
with grammar cases. However, since morphology and grammar
cases are not relevant for English-to-Finnish dictionary, this
topic will not be covered here.

In addition to context-based word sense disambiguation,
this approach allows declaring multiword expressions. For
example, the phrase bald eagle should be translated into
Finnish as a single word valkopäämerikotka. This fact can be
declared in the dictionary as follows:

noun EAGLE bird() kotka

noun EAGLE bird(property) kotka

noun EAGLE bird(property/bald) valkopäämerikotka

adj BALD property/bald() kalju

So if the user enters eagle with a dependent word found in the
concept class property/bald (containing the only word “bald”),

the dictionary should suggest valkopäämerikotka as a
translation of this expression.

Since the classes form a hierarchy, dependent words can be
addressed using broader or narrower classes. In the example
above, property/bald is a subclass of property. Therefore, the
word kotka is used as a translation of eagle in a broad context
(applicable to any kind of eagle), while valkopäämerikotka
applies to bald eagle only.

IV. PROCESSING USER QUERIES

The XDG-powered bilingual dictionary operates according
to the following scenario:

1. The user enters a query (e.g. “we travel to Helsinki”).

2. An automated morphology analysis module tags each
word with a number of attributes, including base word form,
part of speech, person, number, etc. We used the module,
developed by Alexey Sokirko [8]. A word can have several
different morphological descriptions, since word context is not
analyzed at this stage.

3. On the basis of existing dictionary entries and obtained
morphological information, the preprocessing module
generates the XDG description that includes word entries for
the given sentence.

4. The built-in XDK parser processes the user query by
means of the generated grammar. As a result, a set of the parse
trees for the given sentence is constructed. Each tree node
contains, in particular, the translation of the corresponding
word.

5. A list of possible translations for each word in the input
sentence is returned to the user.

In the following subsections, we will discuss these stages in
more detail.

A. Morphology Analysis Stage

Sokirko’s English morphology analyzer prints a list of
possible entries for each given word in the input sentence. For
the example user query, the analyzer provides the system with
the following information:

> we

WE PN Plural Nominative

 PersonalPronoun FirstPerson

> travel

TRAVEL NOUN Singular Narrative

TRAVEL VERB Infinitive

> to

TO ADV

TO PARTICLE

TO PREP

> helsinki

HELSINKI NOUN Proper

For the next stage, our system extracts the matching elements
from the dictionary (the second line of each entry is a target
Finnish translation):

pn WE any/people()

 me

verb TRAVEL act(any, preposition/to/place)

 matkustaa + [illatiivi]

verb TRAVEL act(any, preposition/by/using)

 matkustaa + [adessiivi]

verb TRAVEL act(any, preposition/by/across)

 matkustaa + [partitiivi]

prep TO preposition/to/place(any/place)

 _

noun HELSINKI any/place()

 Helsinki

The two versions of the verb to travel with the preposition by
describe cases such as “to travel by car” and “to travel by the
riverside”.

B. XDG Generation

Since the basic aim of the project is to provide a simple
word-translation tool for the beginners, we decided to extend a
simplified English grammar nut.ul, provided with XDK. This
grammar defines the necessary “skeleton” by declaring tree,
agreement, and valency principles. Also it specifies the output
format of the resulting parse graphs.

The subsystem of XDG generation extends this ready-made
grammar by converting selected dictionary entries into XDG
elements. The resulting entries include: (a) source word forms
(taken from the input phrase); (b) morphological attributes; (c)
dictionary-supplied declarations of the dependent words.

Since extensible dependency grammars do not support
hierarchical types, the conversion routine duplicates the same
entry for all its superclasses. For example, the entry worker of a
class any/people/profession will get three records in the
grammar, corresponding to the following dictionary
declarations:

noun WORKER any/people/profession()

noun WORKER any/people()

noun WORKER any()

For the example phrase “we travel to Helsinki”, the
following grammar entries will be generated

1
:

defentry { dim lex { word: "we" tran: "me" }

 dim syn { in: {anypeople} out: {}

 agrs: {["1" pl]} }

}

defentry { dim lex { word: "we" tran: "me" }

 dim syn { in: {any} out: {}

 agrs: {["1" pl]} }

}

defentry {

 dim lex { word: "travel"

 tran: "matkustaa + [illatiivi]" }

 dim syn { in: {act}

 out: {any prepositiontoplace }

 agrs: {["1" sg] ["1" pl] ["2" sg]

 ["2" pl] ["3" pl] }

 agree: {any} }

}

defentry {

 dim lex { word: "travel"

 tran: "matkustaa + [adessiivi]" }

 dim syn { in: {act}

 out: {any prepositionbyusing}

1
 The slash symbol is not allowed in XDG as a part of a type

name, so the conversion routine has to remove it.

 agrs: {["1" sg] ["1" pl] ["2" sg]

 ["2" pl] ["3" pl] }

 agree: {any} }

}

defentry {

 dim lex { word: "travel"

 tran: "matkustaa + [partitiivi]" }

 dim syn { in: {act}

 out: {any prepositionbyacross}

 agrs: {["1" sg] ["1" pl] ["2" sg]

 ["2" pl] ["3" pl] }

 agree: {any} }

}

defentry { dim lex { word: "to" tran: "_" }

 dim syn { in: {prepositiontoplace}

 out: {anyplace} }

}

defentry { dim lex { word: "to" tran: "_" }

 dim syn { in: {prepositionto}

 out: {anyplace} }

}

defentry { dim lex { word: "to" tran: "_" }

 dim syn { in: {preposition}

 out: {anyplace} }

}

defentry { dim lex { word: "Helsinki"

 tran: "Helsinki" }

 dim syn { in: {anyplace} out: {}

 agrs: {["3" sg]} }

}

defentry { dim lex { word: "Helsinki"

 tran: "Helsinki" }

 dim syn { in: {any} out: {}

 agrs: {["3" sg]} }

}

Each grammar entry has the following attributes:

1. the corresponding word, taken from the input sentence (as
word);

2. its translation as tran;

3. word class name as in;

4. the classes of the dependent words as out;

5. number and person as agrs (for nouns; for verbs, the
attributes of a potential subject are used);

6. (for verbs) the class of the potential subject as agree.

