
Informatics in Education, 2006, Vol. 5, No. 1, 97–112 97
 2006Institute of Mathematics and Informatics, Vilnius

Desktop Tools for Offline Plagiarism Detection in
Computer Programs

Maxim MOZGOVOY
Department of Computer Science, University of Joensuu
Länsikatu 15, 80100 Joensuu, Finland
e-mail: maxim.mozgovoy@cs.joensuu.fi

Received: December 2005

Abstract. Plagiarism in universities has always been a difficult problem to overcome. Various tools
have been developed over the past few years to help teachers detect plagiarism in students’ work. By
being able to categorize the multitude of plagiarism detection tools, it is possible to estimate their
capabilities, advantages and disadvantages. In this article I consider modern plagiarism software
solutions, paying attention mostly to desktop systems intended for plagiarism detection in program
code. I also estimate the speed and reliability of different plagiarism detection systems that are
currently available.

Key words: plagiarism detection, similarities detection, file comparison.

1. Introduction

According to investigations conducted at Duke University (Bliwise, 2001), the prevalance
of plagiarism is widespread. For example, about 40% of all students confessed to copy-
ing sentences without citing the original source, 11% reported almost verbatim copying
of material, 9% “utilized” another student’s computer program. Plagiarism is not only
found in student work; there are several reports (Brumfiel, 2002; Collberg and Kobourov,
2003) about instances of plagiarism and so-calledself-plagiarism(see below) in articles
submitted by researchers for scientific conferences and journals.

The rapid development of computing and Internet technologies has made plagia-
rism much easier to carry out. In the past, people had to spend considerable time to
find a relevant document, then copy its fragments by hand. With advances in comput-
ing technology it takes considerably less time to search for relevant documents and
literally seconds to cut and paste sections of an original document into one’s own.
Moreover, there are numerous “paper-mills” (e.g.,http://www.exampleessays.com,
http://www.directessays.com, www.dissertationsandassignments.com),
where students can buy recycled or custom made papers.

Much can be done to prevent plagiarism before it occurs. Plagiarism prevention tech-
niques include smart design of assignments, supervised tests, work process tracing and
so on (Wiedemeier, 2002; Zobel and Hamilton, 2002). Some teachers even use special
plagiarism-preventing software tools, such as Anti-Plagiarism Editor (APE), which tracks



98 M. Mozgovoy

all potential cheats, such as the cutting and pasting of large text-blocks (Vamplew and
Dermoudy, 2005). The teacher can decrease the level of cheating just by notifying stu-
dents that their work will be checked for plagiarism with a software tool (Braumoeller
and Gaines, 2001). Sometimes the plagiarism can be of an unintentional nature. The stu-
dents are just not sufficiently educated to use the sources properly. Fortunately, there are
good style guidelines (see, e.g., Trivedi and Williams, 2002), which can be utilized by the
teachers.

Although priority should be given to plagiarism prevention, detecting plagiarism after
it occurs is still a very important task. The last few years have brought about many so-
lutions for automatic plagiarism detection in essays and in program code. Some of them
are currently being widely used.

The world of plagiarism detection software is not uniform: different approaches exist,
each of which aims at detecting different kinds of plagiarism. In this review we will fo-
cus on “offline” (or “hermetic”) systems designed for program code similarity analysis.
Instead of making an ordinary survey of software tools, we provide a taxonomy for the
most popular approaches and examine their strengths and weaknesses. This work is in-
tended to provide a short overview of the detection tools currently available and to point
out several important topics for future discussion.

2. Definitions of Plagiarism

One issue that is important for every plagiarism detection tool is how plagiarism is de-
fined. Unfortunately, there are no formal, operational definitions of plagiarism. Usually
people cite the definition given by Webster’s Encyclopedic Dictionary: “the unauthorized
use of the language and thoughts of another author and the representation of them as one’s
own” (Verco and Wise, 1997). Some definitions are more precise, but still informal. An
example is Manber’s definition of plagiarism, which is implied in the following quote:
“Our goal is to identify files that came from the same source or contain parts that came
from the same source” (Manber, 1994).

It seems quite clear that the concept of plagiarism itself is so blurred that one cannot
expect someone to invent any fully adequate definition that is suitable for direct imple-
mentation as a computer program. Much of the advice given to people who need to detect
plagiarism is based on common sense and/or deal with fuzzy, informal concepts (Clough,
2000). Concerning cheating techniques in general, it is necessary to take into account
issues like unauthorized collaboration between students, asking (or even paying) for help
from a skillful outsider, or self-plagiarism (i.e., recycling one’s own published text with-
out quoting ). Furthermore, it is sensible to consider results obtained due to influence or
“creative understanding” of other people’s works. Software tools cannot handle all such
situations because of the limits of current technology. Because of the difficulties of creat-
ing an all-encompassing definition of plagiarism, when we refer toplagiarismin this rest
of this article we generally refer toplagiarism that is detectable via software solutions,
unless otherwise stated.



