
УДК 004.054 

Преподавание основ автоматического тестирования программного 

обеспечения с использованием Appium и симулятора футбола  

Teaching Automated Software Testing with Appium and Soccer Simulator 

Хаустов В.А., Мозговой М.В. 

Khaustov V., Mozgovoy M. 

Khaustov Victor Aleksandrovich, graduate student, University of Aizu, Aizu-Wakamatsu, Japan 

email: m5201150@u-aizu.ac.jp 

Mozgovoy Maxim Vladimirovich, Associate Professor, University of Aizu, Aizu-Wakamatsu, 

Japan, email: mozgovoy@u-aizu.ac.jp  

 

Технологии автоматизированного тестирования широко применяются в современной 

разработке программного обеспечения, но редко изучаются в университетах. В статье 

обсуждается наша попытка исправить ситуацию путём внедрения разработки обязательных 

автоматических тестов для исследовательского проекта, создаваемого студентами в рамках 

дипломных работ. Мы полагаем, что автоматическое тестирование следует применять к 

системам, которые мы в действительности разрабатываем и поддерживаем в ежедневном 

режиме, и нам следует полагаться на современные технические методы, чтобы обеспечить 

высокую учебную ценность этого начинания. По итогам экспериментов мы заключаем, что 

автоматизированное тестирование несёт множество потенциальных преимуществ для 

студенческих проектов, не при этом не вызывая осложнений, которые часто встречаются в 

коммерческих компаниях.  

 

The technologies of automated software testing are widely used in modern software development 

but rarely taught at the universities. We discuss our attempt to remedy the situation by introducing 

compulsory automated tests for the research project being developed by the students for their 

graduation works. We argue that testing should be applied to the systems we actually improve and 

maintain on the daily basis, and we should rely on the state-of-the-art methods to ensure high 

educational value of this endeavor. As a result of experiments, we conclude that automated testing 

has many potential benefits for student projects, introducing almost no perceivable burdens that are 

often present in commercial companies.  

Ключевые слова: автоматизирование тестирование ПО, Appium, дымовое тестирование. 

Keywords: automated software testing, Appium, smoke testing. 



Introduction 

Automated testing is an integral element of modern software development 

pipeline, frequently discussed in the literature [7]. The combination of automated 

tests with manual quality assurance procedures is one of the central tenets of 

established software development methodologies, such as TDD [1] and BDD [2]. A 

particular emphasis is usually made on automating small-scale unit tests.  

In practice, however, maintaining an adequate set of tests can be a challenging 

and time-consuming task: surveys show that most professional developers are not 

satisfied with their current testing suites or do no automatic testing at all, complaining 

that the tests are difficult to write and maintain [4]. A pragmatic approach to testing 

suggests prioritizing testing strategies and keeping at least the most useful tests well 

maintained. A number of authors suggest giving the priority to smoke tests that check 

basic functions of the whole software system. Humble and Farley [7] believe that 

“smoke test, or deployment test, is probably the most important test to write”; 

Mustafa et al. [10] advice to “stick to smoke testing” in case of severe time and cost 

pressure; MSDN documentation calls smoke testing “the most cost-effective method 

for identifying and fixing defects in software” after code reviews [12]. 

Automated software testing, however, is rarely offered as a separate university 

course: the students have to master the relevant skills within software engineering 

studies or during internship. The aim of this paper is to describe our attempt to 

integrate automated software testing (mainly smoke testing) into everyday activities 

of our laboratory. We discuss how our students use established smoke testing 

software tools in a practical mid-scale research project, and how these practices 

improve student understanding of the topic and motivate them to strive for high 

quality of the software they develop. 

Testing Strategies for Soccer Simulator 

One challenge of teaching automated software testing as a university subject is 

to find a software project to be used in the course. The students need to know it 

thoroughly in order to write reasonable test scripts, so in most cases it is assumed that 



the project has to be implemented during the same course. Another popular option is 

to test a student project developed as a hobby project or an assignment for a different 

course. In both cases, such projects are typically immature and thus cannot help to 

master the whole range of concepts and approaches to software testing. 