There are also two technical points in this process. First, it is
necessary to list all used class names as admissible graph labels
in the grammar:

deftype "syn.label" { any anypeople ... }

Second, a special end-of-sentence word should be added to the
grammar (we use dot):

defentry {

 dim lex {word: "." tran: ""}

 dim syn {in: {}

 out: {act}

 agrs: top }

}

The dot agrees with the verbs (of class act) and represents a

root of a parse tree (top). The dot marker should be also added

to the end of the user query.

C. Processing User Query

At this stage, the XDK parser is invoked. The parser
generates a set of possible parse trees, thus giving a possibility

to collect potential translations for any given word in the input
sentence. The output can be requested both in a visual and in a
machine-readable form. The parse tree for the example
sentence “we travel to Helsinki” is shown in Figure 2.

Figure 2. Parse tree of the phrase “we travel to Helsinki”

The system suggests the following translations:

we: me

travel: matkustaa + [illatiivi]

to: _

Helsinki: Helsinki

V. DISCUSSION

In some subjects, such as physics and chemistry,
educational software has developed significantly from
interactive electronic books to complex virtual labs. In contrast,
software solutions used in computer-assisted language learning
are still relatively simple and provide few means to experiment
with the language. To give more possibilities to the learners,
such software should make more use of natural language
processing technologies.

The creation of NLP-powered language learning tools is
challenging, mainly due to the following reasons: (a) the
current state of the art in NLP is not adequate for many
educational tasks; (b) NLP software is often language-
dependent and not tailored for learners’ needs; (c) this work is
very labor-intensive.

Nevertheless, as NLP technologies become more mature, it
seems quite natural to try to use them in educational software.
Recently, a project proposal entitled “NLP for Future Schools”
was submitted for EU-funded Seventh Framework
Programme [9]. The project is specifically aimed at creation of
new-generation language learning software

2
.

The context-sensitive dictionary described in this paper is
one of the attempts to utilize NLP methodologies in
educational software. Being a prototype, the dictionary has not
been tested yet in a real school environment, but we believe it
can be used, at least, as an auxiliary educational instrument.

Furthermore, the inclusion of concept classes hierarchy into
extensible dependency grammar formalism opens new

2
 Source: personal communications with the person in charge

at the University of Joensuu, Finland. As of today, the

proposal is under review.

possibilities to express word-word relationships within XDG
framework. It can be useful for designing precise parsers and
word sense disambiguation modules.

VI. CONCLUSION

We have implemented and tested a simple version of a
context-sensitive bilingual dictionary, described in [6]. A well-
known XDK framework was used as an underlying natural
language processing engine. We have shown how dictionary
constructions can be converted into extensible dependency
grammar entries, making possible to utilize an XDG-based
parser for phrase analysis. It was also demonstrated how to use
hierarchical types in XDG by “flattening” subclasses into a
collection of entries, having non-hierarchical types. The
dictionary automatically disambiguates words in the sentence,
using their local contexts, and provides an appropriate
translation for each word. If the context gives not enough
information, all alternative translations are returned to the user.

We plan to develop the dictionary further to a full-fledged
educational instrument. We also hope to motivate more
research projects aimed at adapting NLP methods for the use in
educational software.

REFERENCES

[1] J. Nivre, "Dependency grammar and dependency parsing. Technical

Report 05133," MSI report, 2005.
[2] M. Covington, "A Fundamental Algorithm for Dependency Parsing,"

Proc. of the 39th Annual ACM Southeast Conference, 2001, pp. 95-102.

[3] R. Debusmann, D. Duchier and J. Niehren, "The XDG Grammar
Development Kit," Lecture Notes in Computer Science, 2004, vol.

3389, pp. 190-201.

[4] R. Debusmann, D. Duchier and G. Kruijff, "Extensible Dependency
Grammar: A New Methodology," Proc. of the COLING 2004

Workshop on Recent Advances in Dependency Grammar, 2004.

[5] O. Bojar, "Czech Syntactic Analysis Constraint-Based, XDG: One
Possible Start," Prague Bulletin of Mathematical Linguistics, 2004, vol.

81, pp. 43-54.

[6] M. Mozgovoy and T. Kakkonen, "An Approach to Building a
Multilingual Translation Dictionary that Contains Case, Prepositional

and Ontological Information," Proc. of the 12th International

Conference on Humans and Computers, 2009, pp. 135-139.
[7] P. Vossen, L. Bloksma, H. Rodriguez, S. Climent, N. Calzolari, A.

Roventini, F. Bertagna, A. Alonge and W. Peters, "The EuroWordNet

Base Concepts and Top Ontology," Deliverable D017D034D036
EuroWordNet LE2-4003, 1997.

[8] A. Sokirko, "Morphological modules on the website www.aot.ru (in

Russian)," Proc. of Dialog'04 International Conference, 2004, pp. 559-
564.

[9] European Commission, "Seventh Framework Programme,"
http://cordis.europa.eu/fp7, 2009.

[10] S. Kübler, R. McDonald, J. Nivre, "Dependency Parsing," Morgan &

Claypool Publishers, 2009, 127 p.
[11] V. Tusov, "Computer Semantics of the Russian Language" (in

Russian), St. Petersburg University Press, 2004, 400 p.