Desktop Tools for Offline Plagiarism Detection in Computer Programs 99

Basically, every tool implements its own definition of plagiarism, which usually be-
comes clear from the progam’s documentation. The reliability of the software detector
greatly depends on the relationship of its definition of plagiarism to the amorphous def-
inition of plagiarismthat is used by human detectors. For example, the study by the au-
thors of the software package JPlag shows that string matching-based file-file comparison
routines can reveal similarity, which is considered to be a good indication of plagiarism
by human detectors (Precheltet al., 2002). Manber (1994) proposes an explicit criterion
for file similarity: “we say that two files are similar if they contain a significant number
of common substrings that are not too short”.

3. “Online” Detection Systems

Online detection systems can check an article for fragments of text that can also be found
somewhere on the Net. No doubt, the Internet is the number one source for possible
borrowings in the case of ordinary students’ essays1; therefore, the importance of online
detection systems should not be underestimated. Although a thorough analysis of online
detection systems is beyond the scope of this article, there are several issues related to
online detection that are worth mentioning.

Online detection systems are close relatives of ordinary Internet search engines.
Online detection systems concentrate on the speed and width of detection, at the
cost of the quality of detection. For example, the developers of theTurnitin system
(www.turnitin.com) claim that their database consists of over 4.5 billion pages, which
is updated daily with 40 million pages. They also claim they maintain “a huge database
of books and journals, and a database of the millions of papers already submitted”.

It is not surprising that only a few different “online” plagiarism detection services
exist because many of such systems require enormous computational resources. Some of
them, like Turnitin, maintain their own databases, while others (e.g., EVE2 available at
www.canexus.com) utilize the power of existing search engines.

Although they are very important tools, online plagiarism detection services currently
cannot use the advanced, but time-consuming, document comparison routines used in
some offline systems. Also, their authors have to deal mostly with technical issues that are
not related to plagiarism detection directly (like organizing large-scale document banks).
Furthermore, “online” systems are usually commercial, so their documentation primarily
contains advertisements and independent reviews are shallow in algorithmic details.

4. “Offline” Detection Systems

Offline detection systems adopt a “hermetic” model of the textual world. All “borrow-
ings” are assumed to be made from the documents inside a given collection. For exam-
ple, in the case of offline detection systems, the entire textual area in which the offline

1It is not so, e.g., in case of plagiarized program code.



100 M. Mozgovoy

detection system searches for sources of plagiarism might be a collection of documents
provided by a teacher. (In contrast, the textual area of online systems is the entirety of
text on the Internet.)

In some cases, the “hermetic” model turns out to be inappropriate. For example, if
students are asked to write an essay about the economic situation of a certain country in a
certain historical period, it is unlikely to find cases of “hermetic” plagiarism since every-
body has their own topic; there is, basically, nothing to copy and paste. On the other hand,
laboratory work assignments in computer science tend to provoke “knowledge-sharing”
between students because each of the students’ assignments probably share a high de-
gree of similarity2. Also it is hard to find a piece of code on the Net that will do exactly
what is called for. Knowledge-sharing is very common: it is the most frequent plagiarism
technique according to (Sheardet al., 2002). Several plagiarism detection systems are
specially designed to analyze computer programs rather than natural language.

It is worthwhile to re-emphasize that the term “online” in this article refers to systems
that search the Net to reveal plagiarism; “offline” systems search collections of docu-
ments only. The form of user interaction with the system is not important for determining
if a system is an offline system or an online sytem since an “offline” system can be
implemented as a Web service (JPlag) or an “online” system can be an installable desktop
application (EVE2).

We argue that the majority of offline plagiarism detection tools fall into one of three
categories: fingerprint-based, string matching-based, and tree-matching based systems. In
the rest of this article we give an overview of those categories. We end with a discussion
of issues related to speed and visualization, authorship identification, and the principles
of evaluation.

4.1. The Fingerprint-Based Approach and LSA

The fingerprint-based approach was first used in attribute counting systems, which were
largely used for plagiarism detection in the past (Grier, 1981; Faidhi and Robinson, 1987).

The basic idea in the fingerprint-based approach is to create a kind offingerprint
for every document in the collection. Each fingerprint may contain several numericalat-
tributesthat somehow reflect the structure of the document. For example, the system can
store the average number of words per line, the number of lines, the number of passages,
the number of unique words, and so on. If two fingerprints are close to each other (ac-
cording to adistance function), the documents themselves can also be considered as being
similar.