 In our lab, we are working on several projects dedicated to the development of 

human-like artificial intelligence (AI) systems for computer game worlds. One of 

them, currently known under a working title of Soccer Project, is being designed as a 

testbed for our team-based AI system that learns from human actions and tries to 

reproduce the respective person’s play style [9]. Soccer Project consists of numerous 

independent tools, assisting various stages of this process. The central instrument of 

this set is the game engine named Soccer Simulator (see Figure 1). Its purpose is to 

simulate a game between two soccer teams on a two-dimensional pitch. Each team 

consists of five or eleven players. Each player can be controlled by a human (via 

keyboard and mouse or via a remote client), by a simple script-based AI system, or 

by the AI system we are designing. 

 

Figure 1: Soccer Simulator (main window) 



We use Soccer Simulator in a variety of scenarios. First and foremost, we play 

soccer games to train the AI system, and let it play against a scripted-based AI to 

evaluate its skills. Certain experiments require repeated unattended runs of Soccer 

Simulator with different AI settings to find the optimal configuration or to collect 

various statistical data that helps to analyze the patterns of player behavior.  

Currently, there are more than ten people directly involved in this project. Most 

of them are working on relatively independent elements of the system, and are solely 

responsible for the quality of code they commit to the central project repository. We 

rely on a continuous integration pipeline, backed by an automated build server that 

performs a full compilation of the project triggered by any changes in the repository. 

This ensures early problem detection since the project leader and the last contributor 

are immediately notified about build failures. 

Selected modules and tools within Soccer Project are also covered with unit 

tests [1]. They essentially represent a part of our code base, and thus are being 

compiled and run during automated project builds. Unit tests are thus easy to 

integrate into the delivery pipeline, as they do not require any specialized tools, and 

can be implemented with popular and widely available libraries, such as xUnit 

family [5]. 

We encourage the students to write unit tests, but high coverage is difficult to 

achieve. Therefore, as suggested by Mustafa et al. [10], we put the main emphasis on 

smoke testing. Furthermore, smoke testing requires writing specialized test scripts 

and using third-party automation frameworks, and thus provides additional benefits 

for the learners: they have to study additional practical tools and techniques, which 

will help them in their future careers of software engineers. 

Smoke Testing with Appium 

While a smoke test can be as simple as “launching the application and 

checking to make sure that the main screen comes up with the expected content” [7], 

it can also evolve into a complex suite of tests checking core application 



functionality. In case of Soccer Simulator, we have to test, at least, the basic sequence 

of actions, typically performed by the users: 

1) Run the simulator, and start a new game in “player with the ball” mode (in this 

mode only the player currently possessing the ball is controlled by a human via 

keyboard and mouse, while all other players are controlled by a scripted AI 

system). 

2) Play for at least one minute, steering the player in random directions. 

3) Save the obtained game recording. 

4) Use the recording to train the custom AI agent, and save its knowledge base. 

5) Run the game in “AI-supported player with the ball” mode to test the behavior 

of the resulting AI agent, controlling the player possessing the ball instead of a 

human. 

6) Load the agent’s knowledge base into the system. 

7) Play for at least one minute to make sure the program does not crash. 

When the students design their own experiments, they have to engineer other 

tests scripts that might include multi-agent behavior, statistical data collection, stress 

testing (running the software for longer time periods to ensure its stability), 

human/agent control switching, etc. This way, the students have to test the software 

they use and improve on a daily basis in their research work. 

To run such test scripts, one can rely on the underlying operating system’s API 

to simulate user actions or use a specialized application automation framework. We 

follow the latter approach, since it represents a universal cross-platform solution, 

applicable in diverse domains, and thus can be of higher value for the future career of 

students. 

Currently, we rely on a popular Appium automation framework [11]. Appium 

possesses a number of attractive features that make it a good choice for a university 

environment: 

1) The support of several platforms, including mobile operating systems. 

2) Extensive documentation and community support. 

3) Open source code base and non-restrictive Apache license. 



4) The support of test scripts, written in different languages, including Python, 

Java, Ruby, and C#). 

