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1. Abstract. AI nowadays plays an important role in many areas
including video games. AI-controlled agents have become an essential
part of video game worlds, inhabited by both intelligent opponents and
friendly characters that make games more interesting and interactive. In
certain types of games, notably sports games, it is important to provide
opponents of different skill levels. One way to achieve such tunable AI is
to employ an automated optimization method. Monte-Carlo tree search
(MCTS) has been successfully used for this purpose in card and board
games, such as chess and poker. We explore the possibility to apply
MCTS in an action sports game of 3D tennis, and show how a dataset
of pre-recorded tennis games can be used to train MCTS to overcome
an entry-level built-in tennis AI system.

2. Introduction. Among methods of building game AI, the most
common one is Rule-Base AI. It is simple and powerful. But it requires
the implementer to understand the game logic well and be able to think
about all game patterns, which is difficult.

This disadvantage can be overcome by using heuristic algorithms
such as MCTS [1] to select sequentially plausible actions. In general,
MCTS-family algorithms represent game process as a tree with nodes
corresponding to game states. Then a certain procedure is used to ex-
plore the tree and find the most effective actions.

In this study we rely on Monte-Carlo tree search to built an AI system
for a 3D tennis game.
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Figure 1. MCTS steps

3. Monte-Carlo tree
search method. Monte-
Carlo tree search con-
sists of the following
four steps:

1. Selection

2. Expansion

3. Simulation

4. Backpropagation

By repeating these steps, MCTS is able to build a game tree and
find branches corresponding to efficient decisions (see Fig. 2). The root
node represents the current game state. From there, valid moves are
explored. Each node has a record of the number of all attempts and
scored attempts. The node with the highest ratio of scored attempts to
all attempts is considered the most effective.

For the selection step, the UCT (Upper Confidence Trees) [4] value
is commonly used. AI selects a node that has the highest UCT value
from the root node to the leaf node. UCT uses the UCB1 algorithm [5]
for action selection. UCB1 calculates the score of a node as

UCT = Xi + 2Cp

√
2 lnNi

ni

The first term xi is a reward.

Xi = pi + (1 − pi)
wi

ni

In this formula, pi stands for the potential of the move (pattern)
score directly, wi stands for the number of wins for the node considered
after the i -th move, and ni stands for the number of simulations for the
node considered after the i -th move.

The value of wi/ni represents a possibility of winning of this move.
In general, wi/ni is used as the reward term. In the game of tennis,
however, every shot has the potential to score directly. Therefore, we
adapt Equation (2) as the reward term. The scoring possibility pi is
calculated from extracted shot pattern in the process of the simulation



The subsequent term is for biasing the search towards nodes that have
not been explored enough. An abnormally high value is calculated when
the number of child nodes ni is too much smaller than the number of
simulations for parent node Ni. Cp is a constant that specifies degree
of bias toward unexplored nodes. If there are not enough searches for
valid nodes, the searching for the node with smaller value is finished.
Otherwise, the node with the highest winning rate is searched in priority.

In the expansion step, the game tree is expanded by adding child
nodes if a leaf node has been explored beyond a certain threshold.

In the simulation step, the result of the game from the leaf nodes is
simulated. The result of the match is reflected in all the nodes selected
in the back propagation step.

By repeating these steps, the AI judges the node with the highest Xi

value of reward as the valid move and acts on it.

Figure 2. World of Tennis

4. Adopting MCTS
for tennis. Our work
aims to build an AI
system for the game
“World of Tennis” (see
Fig. 1). Currently this
game has two built-in
system: one based on
rules, and another based on case-based reasoning [3, 2]. Three types of
basic movements are provided in the game:

• Serve

• Return the shot

• Recovery movement

The player and the opponent are able to serve, make shots of different
types, and move to a new position after returning a shot.

In the tennis game, the game flow is a repetition of each player’s
action which can be represented as a game tree. In this case, each node
of the game tree should contain the following information:

• Shot from: AI or opponent

• AI position



• Opponent position

• Target position

Each node contains three coordinates: the AI’s, the opponent’s, and
the target point’s coordinates. All of which are indexed by dividing the
court into 48 sections (see Fig. 3) to simplify game representation with
a tree.

Figure 3. Tennis court divided into sections

Figure 4. Node states for MCTS

The opponent will
be in the upper
court (0-23), and
the AI will be in
the lower court (24-
47). The root
node represents the
current state where
the opponent in
position 3 is hit-
ting the ball to-
wards position 39.
The following child
nodes represent two
possible effective moves



for the next move,
i.e., after the AI returns the ball. Two possible next moves are both
move to position 39, then return the shot to different target positions.
We only showed a part of the game tree in Fig. 4, in our case, there are
24 return positions, each position has two types of shots. In total 48
nodes should be generated. In this way, the state of the tennis game is
appropriately represented by the game tree.

5. Simulation logic. In MCTS, the AI simulates the game with
a random selection from leaf nodes. In each simulation, the AI needs
to judge whether the game will eventually result in a score or a loss of
points. The accuracy of these simulations is very important in building
a strong AI because it is the only standard for distinguishing strong and
weak moves of AI.

In this work, more than 1400 scoring patterns from statistical data
of 10,000 actual games data were extracted. The coordinates of each
player and the ball, the shot types are stored as time-series data. From
each match data, we extract the following information for simulation:

• Attacker (player’s) position

• Defender (opponent’s) position

• Target position

• Shot type

• Whether this shot is scoring or not

Player and opponent positions, shot target, intended shot type, and
shot outcome directly determine the information for each game pattern.

6. Results. As mentioned above, World of Tennis has two built-in
AI engines. One of them was used to create an entry-level “Coach AI”
system aimed to introduce basic game patterns to beginners. We played
a series of games against the Coach AI to estimate MCTS performance.
As a result, MCTS-based AI won 7 games out of 10. The total score
was 59:44. The scores of the matches show that the AI is able to take
rational actions.

7. Conclusion. In this paper, we have created an AI for a 3D tennis
game using a heuristic algorithm Monte Carlo tree search. By properly



modeling complex game states, the AI can represent game process as
tree and perform the search. MCTS learns whether a move at a node
is valid or not by repeatedly simulating the game state of the node.
Therefore, the accuracy of the simulation is important. In this study,
we conducted simulations by extracting patterns that are likely to be
scored from actual game data. As a result, we were able to simulate
with a certain level of accuracy and construct a working agent.
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