Over the last several years, a couple of different metrics have been tested. It is gener-
ally believed nowadays that fingerprint-based approaches are quite weak since even slight
textual modifications can considerably affect the fingerprint of a document; newer sys-
tems, based on content comparison, almost forced out attribute counting systems (Verco
and Wise, 1997).

2Usually teachers just slightly modify one “skeleton” assignment to obtain different task variants.



Desktop Tools for Offline Plagiarism Detection in Computer Programs 101

A good example of a fingerprint-based system isAccuse(Grier, 1981). The finger-
prints inAccuseinclude seven parameters:the number of unique operators, the number
of unique operands, the total number of operators, the total number of operands, the
number of code lines, the amount of variables declared(and used), andthe total number
of control statements. The correlation scheme computes an “increment” for each attribute
pair:

A1 = attributei count in the first file

A2 = attributei count in the second file

incrementi = importance of attributei - (A1 - A2)

Then these increments, summed up, yield the final similarity ratio.
Several more-advanced approaches for creating fingerprints, showing reasonable lev-

els of reliability, are currently in use. The fingerprints in modern systems are usually made
up of the values obtained by applying a mathematical function (a sort of hash function)
to specially selected substrings in the collection of files (Hoad and Zobel, 2003). Fin-
gerprints based on file content are used, for example, in the well-known MOSS system3

(Schleimeret al., 2003).
Since file comparison in fingerprint-based systems is performed by means of com-

parison of small fingerprints, the speed of detection is usually high. If fingerprint size is
constant, the complexity of the work4 is O(N), whereN is the number of documents in
the collection (Hoad and Zobel, 2003). (AdditionalO(nN) – wheren is the average file
length – time is required to create fingerprints). To obtain similarity ratios for all possible
file pairs, the system should makeO(N2) comparisons in total.

It is possible for fingerprint-based systems to utilize a universal text retrieval method,
such as latent semantic analysis (LSA). LSA allows for the creation of a special finger-
print in the form of a numeric vector for every document, based on frequencies of words
found in the text. Unfortunately, LSA destroys the structure of the documents since it
treats every document as a bag of non-connected words. For specialized tasks, like pla-
giarism detection in program code, LSA has been reported to have a 50% or even higher
similarity between independent programs since the programs usually share the same vo-
cabulary (Nakov, 2000). However, comprehensive evaluation of LSA methods applied to
the plagiarism detection problem is still missing.

4.2. The Content Comparison Techniques

If fingerprint comparison is not enough, the detector can compare the contents of do-
cuments. While the core idea is simple, none of the techniques of content comparison
is completely reliable. Since different systems use different algorithms; currently it is
not possible to determine which technique is the best – each has its own advantages
and disadvantages. Furthermore, the task of plagiarism detection in program code turns

3I consider MOSS to be primarily fingerprint-based system, though it also utilizes string matching tech-
niques.

4I.e., the complexity of the comparison of the query document against the collection.



102 M. Mozgovoy

out to be a problem that requires specialized solutions. There are several tools specially
designed for software plagiarism detection.

Programming languages are formal and much simpler than any natural language. This
makes the problem of detection easier since the techniques of possible plagiarism are lim-
ited in programming languages. It is possible to classify those techniques and explicitly
program procedures that are insensitive to all of them. For natural languages this approach
is obviously much harder to perform.

There have been attempts to list the possible techniques that a plagiarizer can do to
hide plagiarism (Joy and Luck, 1999; Jones, 2001). Some of these techniques are:

1. Changing comments (rewording, adding, changing comment syntax and omitting).
2. Changing white space and layout.
3. Renaming identifiers.
4. Reordering code blocks.
5. Reordering statements within code blocks.
6. Changing the order of operands/operators in expressions.
7. Changing data types.
8. Adding redundant statements or variables.
9. Replacing control structures with equivalent structures (while-loop by do-while

loop; nested if statements by a switch-case block and so on).
10. Replacing the functional call by the body of the function.

It is presumed that a plagiarizer does not have to understand the algorithmic meaning
of the program. In fact, any of the techniques listed above can be performed automatically
by a compiler-level tool that can recognize the semantic meaning of individual statements
without recognizing the functionality of the whole program.

However, not all such changes are equally advanced (Joy and Luck, 1999). Some of
them, like changing formatting or identifier names (lexical changes), do not even require
the knowledge of the programming language used. Other ones (e.g.,structuralchanges)
can be done only if the plagiarizer is familiar with language semantics.

