
Abstract—Many  of  current  web  search  engines  rely  on
inverted index-based data structures as document information
store.  Since  and  inverted  index  is  a  map  from  individual
document  words  to  their  respective  locations,  such  data
structure  destructs  semantic  links  between  the  words,  and
thus does not support structural user queries. In other words,
such systems can only find the documents that  contain user-
specified words. In this  paper we propose to create semantic
links  between the  terms contained in inverted index,  and in
such  way  create  a  semantic  network.  This  network  will
preserve the internal  structure of the stored documents,  and
will  enable  the  users  to  perform  structural  queries.  Both
structural-saving indexation and structural user search query
allow to save semantic speech meaning of the text while search
process.

I. INTRODUCTION

oday all  popular  search engines operate with inverted
index [1],[2],[3], which provides the grounds for high-

quality keyword-based search. The main idea is to create a
mapping  from every token to a list  of its  positions in  the
documents, indexed by the search engine. While both page
ranking  and  linguistic  algorithms can  offer rather  accept-
able results for the users, the very idea of processing non-
linked keywords, extracted from texts, imply non-semantic
search only.

T

Thus,  today’s semantic  networks,  implemented  both by
commercial companies and  and open communities are not
fully utilized by the search engines. Powerful linguistic and
statistic functions, implemented in modern search engines,
are not used to their full extent. 

A. Preserving semantic links

The main idea of the present work is to store not inverted
index,  but sentence structure with link  to it's  source page
position. The base sentence structure consists of three ele-
ments:  predicate,  subject and  object,  called a triplet.  This
idea is presented in the Figure 1. Each page is parsed to get
linked tokens, constituting the elements to be saved to the
database with sentence links and source page positions. The
tokens form an oriented graph or a semantic network. Sub-
jects in  such graph  serve as objects for other  subjects and
vice versa.  This structure is similar  to RDF [5] (Resource
Description Framework), which describes knowledge using
a directed graph.

Search process is implemented with RDF queries over the
semantic network. The user enters a triplet in form of three
words, which is searched in  database of linked documents
(a semantic network). In the future, the user will be able to
use natural  language as a query language. In this case, the
system will  be able to process not  only triplet  words,  but
also other syntactic forms. This means that the indexer will
have  to  process  the  source documents  using  an  extended
RDF scheme, which would contain also adjectives, adverbs,
and other parts of speech (POS).

A query triplet  can be searched in  the database using a
simple  straightforward  comparison  or  with  the  methods
used in  many popular  search  engines,  such  as  synonyms
dictionary and TF-IDF1[4].

TF-IDF can be implemented as a coefficient of relevance,
which influences the document position in the resulting list.

Our  search  algorithm  is  not  intended  to  replace  tradi-
tional  inverted  index  search  engines,  and  can  be imple-
mented within an additional module, or serve as a basis for
a specialized fact search engine in a knowledge graph. 

Fig 2: Semantic network

1TF-IDF is numerical statistic dimension defining document relevancy in
document collection. Result depends on word frequency in current document
and inverse frequency in other documents.
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Fig 1: RDF



B. Basic search engine functions

Our search engine indexing mechanism (robot or spider)
solves the following problems:

1. Detecting document external links
2. Useful content detection
3. Semantic structure parsing

C. Useful content detection

For useful content detection we used an artificial  neural
network,  as  suggested in  [6].  Many of web-pages sources
are divided into separate strings containing HTML markup
and text, despite it doesn't influence to page rendering. Also
we empirically devided HTML tags into two groups: simple
and special. Simple tags collection contains text decorating
tags like “<b><i><s>”. Special tags set contains the others
one. Our neural network detects whether a given string con-
tains meaningful text or non-meaningful webpage elements.

While exploring HTML documents we found such regu-
larities:

1. Useful content  usually is  absent  at  the  beginning
and ending of the article.

2. A  string  is  probably  useful  if  the  presence  of
HTML tags inside the string is low.

3. Longer strings are most probably useful.
We used neural network with thr following input param-

eters:
1. Document string number expressed in percents.
2. A string length expressed in percents. 100% is the

longest document string.
3. Relation  between  simple  HTML  tags  and  text

chars.
4. Relation  between  special  HTML  tags  and  text

chars.
Every parameter except the first one is repeated two more

times:  for  the  previous string,  and  for  the  next  one.  The
characteristics of our neural networks are shown in Table I.

We  trained  the  neural  network  using  50  English
Wikipedia pages. This method allowed us to quickly get a
content parser, having 83% decision accuracy. As a neural
network engine we used Encog Java library.

