
Fast Plagiarism Detection System

Maxim Mozgovoy1, Kimmo Fredriksson1,�, Daniel White2, Mike Joy2,
and Erkki Sutinen1

1 Department of Computer Science, University of Joensuu,
PO Box 111, FIN–80101 Joensuu, Finland

{Maxim.Mozgovoy, Kimmo.Fredriksson, Erkki.Sutinen}@cs.joensuu.fi
2 Department of Computer Science, University of Warwick, Coventry CV4 7AL, U.K.

{D.R.White, M.S.Joy}@warwick.ac.uk

Introduction. The large class sizes typical for an undergraduate programming
course mean that it is nearly impossible for a human marker to accurately detect
plagiarism, particularly if some attempt has been made to hide the copying.
While it would be desirable to be able to detect all possible code transformations
we believe that there is a minimum level of acceptable performance for the
application of detecting student plagiarism. It would be useful if the detector
operated at a level that meant for a piece of work to fool the algorithm would
require that the student spent a large amount of time on the assignment and
had a good enough understanding to do the work without plagiarising.

Previous Work. Modern plagiarism detectors, such as Sherlock [3], JPlag [5]
and MOSS [6] use a tokenization technique to improve detection. These detec-
tors work by pre-processing code to remove white-space and comments before
converting the file into a tokenized string. The main advantage of such an ap-
proach is that it negates all lexical changes and a good token set can also reduce
the efficacy of many structural changes. For example, a typical tokenization
scheme might involve replacing all identifiers with the <IDT> token, all numbers
by <VALUE> and any loops by generic <BEGIN LOOP>...<END LOOP> tokens. Our
algorithm also makes use of tokenised versions of the input files and we use suffix
arrays [4] as our index data structure to enable efficient comparisons.

While all the above-mentioned systems use different algorithms to each other,
the core idea is the same: a many-to-many comparison of all files submitted for
an assignment should produce a list sorted by some similarity score that can
then be used to determine which pairs are most likely to contain plagiarism.
A näıve implementation of this comparison, such as that used by Sherlock or
JPlag, results in O(f(n)N2) complexity where N is the size (number of files)
of the collection, and f(n) is the time to make the comparison between one
pair of files of length n. Without loss of detection quality, our method achieves
O(N(n + N)) average time by using indexing techniques based on suffix arrays.
If the index structure becomes too large, it can be moved from primary memory
to secondary data storage without significant loss of efficiency [2].

The approach we describe can be also used to find similar code fragments in a
large software system. In this case the importance of fast algorithm is especially
� Supported by the Academy of Finland, grant 202281.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 267–270, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



268 M. Mozgovoy et al.

Algorithm 1. Compare a File Against an Existing Collection
1 p = 1 // the first token of Q
2 WHILE p ≤ q − γ + 1
3 find Q[p...p + γ − 1] from the suffix array
4 IF Q[p...p + γ − 1] was found
5 UpdateRepository
6 p = p + γ
7 ELSE
8 p = p + 1
9 FOR EVERY file Fi in the collection
10 Similarity(Q, Fi) = MatchedTokens(Fi)/q

high due to large file collection size. The Dup tool [1] uses parametrized suffix
trees to solve this task, but the algorithms are relatively complex compared to
our approach.

Algorithms and Complexity. Our proposed system is based on an index structure
built over the entire file collection. Before the index is built, all the files in the
collection are tokenized. This is a simple parsing problem, and can be solved in
linear time. For each of the N files in the collection, The output of the tokenizer
for a file Fi is a string of ni tokens. The total number of tokens is denoted by
n =

∑
ni.

We use suffix array as an index structure. A suffix array is a lexicographically
sorted array of all suffixes of a given string [4]. The suffix array for the whole
document collection is of size O(n). We consider the total memory requirements
to be acceptable for modern hardware. A suffix array allows us to rapidly find
a file (or files), containing any given substring. This is achieved with a binary
search, and requires O(m + log2 n) time on average, where m is the length of
the substring (it is also possible to make this the worst case complexity, see [4]).
The array can be constructed in time O(n log n), assuming atomic comparison
of two tokens.

Algorithm 1 is intended for finding all files within the collection’s index that
are similar to a given query file. It tries to find the substrings of the tokenised
query file, Q[1..q], in the suffix array, where q is the number of tokens. Matching
substrings are recorded and each match contributes to the similarity score. The
algorithm takes contiguous non-overlapping token substrings of length γ from
the query file and searches all the matching substrings from the index. These
matches are recorded into a ‘repository’. This phase also includes a sanity check
as overlapping matches are not allowed.

The similarity between the file Q being tested and any file Fi in the collection
is just a number of tokens matched in the collection file divided by the total
number of tokens in the test file (so it is a value between 0 and 1), i.e.