We can use the list of plagiarizer’s techniques to also defineplagiarism: a plagiarized
program is a program that can be obtained from the original one by means of one or
more of the actions listed above.

Next we discuss the algorithmic solutions that have been implemented in various sys-
tems.

4.3. Tokenization

Tokenization (Joy and Luck, 1999; Precheltet al., 2002; Mozgovoyet al., 2005) is a
very popular technique used by most source code plagiarism detection systems. Its main
purpose is to render useless all kinds of renaming tricks. Tokenization algorithms basi-
cally substitute various elements of program code with single tokens. For example, any
identifier can be replaced by the token <IDT>, and every numerical value by the token
<VALUE>. Now, if a program contains a line

a = b + 45;



Desktop Tools for Offline Plagiarism Detection in Computer Programs 103

it will be replaced by the string
<IDT> = <IDT> + <VALUE>;
So trying to rename the variables will not help since every line of the form “identifier

= identifier+ value;” is translated into the same tokenized sequence.
There are methods of tokenization (or similar procedures) that perform more advanced

substitutions. For example, Baker’s parameterized match algorithm5 (Baker, 1995) will
treat two given code fragments as identical if one of them is obtained from the other one
by a series of regular substitutions of identifiers.

Tokenization techniques can also utilize semantic information about the control struc-
tures of the programming language being used. For instance, any loops can be substituted
by the <BEGIN_LOOP>. . .<END_LOOP> structure.

There are two main drawbacks related to tokenization:

1. Any tokenizer is language-dependent. So a separate routine is needed for every
programming language6. Fortunately, there are free parsers available for all popular
languages nowadays.

2. The detector, dealing with tokenized files, becomes more “paranoiac”. Tokeniza-
tion increases the degree of similarity between any two given programs.

Tokenization is usually the first action performed by detectors. After the tokenization
of input files, a system-specific comparison routine is invoked.

4.4. String Matching-Based Algorithms

The scheme of the usual file content comparison system is shown in the following pseu-
docode:

FOR EACH collection file F

FOR EACH collection file G, F �= G

Calculate similarity between F and G

The core function, which calculates similarity, may vary highly from one system to
another. The most widespread technique is to utilize a string matching procedure, treating
input files (tokenized files in case of software plagiarism) as strings. This gives a true
content-comparison system; though the semantic issues of a file (such as the meaning of
loops and functional calls) still remain unanalyzed.

Early systems like YAP (Wise, 1992) used simple mechanisms, like the UNIX sdiff
tool, that perform line-by-line comparison of two files under Levenshtein distance. Dur-
ing the the last few years, significantly more advanced string matching methods have
been implemented in plagiarism detectors.

4.4.1. The Running-Karp-Rabin Greedy-String-Tiling (RKS-GST) Algorithm
The RKS-GST algorithm was used, e.g., in Michael Wise’s YAP3 tool (Wise, 1996). The
basic aim of the RKS-GST algorithm is to find a “best tiling” for two given input files, i.e.,

5Which is not a tokenizer, but its purpose is similar in our context.
6JPlag, for example, explicitly allows to select the correct parser to apply to files of the given collection.



104 M. Mozgovoy

the joint coverage of non-overlapping strings that includes as many tokens from both files
as possible. The existence of a polynomial algorithm that provides an exact solution is still
an open problem (Wise, 1996) so it is necessary to make several heuristic assumptions
to develop a practically applicable procedure. The fact that longer tiles are more valuable
than shorter ones leads to greedy heuristics, which are actually implemented in the RKS-
GST algorithm.

The RKS-GST algorithm can be described (very superficially) as follows. The rou-
tine begins by analyzing the matches of length initial-search-length and greater. These
matches are obtained by calling the Karp-Rabin procedure (Karp and Rabin, 1987). Then
the matches are analyzed (beginning from the longest one). If the current match does not
overlap with the existing tiling, it is added to the coverage as a new tile. After all matches
are processed, a new search occurs with the smaller match length. When the match length
reaches the minimum-match-length threshold value, the algorithm finishes its work.

The RKS-GST algorithm was shown to haveO(n3) complexity in the worst case
(where n is the sum of the lengths of the input strings), while the expected running time
(obtained empirically) is almost linear – justO(n1.12) (Wise, 1994). So the overall com-
plexity of the RKS-GST-based system, which produces similarity ratios for all file pairs,
should beO(N2n1.12).

This method was used later in a well-known system – JPlag (Precheltet al., 2002).
The tiling approach is now considered to be quite advanced and reliable; most widely-
used systems implement algorithms that can be treated as tiling variations. However, the
actual performance (in terms of speed and reliability) highly depends on the assumptions
that are used.