D. Database

Our  system uses  two DBMS:  a  NoSQL graph-oriented
Neo4J DBMS, and a NoSQL document-based MongoDB. In

order  to  store  tokens  with  minimal  overhead,  we employ
tries (see Figure 3).

Tries are supported by Neo4J DBMS that  stores all data
as a graph, and provides handy ways to traverse graphs, and
search and retrieve individual vertices.

To store  RDF-like  links  we used  a  NoSQL document-
based  DBMS  MongoDB  to  achieve  structureless  storage
organization,  and high  speed. In  our case,  the web spider
saves parsed sentences into the documents, containing doc-
ument index of a predicate, an object, subject, and a link to
a word trailing letter in a trie. This structureless organiza -
tion allows us to add new part-of-speech elements without
restructuring the database. Also this allows us to model any
sentence structure with optional adjectives or participles.

II. STRUCTURE PARSING ALGORITHM

A. Common work algorithm

To get a parsed sentence, the system performs the follow-
ing steps:

1. Anaphora resolution
2. Sentence segmentation
3. Token boundaries identification.
4. Part-of-speech tagging of the tokens array.
5. Syntactic parsing of the POS-tagged sequences.

During components selection we tried to use the subsys-
tems, containing  English language and preferentially Rus-
sian language model.

TABLE I.
NEURAL NETWORK CHARACTERISTICS

# Layer Neurons count Function

1 Output 1 TanH

2 4 TanH

3 7 TanH

4 11 TanH

5 12 TanH

6 Input 9 Linear

Fig 3: Trie



B. Anaphora resolution

Anaphora  (coreference)  resolution  systems are  less  de-
veloped, but there are some systems available:

1. OpenNLP
2. CherryPicker
3. JavaRAP (pronoun coreference system)
4. BART
5. ARKref (rule-based)
6. ARS

According  to the recommendations provided in  [7],  we
have chosen ARKref as a main anaphora resolution module.
ARKref is a deterministic, rule-based system that uses rich
syntactic and semantic information to make antecedent se-
lection decisions.

C. Identifying sentence and token borders; POS tagging

This spider system is implemented as a separate unit with
a separate API.  For sentence and token borders identifica-
tion, there are many ready solutions available, and this topic
is  widely covered  in  the  literature.  For  now, our  system
works mainly with the English language, but as we might
want to extend the list of supported languages in the future,
we so we selected an extensible open source Java TreeTag-
ger system. TreeTagger is fast, and has low RAM and CPU
consumption with availability of various language models.
TreeTagger  can  be  quickly replaced  with  any  other  tok-
enizer.

D. Dependency parsing

Firstly we tried to use Standford NLP Parser  as a main
sentence  processing  instrument,  but  we faced  high  RAM
and CPU consumption.  Furthermore,  Stanford Parser  uses
constituency2 grammars that do not reflect well the structure
of languages with relaxed word order, such as Russian. For
such  languages dependency grammars  are  usually consid-
ered more appropriate. 

Following the recommendations in  [8], we have chosen
MaltParser for best parsing quality from the list of available
parsers.

To train  the parsing  system to recognize any particular
language,  a  deeply annotated  text  corpus  (a  treebank)  is

2Constituency  grammar  is  based  on  Chomsky's  generative  grammar.
Parsers based on constituency grammars try to divide sentences into smaller
word groups until the individual tokens are identified. The example of phrase-
structure (constituency) parsing is shown in Figure 4.

needed. For each word in a Treebank, the following data is
required:

1. Word position in the sentence
2. Word
3. Grammatical attributes
4. Head word position
5. Dependency type

MaltParser  contains  pre-trained  models  for  English,
French, and Swedish. For other languages, it is necessary to
create a malttab training set. For the Russian language, the
treebank  is  available  as  a  part  of “National  Russian  lan-
guage corpus”

III. IMPLEMENTATION

A. The platform

Our search engine consists of two main parts: the search
indexer (spider) and the web interface. As most of the NLP
software is written in Java, the spider is also written in Java.
Since some of the NLP systems operate with space-consum-
ing language models, some heavy weight modules were sep-
arated  from the base system and made available via RPC
API. Thanks to this approach, the system has an ability to
use several servers that process different languages (i.e., it is
horizontally scalable). Such RPC-available modules are: the
anaphora resolution system, the POS tagger, and the depen-
dency  parser.  For  easier  development,  we  have  chosen
Apache  Thrift  RPC framework  for  every isolated  compo-
nent. 

