
Abstract—Many of current web search engines rely on
inverted index-based data structures as document information
store. Since and inverted index is a map from individual
document words to their respective locations, such data
structure destructs semantic links between the words, and
thus does not support structural user queries. In other words,
such systems can only find the documents that contain user-
specified words. In this paper we propose to create semantic
links between the terms contained in inverted index, and in
such way create a semantic network. This network will
preserve the internal structure of the stored documents, and
will enable the users to perform structural queries. Both
structural-saving indexation and structural user search query
allow to save semantic speech meaning of the text while search
process.

I. INTRODUCTION

oday all popular search engines operate with inverted
index [1],[2],[3], which provides the grounds for high-

quality keyword-based search. The main idea is to create a
mapping from every token to a list of its positions in the
documents, indexed by the search engine. While both page
ranking and linguistic algorithms can offer rather accept-
able results for the users, the very idea of processing non-
linked keywords, extracted from texts, imply non-semantic
search only.

T

Thus, today’s semantic networks, implemented both by
commercial companies and and open communities are not
fully utilized by the search engines. Powerful linguistic and
statistic functions, implemented in modern search engines,
are not used to their full extent.

A. Preserving semantic links

The main idea of the present work is to store not inverted
index, but sentence structure with link to it's source page
position. The base sentence structure consists of three ele-
ments: predicate, subject and object, called a triplet. This
idea is presented in the Figure 1. Each page is parsed to get
linked tokens, constituting the elements to be saved to the
database with sentence links and source page positions. The
tokens form an oriented graph or a semantic network. Sub-
jects in such graph serve as objects for other subjects and
vice versa. This structure is similar to RDF [5] (Resource
Description Framework), which describes knowledge using
a directed graph.

Search process is implemented with RDF queries over the
semantic network. The user enters a triplet in form of three
words, which is searched in database of linked documents
(a semantic network). In the future, the user will be able to
use natural language as a query language. In this case, the
system will be able to process not only triplet words, but
also other syntactic forms. This means that the indexer will
have to process the source documents using an extended
RDF scheme, which would contain also adjectives, adverbs,
and other parts of speech (POS).

A query triplet can be searched in the database using a
simple straightforward comparison or with the methods
used in many popular search engines, such as synonyms
dictionary and TF-IDF1[4].

TF-IDF can be implemented as a coefficient of relevance,
which influences the document position in the resulting list.

Our search algorithm is not intended to replace tradi-
tional inverted index search engines, and can be imple-
mented within an additional module, or serve as a basis for
a specialized fact search engine in a knowledge graph.

Fig 2: Semantic network

1TF-IDF is numerical statistic dimension defining document relevancy in
document collection. Result depends on word frequency in current document
and inverse frequency in other documents.

Semantic sentence structure search engine

Nikita Gerasimov
Nothern (Arctic) Federal

University,
Severnaya Dvina Emb. 17,

Arkhangelsk, Russia; 163002;
Email: n.gerasimov@narfu.ru

Maxim Mozgovoy
The University of Aizu, Tsuruga,

Ikki-machi, Aizu-Wakamatsu,
Fukushima, 965-8580 Japan

Email: mozgovoy@u-aizu.ac.jp

Alexey Lagunov
Nothern (Arctic) Federal

University,
Severnaya Dvina Emb. 17,

Arkhangelsk, Russia; 163002;
Email: a.lagunov@narfu.ru

Fig 1: RDF

B. Basic search engine functions

Our search engine indexing mechanism (robot or spider)
solves the following problems:

1. Detecting document external links
2. Useful content detection
3. Semantic structure parsing

C. Useful content detection

For useful content detection we used an artificial neural
network, as suggested in [6]. Many of web-pages sources
are divided into separate strings containing HTML markup
and text, despite it doesn't influence to page rendering. Also
we empirically devided HTML tags into two groups: simple
and special. Simple tags collection contains text decorating
tags like “<i><s>”. Special tags set contains the others
one. Our neural network detects whether a given string con-
tains meaningful text or non-meaningful webpage elements.

While exploring HTML documents we found such regu-
larities:

1. Useful content usually is absent at the beginning
and ending of the article.

2. A string is probably useful if the presence of
HTML tags inside the string is low.

3. Longer strings are most probably useful.
We used neural network with thr following input param-

eters:
1. Document string number expressed in percents.
2. A string length expressed in percents. 100% is the

longest document string.
3. Relation between simple HTML tags and text

chars.
4. Relation between special HTML tags and text

chars.
Every parameter except the first one is repeated two more

times: for the previous string, and for the next one. The
characteristics of our neural networks are shown in Table I.

We trained the neural network using 50 English
Wikipedia pages. This method allowed us to quickly get a
content parser, having 83% decision accuracy. As a neural
network engine we used Encog Java library.

D. Database

Our system uses two DBMS: a NoSQL graph-oriented
Neo4J DBMS, and a NoSQL document-based MongoDB. In

order to store tokens with minimal overhead, we employ
tries (see Figure 3).

