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Abstract—Interaction with opponents is a core element in video
sports games. Thus, user experience in single-player matches
heavily depends on the quality of AI opponents, who are
expected to vary in their skill level and play styles. One
way to achieve this goal is to learn game-playing behavior
from real human players and to improve it if necessary with
an automated optimization method. Monte-Carlo tree search
(MCTS) has been successfully used for this purpose in several
card and board games, such as chess and poker. We explore
the possibility to apply MCTS in an action sports game of 3D
tennis, and show how a dataset of pre-recorded tennis games
can be used to train an MCTS-based AI system, exhibiting
believable and reasonably skillful behavior.

Index Terms—tennis, game AI, MCTS, believability

1. Introduction

The genre of sports games provides an interesting chal-
lenge for game AI research and development. The environ-
ment of a typical sports game is relatively simple, limited
with a bordered playing field and governed with a set of
predefined rules, mirroring those taken from real-life sports
event. Thus, the enjoyability of the game process is to a
large extent determined with player-player interaction. If
teammates and/or opponents are controlled by an AI system,
its quality can make a significant impact on user experience.

A large number of research works explore the nature of
enjoyability in computer games, and discuss how AI can
contribute to user enjoyment [1]–[5]. Within the context
of simulation-like sports games the most relevant factors
appear to be skill diversity [3], behavior diversity [3], and
believability [5]. The AI system is expected to provide
sufficient challenge for players of different skill level; it is
expected to behave in a realistic, human-like manner, and
to exhibit a variety of play styles, avoiding repetitive acting
patterns.

Many authors discuss how to achieve these goals in
practice. Most approaches seem to fall into three categories:
1) handcrafting ”human-like” behavior; 2) engineering ”cog-
nitive architectures” that simulate human decision making
process to a certain degree; 3) learning and reproducing
actual human behavior patterns. Some systems implement
elements of two or all three categories. From a practical

game development perspective, a certain capability of the
given method may be decisive for a particular game project.
For example, the importance of the ability to make long-term
strategic decisions, to learn from scant data, or to provide an
easy way to adjust AI skill level is highly game-dependent.

Monte-Carlo tree search (MCTS) [6] is a decision mak-
ing method, growing in popularity due to its high flexibility,
predictable computational demands, and the capacity to cre-
ate strongly performing game AI agents. While this method
is mostly used in board games, it was also successfully
applied to more action-oriented genres, such as arcade and
fighting games [7], [8]. Some authors suggest that MCTS
can be used to obtain believable AI behavior [8].

The target environment for our AI system is a popular
free-to-play mobile game World of Tennis: Roaring ’20s (see
Fig. 2). It aims to represent a relatively accurate experience
of a tennis game, comprising realistic player movements,
ball physics, and typical acting patterns. Since World of
Tennis, like most other free-to-play games, is designed ”for
a (very) long duration of play” [9], its AI system has to
provide a diverse and lasting experience for the players.
Thus, the game implements a believable machine learning-
based AI system, aimed to mimic a large variety of human
play styles [10]. Currently, there is no online multiplayer
capabilities in the game: all matches are between human
players and AI-controlled bots. The present AI solution is
able to learn from human players and reuse their behavior
patterns in subsequent matches. As a result, people play
against diverse ”virtual clones” of their peers.

This approach ensures believability and diversity of be-
havior, but has no capability to control the skill level of the
given AI agent. In World of Tennis we have enough ”virtual
clones” to choose from, so finding an opponent of a desired
level is not hard (a leaderboard rating of its human ”trainer”
can be used to estimate agent’s skills). However, in general
case the ability of an agent to optimize own behavior can be
useful in a variety of scenarios. For example, one may want
to have ”easy” and ”difficult” versions of the same character.
An optimized ”virtual clone” of a player can be used as
an intelligent assistant, suggesting the next possible moves.
Finally, self-optimizing agents can find potential defects
in the game engine, leading to unexpectedly degenerate
winning strategies.

MCTS routine can be supplied with an existing tree,



reflecting a certain play style of an agent. MCTS is also able
to expand this tree and adjust action probabilities, optimizing
the initial behavior. These capabilities motivated us to try
introducing MCTS-based AI agents into World of Tennis.
The present work reports our preliminary results, showing
that MCTS is able to generate believable AI characters, play-
ing on par with human participants. The simplicity of our
current approach also leaves room for further improvements.