A version of the greedy string tiling has also been implemented in Sherlock project
(Joy and Luck, 1999).

4.4.2. Parameterized Matching Algorithms
The parameterized matching algorithms approach is mainly associated with Brenda
Baker’s DUP tool (Baker, 1995). As was already mentioned, parameterized matching
allows the system to find identical sections of code as well as sections with systematic
substitutions of identifiers. In practice, the matching is done by replacing identifiers with
their offsets: the first occurrence is substituted by zero, while the next occurrences are
replaced by the number of tokens since their last use (Clough, 2000). This technique
can be considered as an ordinary text matching routine combined with an advanced (less
“paranoiac”) tokenizer.

DUP’s running time is estimated to be linear in input length7 (Baker, 1995), but
quadratic in the worst case.

4.5. Parse Trees Comparison Routines

Going one step further, it is reasonable to analyze parse trees8 of the programs instead of
their listings. Probably, this idea first was utilized in Sim utility (Gitchell and Tran, 1999).

7For all-against-all detection it isO(N2 + Nn) in our terms.
8Parse tree (built by the parser) represents the syntactic structure of the program.



Desktop Tools for Offline Plagiarism Detection in Computer Programs 105

Sim still uses an ordinary string matching routine to compare programs, but instead of
analyzing code blocks, it compares corresponding parse trees, which are converted to
strings. So Sim is a hybrid approach that lies somewhere between ordinary string match-
ing and tree comparison. The complexity of the algorithm used is O(s2), wheres is the
maximum size of the parse trees (Gitchell and Tran, 1999). Since the size of the parse tree
of the file is proportional to the file length, the overall complexity of process for obtaining
all necessary similarities is estimated asO(N2n2).

The pure tree comparison procedure was implemented in the Brass project (Belk-
houcheet al., 2004). Since tree comparison is more complex and therefore slower than
string matching, Brass uses a kind of string comparison routine to filter only “suspicious”
documents. Then a special “micro comparison” algorithm is applied to provide more
reliable results.

Though this approach seems to be the most advanced, little research in this area has
been made so far. For example, it is still unknown if it is worthwhile to perform such a
complex analysis of input files – i.e., it is unknown whether it is necessary to compare
parse trees to reveal instances of plagiarism or if usual string matching algorithms are
reliable enough. Furthermore, any fast enough tree comparison routine requires some
optimizations like greedy heuristics. For now, it is not clear how these techniques affect
reliability.

The complexity of the Brass algorithm has not yet been analyzed, but it is reasonable
to suppose it is not faster than YAP3/JPlag systems.

4.6. Speed and Visualization Issues

Developing a user-friendly interface for plagiarism detection is a separate issue. Cur-
rently several systems, such as MOSS, JPlag and Sherlock, provide impressive interface
solutions, which can serve as decent templates for other projects.

There are no universal recommendations, but it is clear that every system should be
able to:

1) show a list of all similar file pairs with the corresponding degrees of similarity; and
2) give a detailed report about any selected pair: plagiarized blocks should be high-

lighted, and it also should be clear which blocks were considered as similar.

PRAISE (Lancaster and Culwin, 2004) and Sherlock detectors provide quick visual-
ization of results in the form of a graph where each vertex represents a single document,
and each edge shows the degree of similarity between two documents. (If the value of
similarity is lower than a certain threshold, no edge is created). This mechanism is very
useful, especially for small collections; therefore I can advise authors to implement some-
thing similar in their detectors. Note that a good visualization module will not only help
to find a plagiarism case, but also to prove it quickly in a conflict situation (i.e., to show
the evidence of plagiarism in any particular case).

Speed issues have also been in the scope of interest during recent years. By following
the general scheme of pairwise file comparison, it is necessary to performO(N2) file-file
comparisons for a collection, consisting ofN files (which is usually considered to be



106 M. Mozgovoy

a considerable amount of work). That is why the problem of inventing fast comparison
routines always has been crucial9. The usual approach is to develop a fast comparison
procedure, which can be used as a filter for “interesting” pairs. Such filter procedures can
be applied to the files themselves (Belkhoucheet al., 2004) or to their fingerprints (which
are much faster, but generally less reliable) (Manber, 1994).

Our recent project (Mozgovoyet al., 2005) tries to bring about a significant increase
in detection speed by means of algorithmic solutions. We combine all collection files into
a single structure (which is a small modification of the well-known suffix array (Manber
and Myers, 1990)), and then compare separate documents against this collection at once.