As mentioned above, the application  stores data  in  two
databases: graph-based Neo4J and document – based Mon-
goDB.  The  web interface  is  written  in  JavaScript/JQuery
and operates using Java Spring-based REST API. The com-
ponent diagram is shown in Figure 5.

All  components  are  implemented  in  similar  ways,  and
each  of them uses a  multi-threaded  RPC framework,  and
thus performs multi-threaded text processing.

B. Indexer component

The  Indexer  component's  (“Spider”  in  the  components
diagram) aim is to get the next page from the list of links,
to process it by calling other components’ RPC API and to
save the results into the database. Furthermore, this compo-
nent extracts the links to the new documents to be analyzed,
and adds them to the general links list. 

This  component  works  with  other  modules  via  RPC
framework Apache Thrift, that is used due to the simplicity
of cross-platform code generation,  its lightweight  protocol
(as opposed to XML-RPC or SOAP),  simple implementa-
tion  and  multithreading.  At  the  present  time,  the  system
does not support language detection, but the system can op-
erate via RPC with several  other  processing servers,  han-
dling  different  natural  languages.  To test  the  system,  we
used English Wikipedia as the data source.

C. Anaphora resolution

The anaphora  resolution module operates with raw text
(cleaned  from  HTML markup),  and  replaces  pronoun  or
noun anaphors with their antecedents. As a result, the spi-

Fig 4: Constituency parsing



der gets two text versions: the raw text and the text with re -
solved coreferences. The latter document is being processed
in other  modules, but both are saved to the database. The
anaphora resolution module is a multithreaded  server. The
number of threads is set up in the server configuration.

D. POS tagging and Dependency finder

These  components  are  marked  as  “POSTagger”  and
“DependencyParser” in the components diagram.

Component class diagram for these modules is similar to
the  coreference  resolution  component  it  uses  RPC-server
classes, singleton configuration classes and other. 

MaltParser makes output data in the CoNLL format, sim-
ilar to the malttab format.

E. Web interface

The web interface is a web application, written in JavaS-
cipt/JQuery. The current web interface allows the user to in-
put three words: subject, predicate and object, to be sent to
the  server  via  the  REST API.  The  system  processes  the
query and finds the list of suitable sentences in the database.

REST API is implemented with Java Spring framework.

Using  separate  processing  modules  leads  to  ability  of
search  query NLP processing.  This  would  allow users  to
make queries as usual sentences.

IV. RELATED WORK

[9]  also proposed similar  semantic  network storing  ap-
proach.  Author offers to store RDF structures like a graph
using object-oriented databases.

[10] describes a system that processes automatic text sen-
tences  tagging  for  further  text  managing  analyzing  or
searching.

Our  system novelty essence is the approach  to process,
store and search text data. The method novelty lies in trans-
formation text into RDF-like semantic network and follow-
ing triplet search over the prepared semantic network index.

V. CONCLUSION

Our research aim was to try to create a semantic-powered
search engine that uses NLP technologies. During the devel-
opment  we have  analyzed  different  information  retrieval
and NLP instruments and methods, such as syntactic pars-
ing, POS tagging, and coreference analysis.

As the result, we got a semantic sentence-structure search
engine  prototype.  Currently, the  system has  the  following
limitations:

1. System  processes  English-language  documents
only.

2. The  useful  content  extraction  module  reliably
parses Wikipedia documents only.

3. The current  system operates  only with  triplets.  It
cannot process adjectives or adverbs.

4. The system does not use any synonyms dictionary.
Finally, system searches triplet like three English words

contacted with “AND” boolean operator and it is unusable
in current state as providing search service is very poor con-
cerning  to  internal  Wikipedia  search  (cause  Wikipedia  is
used as  testing  data  source).  Search  engine  returns  result
with  given  wittingly  right  query  i.e.  known  triplet  from
known document.

Also sentence parsing system is very poor at the moment.
We used several sentences from real text to test it. After the
system  parsed  example  text  and  created  text  index,  we
counted  correctly  processed  sentences.  The  result  is  pre-
sented in Table 2. Only 5 examples displays poor processing
result.

Fig 5: Components diagram

TABLE II.
EXPERIMENT RESULTS

Parsed sentences Total text sentences Article

14 31 United Nations Charter parts

6 21 Benjamin Chu Min Xian, F. Zahari and D. Lukose, “Benchmarking ARS: Anaphora 
Resolution System”

37 129 S. Brin and L. Page,  “The anatomy of a large-scale hypertextual Web search engine”

2 31 Natural language Wikipedia page

110 425 Porsche 911 Wikipedia article



Using synonyms dictionary, a  more diverse knowledge-
base as a data source, and coreference resolution improve-
ments should make results better.
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