2. 3D Tennis Game Environment

The core game process in World of Tennis can be divided
into the following phases:

• Serve. The player can walk to a desired serve loca-
tion and hit the ball to a desired area.

• Receive Serve. The player can walk to a desired
location to prepare for the opponent’s serve.

• Recovery Movement. When the ball is moving
towards the opponent, the player has a chance to
run to an advantageous position at the court.

• Incoming Ball. When the ball is moving towards the
player, the game engine directs the player character
to the receiving location. The only task of the player
is to perform the next shot, i.e., specify the target
location of the shot and its type with a swipe gesture
(three shot types are supported).

This way, World of Tennis incorporates the elements of
both action and strategy, and the main challenge is to decide
quickly where the next recovery and shot points should be
set. A typical game episode (from a serve to a point scored)
consists of interleaving ”shot” and ”move” actions.

Figure 1. World of Tennis: Roaring ’20s

The game also implements a system of character up-
grades: the players can improve their characters’ abilities,
such as shot accuracy or speed of movements as well as
equipment, such as rackets or shoes. These abilities are
designed to compensate each other. For example, improving
shot power decreases shot accuracy, so after upgrading the
power ability one has to upgrade accuracy as well to keep
shots both strong and accurate. Thus, as the players progress,
the game becomes more fast-paced, but winning playing
strategies remain essentially intact, as shown in our earlier
work [11]. The existence of ”accuracy” factor also shows
that the outcome of each shot is probabilistic. A successful

strategy has to balance risks: for instance, a shot sent to a
corner of the court is hard to return, but it is also most likely
to go out.

Matches are played in a tiebreaker mode: a player has to
score at least seven points and be at least two points ahead of
the opponent. Thus, while a typical match ends with a score
7:5 or 7:4, occasional results like 10:12 are also possible.
An individual game session lasts around 1.5–3 minutes.

As noted previously, the game’s existing AI system
strives to provide diverse and believable opponents by
”cloning” behaviors of actual human players. Behavior pro-
files are represented with Markov decision processes [10]
and reflect around 30 last game sessions (older observations
are removed from the knowledge model). We estimate that
playing 10–15 sessions is enough to obtain a reliable clone,
able to compete with people.

3. Adapting MCTS for Tennis

The use of MCTS-family methods require the game
flow to be represented as a tree, where individual nodes
correspond to certain game situations. As described in the
previous section, basic game episodes (from serve to point
scored) in World of Tennis consist of move/shot action se-
quences, effectively corresponding to a turn-based gameplay
process. Thus, our game tree is similar to that of a board
game (see Fig. 2).

Figure 2. Game tree fragment

Each node contains the following elements:

• Shot side: AI side or Opponent (human player) side.
• AI position: on-court location of an AI-controlled

character.
• Opponent position: on-court location of an

opponent-controlled character.
• Target position: on-court target location of the cur-

rent shot.



• Shot type: one of three possible shot types (basic
shot, lob, power shot).

Locations are defined with integer cell indices inside a
6×8 court grid (see Fig. 3).

Figure 3. Tennis court grid

The situation shown in Fig. 2 can be understood as
follows. The opponent is in the upper court half (cells 0–23),
and the AI-controlled character is in the lower court half
(cells 24–47). In the current state the ball is moving towards
the AI character, and will land in the cell 3. As a response,
the AI can return the ball to two different target positions
(11 and 15) using a ”spin” shot. A complete set of responses
would include 24 possible return positions and three possible
shot types.