Finally we obtain a total complexity ofO(nNγ + N2), including the time to build
the suffix array index structure, whereN is the total number of files,n is the average
file length andγ is a finely-tunable constant,γ = Ω(log nN). Actually, γ represents
the minimal length of matches, which our algorithm tries to find. A too smallγ value
will give many false matches, while a too large value can lead to skipping important
substrings. Normally we select some “typical” value for the length of the string that a
plagiarizer can copy & paste (e.g., 10–20 tokens).

Any plagiarism detection routine based on pairwise file comparisons will have a com-
plexity of O(f(n)N2) at least, wheref(n) is the complexity of comparing two files of
lengthn.

5. Authorship Identification

The problem of authorship identification and stylometry is widely-known. Authorship
identification methods include many different techniques: Shallow parsing, Markov mo-
dels, Qsum algorithm, entropy and content analysis, etc. (Cook, 2003).

It seems clear that these methods can be used to reveal possible instances of plagiarism
indirectly. It can be an indication of plagiarism if no essay chunks can be found either on
the Net or inside other students’ submissions, but authorship analysis shows that two
different parts of this essay belong to two different authors. Although the authorship
identification problem has already been researched for years, only a few studies have been
made in plagiarism detection. Recent investigations report only limited success with this
approach (Hersee, 2000; Bonsall, 2004). It turns out that authorship analysis methods can
produce reliable results for large text blocks only; possible deviations between different
paragraphs of the same text are too high in many cases. This makes known authorship
identification methods unreliable for plagiarism detection, but this direction needs more
research.

9This may be not the case for “offline” plagiarism detection on small data sets, but important for finding
similarities in the source code of a large software project.



Desktop Tools for Offline Plagiarism Detection in Computer Programs 107

6. Principles of Evaluation

It seems obvious that any plagiarism detection system should first of all be able to detect
plagiarism; all other issues can raise interest only if the detector itself is reliable. Unfortu-
nately, most projects still lack proper evaluation. Such testing can be difficult for “online”
systems that have to maintain huge data collections; also, as we said before, the issues
of speed and coverage can have greater importance than quality. But even papers on “of-
fline” detection systems usually have very simple evaluation procedures, which show the
positive sides of new algorithms (Belkhoucheet al., 2004; Gitchell and Tran, 1999; Joy
and Luck, 1999).

Geoffrey Whale (Whale, 1990) tried to adapt well-known metrics –recall andpreci-
sion, which are used in information retrieval -, for the evaluation of plagiarism detection
systems. Whale’s approach was used to evaluate several known systems (Verco and Wise,
1997). Though these metrics are valuable for describing the reliability of the system, they
are difficult to measure. Basically, it should be known beforehand which files from the
collection contain instances of plagiarism; however, only human experts can provide re-
liable sample results. Nonetheless, manual evaluation suffers from other problems:

1. Even human markers in many cases have different opinions about particular sub-
missions;

2. it is not feasible to manually check real-world collections that contain hundreds of
submissions.

Recent work by Hoad and Zobel (Hoad and Zobel, 2003) shows that the highest false
match (HFM, the highest percentage given to an incorrect result) and separation (the
difference between the lowest correct result and the HFM) can serve as better metrics for
plagiarism detection systems than recall and precision.

The authors mention the difference between text retrieval and plagiarism detection.
In text retrieval the measure of similarity between a user query and any document in
the collection is a “score” without any upper bounds. Theoretically, there should be no
“ideal” queries, which give a maximal possible score for an arbitrary document. In pla-
giarism detection the situation is different: The exact copy of the original document is
the ideal match, so the upper limit of the similarity function for every given file is known
beforehand.

A good system should try to minimize the HFM and maximize separation, though
these values are not independent, so only the ratio HFM/separation is really important. A
high separation value can compensate for high HFM and vice versa – low separation is
satisfactory if the HFM is not high.

In the recent paper (Mozgovoyet al., 2005) my co-authors and I tried to compare
different plagiarism detection systems using the “conformism test”. The conformism test
determines how many submissions, considered as plagiarized by some certain system,
are found in a common “plagiarized files subset”, defined by several other systems (“the
jury”) by processing the same test collection.

Though different systems often differ in which file pairs originated from the same
source, they usually agree about the presence or absence of plagiarism in a certain file.



108 M. Mozgovoy

Fig. 1. Comparison of different plagiarism detection systems.

Our views on the current plagiarism detection systems are summarized in Fig. 1.
The asymptotic complexities of different systems are mostly taken from the corre-

sponding articles10. Quality measures are based primarily on our own thoughts about
underlying approaches; we have neither strict proofs, nor reliable sources to substantiate
them.