Appium test scripts interact with the program almost in the same way as users 

do: they can press buttons, select checkboxes or radio buttons, insert text strings into 

edit boxes, inspect the content of labels and proceed with mouse clicking on arbitrary 

areas. Appium is implemented as a client-server system, where the Appium server is 

responsible for running the program under testing, while a client has to connect to the 

server and run the test scripts. This architecture allows us to set up a single server 

machine, and to design and improve the scripts on any remote computer. Appium 

scripts can also take screenshots of applications and keep action logs, which helps to 

find errors in test scripts and analyze the sequence of actions that cause test failures. 

Such tests scripts can be, in principle, integrated into the continuous integration 

pipeline. We have already done it for a related mobile tennis game project [8], and 

are planning to do it for soccer. Currently, the tests have to be run by the students, 

which also has certain advantages for the educational process, as they can examine 

and control all steps of the testing. 

Discussion 

University provides, probably, one of the most friendly environments to 

introduce automated testing into software development process. In commercial 

companies, testing is often discussed in terms of cost-benefit analysis, since the 

management needs to justify the costs, inevitably caused by additional processes and 

people involved [6]. In the universities, the primary goal of our initiatives is to 

educate students, thus any practical methodology, applicable to real-life scenarios, 

can be used with most ongoing research projects. In our case, the use of smoke 

testing is entirely justifiable, since the soccer AI we are developing can indeed be 

tested with relatively simple scripts, and exclude at least the most salient potential 

bugs in the code. 

An important aspect of automated testing is the “safety net” feeling, often 

discussed in the literature [3]. Being inexperienced developers, students are often 



afraid to introduce modifications into a relatively large and complicated code base, 

fearing that their change might break some existing functionality. Automated tests 

mitigate this problem, providing a simple way of checking the most crucial use cases. 

On the other hand, tests enforce people to pay due attention to the quality of code 

they produce. Unfortunately, the students occasionally introduce the changes that 

break the build or make the system fail even on simple tests. The presence of 

automated build and test tools help us to reveal and resolve such issues quickly and 

efficiently. 

Writing automated test scripts helps to learn modern tools and technologies, 

and can itself be a fun process. Not all use scenarios are equally easy to automate, so 

writing a test to check a certain functionality can be a challenging assignment. We 

found the results of our experiments with automated testing in the lab encouraging 

and can recommend to extend the use of modern software development pipeline 

elements in the organization of student projects. 

 

References 

1. K. Beck. Test-Driven Development by Example, Addison-Wesley 

Professional, 2002, 240 p. 

2. S. Bellware. Behavior-Driven Development. Code Magazine, 2008, vol. 9(3). 

3. L. Crispin, J. Gregory. Agile Testing: A Practical Guide for Testers and Agile 

Teams. Addison-Wesley Professional, 2008, 576 p. 

4. E. Daka, G. Fraser. A Survey on Unit Testing Practices and Problems. 25th 

IEEE International Symposium on Software Reliability Engineering (ISSRE), 

2014, pp. 201-211. 

5. Hamill P. Unit Test Frameworks. O'Reilly Media, 2004, 304 p. 

6. D. Hoffman. Cost Benefits Analysis of Test Automation. STARWEST 

Software Testing Conference, 1999. 

7. J. Humble, D. Farley. Continuous Delivery: Reliable Software Releases 

through Build, Test, and Deployment Automation. Addison-Wesley 

Professional, 2010, 512 p. 



8. M. Mozgovoy, E. Pyshkin. Unity Application Testing Automation with 

Appium and Image Recognition. Communications in Computer and 

Information Science, 2017, vol. 779, in press. 

9. M. Mozgovoy, I. Umarov. Believable Team Behavior: Towards Behavior 

Capture AI for the Game of Soccer. Proceedings of the 8th International 

Conference on Complex Systems, Boston, USA, 2011, pp. 1554-1564. 

10.  G. Mustafa, A. Shah, K. Asif, A. Ali. A Strategy for Testing of Web Based 

Software. Information Technology Journal, 6(1), 2007, pp. 74-81. 

11. N. Verma. Mobile Test Automation with Appium. Packt Publishing, 2017, 

231 p. 

12. Microsoft Corp. Guidelines for Smoke Testing. MSDN Library for Visual 

Studio 2008.  

URL: https://msdn.microsoft.com/en-us/library/ms182613(v=vs.90).aspx 

 

 