In the present study, we use a popular MCTS variation
known as UCT with UCB1 tree policy [6]. The core MCTS
routine attempts to build and grow a partial game tree by
traversing and expanding a tree obtained during previous
algorithm runs. One of the key contributing factors to the
performance of a particular MCTS variation is the choice
of tree policy, governing the selection and creation of leaf
nodes. The resulting algorithm assigns node scores accord-
ing to the formula

UCT = Xi + 2Cp

√
2 lnNi

ni
, where

Xi = pi + (1− pi)
wi

ni

The reward Xi is calculated on the basis of the immedi-
ate scoring potential of the next action pi. The value of wi

denotes the number of wins for the node considered after the
i-th action, and ni stands for the number of simulations for
the node considered after the i-th action (Ni is the number of
simulations for its parent node). Thus, the value of wi/ni

represents a possibility of winning of the current action,
and is used as the reward value. The scoring potential pi
is calculated from actual shot patterns in the process of
game simulation. The constant Cp governs the degree of
bias towards unexplored nodes. It is set to 1.5/

√
2 in the

current version of our system.

4. Reusing Human Behavior Patterns

The algorithm described above represents a basic MCTS
variation, aimed to identify winning strategies for the game.
Other traits of the obtained behavior, such as human like-
ness, are not addressed. However, several works discuss how
to adjust MCTS operation to improve believability of AI
agents. These works also reflect different understanding of
what exactly constitute ”human-like behavior”. For instance,
Ishihara et al. [8] rely on the proposal of Demediuk et
al. [12], suggesting that that believability is ensured by
an improved MCTS action selection policy. It is proposed
to treat all actions of low estimated reward (lying within
a specified range around zero) as equal, and use random
choice to select one. This should encourage more experi-
mental behavior and avoid repetition of the same actions. A
somewhat similar idea is implemented by Khalifa et al. [13].
The authors of this work deal with arcade games, and one
of their concerns is human tendency to keep the same
gamepad button pressed for more than one game frame. It
effectively means repeating the same action, which is not
a natural property of MCTS-driven AI agents. Thus, they
suggest to modify MCTS action selection policy to adjust
the probability distribution of same-action chains to match
the patterns observed in human game recordings. Biasing
MCTS selection towards a particular probability distribution
of individual actions is proposed by Delvin et al. [14]. The
target distribution is obtained from a collection of games
played by people.

Thus, ”human-like” behavior is sometimes considered
simply as ”possessing certain human-like traits”, such as
avoidance of repeating the same acting patterns or proclivity
to proactive and exploratory behavior. It can also be seen
as characterized by a particular generalized ”human-like’
action distribution, obtained from an aggregated collection
of human-supplied game sessions.

While in World of Tennis we strive to represent a variety
of play styles, corresponding to individual human players,
we opted for generalized ”human-likeness” in the present
work. The probabilistic outcome of tennis actions as well
as large branching factor of the game tree makes it hard for
MCTS to reach a reasonable playing strategy without any
a priori knowledge. Thus, we rely on data, extracted from
10000 actual human-vs-AI games, containing approximately
1400 distinct winning actions. We define an action to be
“winning”, if it resulted in player’s point in more than 50%
cases across 10000 actual games. Each action contains an
action type (move or shot), its target location, and a shot
type for shots. Unlike game states, actions use fine-grained
coordinates, not bound to court grid cells. This gives us the
ability to estimate action outcomes more accurately at the
expense of losing player-specific acting patterns.

The ability of MCTS to adapt to ongoing changes in the
game process can also be considered important for a human-
like AI system. As players familiarize with the game and
upgrade their abilities, they also learn to play better and
discover new winning strategies. Thus, exploratory capabil-



ities of MCTS decision making should also contribute to the
overall user enjoyment.

5. AI Decision Making Process

In the current version of the system, the AI follows the
standard Selection / Expansion / Simulation / Backpropaga-
tion scheme of MCTS. The UCT/UCB1 approach is used to
balance between exploration and exploitation of child nodes.
The UCT formula relies on scoring potentials of individual
actions and the number of simulations made to calculate
it. Thus, MCTS decision making process incorporates both
the frequency (or popularity) of a particular action, and its
scoring potential.

We calculated a scoring potential and a frequency of
every action found in human-provided game recordings.
Our dataset contains approximately 9300 unique actions,
described with (shot side, AI position, opponent position,
target position, shot type) tuples. Actions are distributed very
unevenly: the average number of occurrences of an action
is 3.35, while the most frequent actions appear more than
200 times in the dataset. This data shows some objective
properties of tennis, such as higher scoring potential of shots
into court corners or higher frequency of specific patterns
typical, e.g., for serve actions. However, it also shows human
players’ preference for certain types of actions.