7. Conclusions

Since the problem of plagiarism is always relevant, the software solutions that help teach-
ers to detect plagiarism cases are being continually developed. Simple attribute counting
tools evolved into complex systems that use advanced string- and tree-matching mecha-
nisms in combination with impressive visualization modules. The structured, restricted
nature of programming languages makes plagiarism detection in software projects harder
for the people, but simpler for the computers. Therefore, a serious progress was achieved
in this direction. Probably, some systems already reached the limitations of the corre-
sponding category. For example, it is hard to believe that someone can develop a string
matching-based file-file comparing system that would be significantly better than JPlag.
On the other hand, the progress can be made in a new (like tree matching) or little-studied
(authorship attribution) direction.

10Brass complexity is not given in (Belkhoucheet al., 2004), so we can only estimate a reasonable order.



Desktop Tools for Offline Plagiarism Detection in Computer Programs 109

It is also clear that plagiarism detection software cannot substitute a well-planned
teaching process, aimed (in particular) at plagiarism prevention. The appropriate design
of the assignments and the proper organization of the educational process can signifi-
cantly reduce cheating.

8. Still Open Questions

Despite the existence of numerous systems intended for plagiarism detection, there are
still many open questions and topics for future research:

1. How advanced should the technology used for plagiarism detection be? It is clear
now, that the metrics-based approach is insufficient, but the best alternative be-
tween string matching and tree matching is still unknown.

2. How should the proper user interface be designed? Which features should be im-
plemented in every plagiarism detector?

3. How can enormous complexity growth be avoided? Is it possible to create a fast
and reliable system? At least, is it possible to use a hybrid approach: a fast filter
plus a reliable file-file comparator?

4. Can authorship identification techniques be adapted for the task of plagiarism de-
tection?

5. Is it possible to invent a simple and reliable procedure for the evaluation of new
systems? How can we measure the degree of reliability? Which deviations from
human experts’ opinions are crucial and which are not?

Acknowledgements

I am grateful to Kimmo Fredriksson for guiding me in this research and to Justus Ran-
dolph for reviewing the paper.

References

Baker, B.S. (1995). On finding duplication and near-duplication in large software systems. InProc. of Second
IEEE Working Conf. on Reverse Eng., pp. 86–95.

Braumoeller, B., and B. Gaines (2001). Actions do speak louder than words: deterring plagiarism with the use
of plagiarism-detection software.PS: Political Science and Politics, 34(4), 835–839.

Bliwise, R. (2001). A matter of honor.Duke Magazine, May-June, 2–7.
Belkhouche, B., A. Nix and J. Hassell (2004). Plagiarism detection in software designs. InProc. of the 42nd

Annual Southeast Regional Conference, pp. 207–211.
Bonsall, B. (2004).The Automatic Detection of Plagiarism. University of Sheffield.

http://www.dcs.shef.ac.uk/intranet/teaching/projects/archive/ug2004/pdf
/u7bb.pdf

Brumfiel, G. (2002). Physicist found guilty of misconduct.Nature, Sept., 419–421.
Collberg, C., and S. Kobourov (2003).Self-Plagiarism in Computer Science. Technical Report TR03-03, Uni-

versity of Arizona.



110 M. Mozgovoy

Clough, P. (2000).Plagiarism in Natural and Programming Languages: an Overview of Current Tools and
Technologies. Internal Report CS-00-05, University of Sheffield.

Faidhi, J.A.W., and S.K. Robinson (1987). An empirical approach for detecting program similarity within a
university programming environment.Computers & Education, 11(1), 11–19.

Grier, S. (1981). A tool that detects plagiarism in pascal programs.ACM SIGCSE Bulletin, 13(1), 15–20.
Gitchell, D., and N. Tran (1999). Sim: a utility for detecting similarity in computer programs. InProc. of the

30th SIGCSE Technical Symposium on Computer Science Education, New Orleans, Louisiana, pp. 266–270.
Hersee, M. (2000).Automatic Detection of Plagiarism: An Approach Using the Qsum Method. University of

Sheffield.
http://www.dcs.shef.ac.uk/intranet/teaching/projects/archive/ug2001/pdf
/u8msh.pdf

Hoad, T.C., and J. Zobel (2003). Methods for identifying versioned and plagiarised documents.Journal of the
American Society for Information Science and Technology, 54(3), 203–215.

Joy, M., and M. Luck (1999). Plagiarism in programming assignments.IEEE Transactions on Education, 42(2),
129–133.

Jones, E.L. (2001). Metrics based plagiarism monitoring.The Journal of Computing in Small Colleges, 16(4),
253–261.

Karp, R.M., and R.M. Rabin (1987). Efficient randomized pattern-matching algorithms.IBM Journal of Re-
search and Development, 31(2), 249–260.