Similarity(Q, Fi) = MatchedTokens(Fi)/q,

In Algorithm 2, we encounter two types of collisions. The first one appears
when more than one match is found in the same file. If several matches that
are found correspond to the same indexed file, these matches are extended to



Fast Plagiarism Detection System 269

Algorithm 2. Update the Repository
1 Let S be the set of matches of Q[p...p + γ − 1]
2 IF some of the strings in S are found in the same file /* collision of type 1 */
3 leave only the longest one
4 FOR every string M from the remaining list S
5 IF M doesn’t intersect with any repository element
6 insert M to the repository
7 ELSE IF M is longer than any conflicting rep. element /* collision of type 2 */
8 remove all conflicting repository elements
9 insert M to the repository

Γ tokens, Γ ≥ γ, such that only one of the original matches survives for each
indexed file. Therefore, for each file in the index, the algorithm finds all matching
substrings that are longer than other matching substrings and whose lengths are
at least γ tokens. The second one is the reverse of the first problem: we should
not allow the situation when two different places in the input file correspond to
the same place in some collection file. To resolve the difficulty we use ‘longest
wins’ heuristics. We sum the lengths of all the previous matches that intersect
with the current one, and if the current match is longer, we use it to replace the
intersecting previous matches.

The complexity of Algorithm 1 is highly dependent on the value of the γ
parameter. Line 3 of Algorithm 1 takes O(γ +logn) average time, where n is the
total number of tokens in the collection (assuming atomic token comparisons). If
we make the simplifying assumption that two randomly picked tokens match each
other (independently) with fixed probability p, then on average we obtain npγ

matches for substrings of length γ. If Q was found, we call Algorithm 2. Its total
complexity is, on average, at most O((q/γ · npγ)2). To keep the total average
complexity of Algorithm 1 to at most O(q(γ + log n)), it is enough that γ =
Ω(log1/p n). This results in O(q log n) total average time. Since we require that
γ = Ω(log n), and may adjust γ to tune the quality of the detection results, we
state the time bound as O(qγ). Finally, the scores for each file can be computed
in O(N) time. To summarize, the total average complexity of Algorithm 1 can
be made O(q(γ + log n) + N) = O(qγ + N). The O(γ + log n) factors can be
easily reduced to O(1) (worst case) using suffix trees [7] with suffix links, instead
of suffix arrays. This would result in O(q + N) total time.

Note that we have excluded the tokenization of Q and that we have consid-
ered the number of tokens rather than the number of characters. However, the
tokenization is a simple linear time process, and the number of tokens depends
linearly on the file length.

To compare every file against each other, we can just run Algorithm 1 for
every file in our collection. After that, every file pair gets two scores: one when
file a is compared to file b and one when the reverse comparison happens, as the
comparison is not symmetric. We can use the average of these scores as a final
score for this pair.

Summing up the cost of this procedure for all the N files in the collection, we
obtain a total complexity of O(nγ + N2), including the time to build the suffix
array index structure. With suffix trees this can be made O(n + N2).



270 M. Mozgovoy et al.

Evaluation of the System. It is not feasible in the nearest future to compare
our system’s results with a human expert’s opinion on real-world datasets as
a human would not have the time to conduct a thorough comparison of every
possible file pair. However, we can examine the reports that are produced by
different plagiarism detection software when used on the same dataset. The
systems used for the analysis include MOSS [6], JPlag [5] and Sherlock [3].
Every system printed a report about the same real collection, consisting of 220
undergraduate student’s Java programs.

The simple approach (to consider only detection or rejection) allows us to
organize a ‘voting’ experiment. Let Si be the number of ‘jury’ systems (MOSS,
JPlag and Sherlock), which marked file i as suspicious. If Si ≥ 2, we should
expect our system to mark this file as well. If Si < 2, the file should, in general,
remain unmarked.

For the test set consisting of 155 files marked by at least one program, our
system agreed with the ‘jury’ in 115 cases (and, correspondingly, disagreed in 40
cases). This result is more conformist than the results obtained when the same
experiment was run on the other 3 tested systems. Each system was tested while
the other three acted as jury.

Conclusions. We have developed a new fast algorithm for plagiarism detection.
Our method is based on indexing the code database with a suffix array, which
allows rapid retrieval of blocks of code that are similar to the query file. This
idea makes rapid pairwise file comparison possible. Evaluation shows that this
algorithm’s quality is not worse than the quality of existing widely used methods,
while its speed performance is much higher. For the all-against-all problem our
method achieves O(γn) (with suffix arrays) or O(n) (with suffix trees) average
time for the comparison phase. Traditional methods, such as JPlag, need at least
O((n/N)2N2) = O(n2) average time for the same task. In addition, computing
the similarity matrix takes O(N2) additional time, and this cannot be improved,
as it is also the size of the output.

References

1. B. S. Baker. Parameterized Duplication in Strings: Algorithms and an Application
to Software Maintenance. SIAM Journal on Computing, 26(5):1343–1362, 1997.

2. D. Clark and J. Ian Munro. Efficient suffix trees on secondary storage. Proceedings
of the seventh annual ACM-SIAM symposium on Discrete algorithms, 1996.

3. M. S. Joy and M. Luck. Plagiarism in programming assignments. IEEE Transactions
on Education, 42(2):129–133, 1999.

4. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
In Proceedings of SODA ’90, 319–327. SIAM, 1990.

5. L. Prechelt, G. Malpohl, and M. Phlippsen. JPlag: Finding plagiarisms among a
set of programs. Technical report, Fakultat for Informatik, Universitat Karlsruhe,
2000. http://page.mi.fu-berlin.de/~prechelt/Biblio/jplagTR.pdf.

6. S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local algorithms for
document fingerprinting. In Proceedings of SIGMOD ’03, 76–85. ACM Press, 2003.

7. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.

http://page.mi.fu-berlin.de/~prechelt/Biblio/jplagTR.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