In our algorithm, MCTS starts with action frequencies
and scoring potentials taken from the dataset. Thus, its
choice of actions is biased by human-supplied behavior data.
However, the outcomes of subsequent games affect node
values, steering the MCTS-controlled agent towards more
efficient (in terms of higher chances to win) strategies.

6. Evaluation: Skill Level

The implementation of player progress capability in
World of Tennis makes it hard to evaluate the objective
skill level of the MCTS AI system. On one hand, there
is a great diversity of existing AI-supported players that
can be used to benchmark the MCTS-based agent. On the
other hand, we do not have any objective measurements
of their skills: higher-ranking players might simply possess
higher abilities such as shot accuracy or movement speed,
which helps them to win, but does not improve their decision
making. We have access to performance indicators such as
the percentage of matches won, but the matchmaking system
always supplies to each player a certain fixed percent of
lower-ranking opponents to keep the game challenging and
not frustratingly difficult.

For the first test, we took a random sample of twelve
existing AI-supported players of different ”player levels”
(reflecting the total number of skill points allocated to the
player) and played ten matches between the MCTS-based
AI and each of the chosen players. The abilities of the
MCTS AI were upgraded to match those of its opponent
in each case. In this experiment we do not save the MCTS
tree between the runs to evaluate the baseline performance,

obtained from human-supplied behavior data. The results are
summarized in Table 1, showing the total number of points
scored by each opponent in the course of ten matches.

Data shows that the MCTS-driven character is stronger
than one half of the opponents. In some cases the difference
in score is quite small, so the skills of both opponents can
be considered nearly equal. While this result represents the
baseline performance, we still see at least three options
for possible improvements. First, the training set of 10000
matches is not very large, and thus award scores for many
leaf nodes cannot be considered reliable. Second, the grid
we use is relatively coarse, so decision making might ben-
efit from finer court partitioning. Third, the treatment of
”move” and ”shot” actions as independent does not reflect
atomic units of tennis strategy. It would be more accurate
to consider ”shot and move” as a single action, leading to
a certain outcome.

Player ID Level (1-9) Experience
(matches)

Final score
(player vs MCTS)

1 4 488 45:61
2 3 282 70:41
3 7 965 70:18
4 5 1203 65:48
5 9 1261 46:62
6 5 549 69:54
7 5 277 45:72
8 4 1684 62:67
9 1 345 26:27
10 2 305 58:53
11 6 2508 54:48
12 8 604 53:59

TABLE 1. FINAL SCORES (BUILT-IN AI VS MCTS AI)

The skill level of an MCTS-based AI is also expected
to increase as a result of learning. To verify this effect
we set up a quick test. Four players (ID 2, 3, 4 and 6)
were selected from the twelve players used in the previous
run to play a series of 20 matches against the MCTS AI.
These players were found to be much stronger than the basic
MCTS agent in the previous test, so there is a considerable
room for possible improvement. This time MCTS tree is
preserved between matches, so the agent is able to retain
previously learned information. Despite small number of
training sessions, MCTS agent was able to improve sig-
nificantly, eventually becoming stronger than any of its
opponents (see Fig. 4). The chart shows AI progress in
four independent test sessions. Each test session consists
of 20 games against a particular opponent. Chart bars show
how the ratio of MCTS AI victories increases with every 5-
game sub-session, and how the average game score shifts in
favor of the MCTS AI. This gradual improvement provides
a method to the game designers to fine-tune MCTS AI in
terms of its skills, since the process of behavior optimization
can be stopped at any time, freezing AI at the current skill
level.



Figure 4. Matches won by the MCTS agent and average scores

7. Evaluation: Believability

Evaluating believability of AI is not an easy task. The
most straightforward approach is to implement a variation
of a Turing test, where observers are asked to label game
characters as humans or bots in a series of video clips [15].
A number of research projects indeed rely on Turing test
for assessing believability (one notable example is the 2K
BotPrize Contest [16]). However, this method is hard to
setup in a way to obtain reliable results and difficult to use
for the task of play style identification, i.e. to label game
recordings belonging to the same player. In addition, it is not
scalable, and hardly suitable for quick assessment of gradual
improvements of a system being under development.