Lancaster, T., and F. Culwin (2004). Using freely available tools to produce a partially automated plagiarism
detection process. InProc. of the 21st ASCILITE Conference, Perth, Australia, pp. 520–529.

Manber, U. (1994). Finding similar files in a large file system. InProc. of USENIX, San Francisco, California,
pp. 1–10.

Cook, M. (2003).Experimenting to Produce a Software Tool for Authorship Attribution. University of Sheffield.
http://www.dcs.shef.ac.uk/intranet/teaching/projects/archive/ug2003/pdf
/u0mc2.pdf

Mozgovoy, M., K. Fredriksson, D. White, M. Joy and E. Sutinen (2005). Fast plagiarism detection system. In
SPIRE’05, November 2–4, Buenos Aires, Argentina, pp. 267–270.

Manber, U., and G. Myers (1990). Suffix arrays: a new method for on-line string searches. InSODA ’90: Proc.
of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 319–327.

Nakov, P. (2000). Latent semantic analysis of textual data. InProc. of the Conference on Computer Systems and
Technologies, Sofia, Bulgaria, pp. 5031–5035.

Prechelt, L., G. Malpohl and M. Philippsen (2002). Finding plagiarisms among a set of programs with JPlag.
Journal of Universal Computer Science, 8(11), 1016–1038.

Sheard, J., M. Dick, S. Markham, I. Macdonald and M. Walsh (2002). Cheating and plagiarism: perceptions
and practices of first year IT students. InProc. of ITiCSE’02, June 24–26, Aarhus, Denmark, pp. 183–187.

Schleimer, S., D.S. Wilkerson and A. Aiken (2003). Winnowing: local algorithms for document fingerprinting.
In SIGMOD, San Diego, pp. 76–85.

Trivedi, L., and S. Williams (2002).Using Sources. Hamilton College.
http://www.hamilton.edu/academics/resource/wc/usingsources.html

Verco, K.L., and M.J. Wise (1997). Plagiarism à la mode: a comparison of automated systems for detecting
suspected plagiarism.The Computer Journal, 39(9), 741–750.

The New Webster’s Encyclopedic Dictionary of the English Language. Random House Value Publishing, Inc.
Whale, G. (1990). Identification of program similarity in large populations.The Computer Journal, 33(2), 140–

146.
Wiedemeier, P.D. (2002). Preventing plagiarism in computer literacy courses.The Journal of Computing in

Small Colleges, 17(4), 154–163.
Wise, M.J. (1992). Detection of similarities in student programs: YAP’ing may be preferable to plague’ing.

ACM SIGSCE Bulletin, 24(1), 268–271.
Wise, M.J. (1994).Running Rabin-Karp Matching and Greedy String Tiling. Basser Department of Computer

Science Technical Report, Sydney University.
Wise, M.J. (1996). YAP3: improved detection of similarities in computer program and other texts. InProc. of

SIGCSE ’96 Technical Symposium, Philadelphia, USA, pp. 130–134.
Zobel, J., and M. Hamilton (2002). Managing student plagiarism in large academic departments.Australian

Universities Review, 45(2), 23–30.



Desktop Tools for Offline Plagiarism Detection in Computer Programs 111

M. Mozgovoy is a PhD student at the University of Joensuu, Finland. Formerly wor-
king as a researcher and a teacher (theory of computing, C++ language, data mining, and
basics of plagiarism detection), he is now concentrated on postgraduate studies. His scien-
tific interests include also natural language processing and various aspects of artificial
intelligence.



112 M. Mozgovoy

Plagiatui kompiuterinėse programose aptikti skirtos darbalaukio
priemonės

Maxim MOZGOVOY

Universitetai su plagijavimo problema susiduria visais laikais, ši↪a problem↪a spr↪esti vi-
suomet b̄una sunku. Per pastaruosius kelerius metus buvo sukurta↪ivairi ↪u priemoni↪u, padedaňci ↪u
dėstytojams aptikti plagiat↪a tarp student↪u darb↪u. Derama daugyḃes plagiatui aptikti skirt↪u
priemoni↪u klasifikacija gali tinkamai pasitarnauti nustatant atskir↪u priemoni↪u galimybes, priva-
lumus bei tr̄ukumus. Straipsnyje aptariamas modernios programinės ↪irangos, skirtos kovoti su pla-
gijavimu, spektras, daugiausia telkiant dėmes↪i ↪i darbalaukio sistemas, sukurtas kompiuteri↪u prog-
ramos plagiatui aptikti. Taip pat aptariamas šiuo metu prieinam↪u plagiatui aptikti skirt↪u sistem↪u
darbo greitis ir patikimumas.