Thus, some works propose relying on a certain kind of
an automated assessment procedure. While it is arguably
hard to assess ”human-likeness” with an algorithm, it is
possible to compare game logs of AI-controlled characters
and of humans to evaluate similarity. We have proposed
such a technique for World of Tennis in [10]. An automated
procedure analyzes game logs to build a ”behavior profile”
of an individual player, based on a heatmap of its movements
and shots. These heatmaps are converted into vectors of
probabilities and compared using a cosine similarity for-
mula.

We used this approach to compare the behavior profile
of our MCTS player with the profiles of five AI-supported
players P1–P5 and with a ”Coach AI” — a deliberately
weaker AI player used in a tutorial game section to teach the
user the basics of the gameplay. The results are summarized
in Table 2. They are consistent with our earlier findings [10]
that players indeed possess distinctive play styles and gen-
erally preserve them across matches. The MCTS agent is
seemingly not yet as human-like as our existing agents (how-
ever, they should be considered imperfect proxies for real
human behavior rather than gold-standard human behavior
profiles). Still, some player pairs, such as P6 and P9, also
exhibit comparably low behavior similarity.

We also performed a quick Turing test-like survey in-
volving 15 testers, who were asked to answer which of
the two onscreen players behaved in a more human-like
manner. Seven testers do not play sports video games, seven

MCTS 98.3
Coach 5.0 97.6
P1 33.7 39.7 94.8
P6 28.4 35.6 60.0 88.1
P8 22.6 35 70.7 40.1 89.4
P9 15.7 14.2 50.4 35.1 39.5 96.4
P10 27.7 16.3 64.6 65.2 57.3 50.2 93.6

MCTS Coach P1 P6 P8 P9 P10

TABLE 2. BEHAVIOR PROFILES COMPARISON
(P1–P5, MCTS, COACH AI)

other people play occasionally (once a week), and one
person plays daily. Three testers believe they are proficient
sports game players. The recordings included three videos of
MCTS AI vs Coach AI matches and three videos of a mod-
erately experienced real human player vs MCTS AI matches.
As a result, the MCTS-controlled character was labeled as
”more human-like” in 79% of cases in MCTS vs Coach
matches and in 64% of cases in MCTS vs human matches.
It is surprising to have such a high score in the latter case,
but it might be explained with a specific idiosyncratic play
style of this particular player. We could observe similar
mislabeling in video replays of fighting game sessions [17].
According to tester feedback, a somewhat aggressive and
reasonably smart behavior is perceived as human-like. For
instance, several testers mentioned aiming the corner or edge
of the court as human-like, being risky and aggressive. The
testers also noted active court positioning strategies, such
as returning to the middle zone of the court after shot and
taking into account the current opponent location.

8. Conclusion

In this work, we have created an MCTS-based AI system
for a 3D tennis game. By modeling game states adequately,
the AI is able to represent the tennis game process as a
tree and perform search for winning actions in real time.
The algorithm relies on a pre-calculated statistics of action
outcomes, obtained from a collection of game recordings,
played between actual human players and a built-in AI
system based on Markov decision processes.

The resulting system learns very quickly, and is able
to win most matches against a build-in AI system after
20 sessions of play. This capability makes MCTS a strong
candidate for creating a fine-tunable game AI, able to pro-
vide diverse characters of varying skills. Our tests were
performed against a small set of pre-selected opponents, so
additional experiments are necessary to ensure the robust-
ness of this approach.

The current believability assessment produced mixed
results. On one hand, if we presume that our existing agents
are believable, then MCTS agent cannot yet reach the same
level of believability as the present system. On the other
hand, our quick survey shows that external observers could
not distinguish an MCTS-controlled character from a real
human player. Here we have to note that the original premise
of ”human-likeness of MCTS” hinges on the presumption



that action statistics obtained from human behavior data can
sufficiently approximate human-like behavior. However, it is
possible that more complex observations of human behavior
are needed (such as move-shot sequences or partial decision
trees). They can also be supplied as an initial input to MCTS.

Therefore, we can conclude that MCTS is a good candi-
date for creating AI-controlled opponents. Creating believ-
ability behavior is more challenging, but should be possible
with more advanced ways of reusing human-supplied be-
havior patterns.

References

[1] H. Wang, C. Shen, and U. Ritterfeld, “Enjoyment of digital games,”
In: U. Ritterfeld, M. Cody, & P. Vorderer (Eds.), Serious Games:
Mechanisms and Effects, pp. 25–47, 2009.

[2] J. M. Quick, R. K. Atkinson, and L. Lin, “The Gameplay Enjoyment
Model,” International Journal of Gaming and Computer-Mediated
Simulations (IJGCMS), vol. 4, no. 4, pp. 64–80, 2012.

[3] G. N. Yannakakis and J. Hallam, “Capturing player enjoyment in
computer games,” in Advanced Intelligent Paradigms in Computer
Games. Springer, 2007, pp. 175–201.

[4] P. Sweetser and P. Wyeth, “Gameflow: A model for evaluating player
enjoyment in games,” Computers in Entertainment, vol. 3, no. 3, pp.
1–24, 2005.

[5] N. A. Taatgen, M. van Oploo, J. Braaksma, and J. Niemantsverdriet,
“How to construct a believable opponent using cognitive modeling in
the game of set,” in Proceedings of the fifth international conference
on cognitive modeling, 2003, pp. 201–206.

[6] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo Tree Search methods,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 4, no. 1, pp.
1–43, 2012.

[7] T. Pepels, M. H. Winands, and M. Lanctot, “Real-time Monte Carlo
Tree Search in Ms Pac-Man,” IEEE Transactions on Computational
Intelligence and AI in games, vol. 6, no. 3, pp. 245–257, 2014.

[8] M. Ishihara, S. Ito, R. Ishii, T. Harada, and R. Thawonmas, “Monte-
carlo tree search for implementation of dynamic difficulty adjustment
fighting game ais having believable behaviors,” in Proceedings of the
2018 IEEE Conference on Computational Intelligence and Games
(CIG’18). Piscataway, NJ: IEEE, 2018, pp. 1–8.

[9] P. Luban. (2011) The design of free-to-play
games. [Online]. Available: https://www.gamasutra.com/view/fea-
ture/6552/the design of freetoplay games .php

[10] M. Mozgovoy, M. Purgina, and I. Umarov, “Believable self-learning
AI for World of Tennis,” in 2016 IEEE Conference on Computational
Intelligence and Games, 2016, pp. 1–7.

[11] M. Mozgovoy, “Analyzing user behavior data in a mobile tennis
game,” in 2018 IEEE Games, Entertainment, Media Conference
(GEM), 2018, pp. 1–9.

[12] S. Demediuk, M. Tamassia, W. L. Raffe, F. Zambetta, X. Li, and
F. Mueller, “Monte carlo tree search based algorithms for dynamic
difficulty adjustment,” in 2017 IEEE conference on computational
intelligence and games (CIG). IEEE, 2017, pp. 53–59.

[13] A. Khalifa, A. Isaksen, J. Togelius, and A. Nealen, “Modifying mcts
for human-like general video game playing,” in Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence,
ser. IJCAI’16. AAAI Press, 2016, p. 25142520.

[14] S. Devlin, A. Anspoka, N. Sephton, P. I. Cowling, and J. Rollason,
“Combining gameplay data with monte carlo tree search to emulate
human play,” in Twelfth Artificial Intelligence and Interactive Digital
Entertainment Conference, 2016.

[15] J. Togelius, G. N. Yannakakis, S. Karakovskiy, and N. Shaker,
“Assessing believability,” in Believable bots. Springer, 2013, pp.
215–230.

[16] P. Hingston, “A turing test for computer game bots,” IEEE Transac-
tions on Computational Intelligence and AI in Games, vol. 1, no. 3,
pp. 169–186, 2009.

[17] K. Yuda, S. Kamei, R. Tanji, R. Ito, I. Wakana, and
M. Mozgovoy, “Identification of play styles in Universal Fighting
Engine,” in Game-On Conference, 2021. [Online]. Available:
https://arxiv.org/abs/2108.03599