Tries are supported by Neo4J DBMS that stores all data
as a graph, and provides handy ways to traverse graphs, and
search and retrieve individual vertices.

To store RDF-like links we used a NoSQL document-
based DBMS MongoDB to achieve structureless storage
organization, and high speed. In our case, the web spider
saves parsed sentences into the documents, containing doc-
ument index of a predicate, an object, subject, and a link to
a word trailing letter in a trie. This structureless organiza -
tion allows us to add new part-of-speech elements without
restructuring the database. Also this allows us to model any
sentence structure with optional adjectives or participles.

II. STRUCTURE PARSING ALGORITHM

A. Common work algorithm

To get a parsed sentence, the system performs the follow-
ing steps:

1. Anaphora resolution
2. Sentence segmentation
3. Token boundaries identification.
4. Part-of-speech tagging of the tokens array.
5. Syntactic parsing of the POS-tagged sequences.

During components selection we tried to use the subsys-
tems, containing English language and preferentially Rus-
sian language model.

TABLE I.
NEURAL NETWORK CHARACTERISTICS

Layer Neurons count Function

1 Output 1 TanH

2 4 TanH

3 7 TanH

4 11 TanH

5 12 TanH

6 Input 9 Linear

Fig 3: Trie

B. Anaphora resolution

Anaphora (coreference) resolution systems are less de-
veloped, but there are some systems available:

1. OpenNLP
2. CherryPicker
3. JavaRAP (pronoun coreference system)
4. BART
5. ARKref (rule-based)
6. ARS

According to the recommendations provided in [7], we
have chosen ARKref as a main anaphora resolution module.
ARKref is a deterministic, rule-based system that uses rich
syntactic and semantic information to make antecedent se-
lection decisions.

C. Identifying sentence and token borders; POS tagging

This spider system is implemented as a separate unit with
a separate API. For sentence and token borders identifica-
tion, there are many ready solutions available, and this topic
is widely covered in the literature. For now, our system
works mainly with the English language, but as we might
want to extend the list of supported languages in the future,
we so we selected an extensible open source Java TreeTag-
ger system. TreeTagger is fast, and has low RAM and CPU
consumption with availability of various language models.
TreeTagger can be quickly replaced with any other tok-
enizer.

D. Dependency parsing

Firstly we tried to use Standford NLP Parser as a main
sentence processing instrument, but we faced high RAM
and CPU consumption. Furthermore, Stanford Parser uses
constituency2 grammars that do not reflect well the structure
of languages with relaxed word order, such as Russian. For
such languages dependency grammars are usually consid-
ered more appropriate.

Following the recommendations in [8], we have chosen
MaltParser for best parsing quality from the list of available
parsers.

To train the parsing system to recognize any particular
language, a deeply annotated text corpus (a treebank) is

2Constituency grammar is based on Chomsky's generative grammar.
Parsers based on constituency grammars try to divide sentences into smaller
word groups until the individual tokens are identified. The example of phrase-
structure (constituency) parsing is shown in Figure 4.

needed. For each word in a Treebank, the following data is
required:

1. Word position in the sentence
2. Word
3. Grammatical attributes
4. Head word position
5. Dependency type

MaltParser contains pre-trained models for English,
French, and Swedish. For other languages, it is necessary to
create a malttab training set. For the Russian language, the
treebank is available as a part of “National Russian lan-
guage corpus”

III. IMPLEMENTATION

A. The platform

Our search engine consists of two main parts: the search
indexer (spider) and the web interface. As most of the NLP
software is written in Java, the spider is also written in Java.
Since some of the NLP systems operate with space-consum-
ing language models, some heavy weight modules were sep-
arated from the base system and made available via RPC
API. Thanks to this approach, the system has an ability to
use several servers that process different languages (i.e., it is
horizontally scalable). Such RPC-available modules are: the
anaphora resolution system, the POS tagger, and the depen-
dency parser. For easier development, we have chosen
Apache Thrift RPC framework for every isolated compo-
nent.

As mentioned above, the application stores data in two
databases: graph-based Neo4J and document – based Mon-
goDB. The web interface is written in JavaScript/JQuery
and operates using Java Spring-based REST API. The com-
ponent diagram is shown in Figure 5.

All components are implemented in similar ways, and
each of them uses a multi-threaded RPC framework, and
thus performs multi-threaded text processing.

B. Indexer component

The Indexer component's (“Spider” in the components
diagram) aim is to get the next page from the list of links,
to process it by calling other components’ RPC API and to
save the results into the database. Furthermore, this compo-
nent extracts the links to the new documents to be analyzed,
and adds them to the general links list.

This component works with other modules via RPC
framework Apache Thrift, that is used due to the simplicity
of cross-platform code generation, its lightweight protocol
(as opposed to XML-RPC or SOAP), simple implementa-
tion and multithreading. At the present time, the system
does not support language detection, but the system can op-
erate via RPC with several other processing servers, han-
dling different natural languages. To test the system, we
used English Wikipedia as the data source.

C. Anaphora resolution

The anaphora resolution module operates with raw text
(cleaned from HTML markup), and replaces pronoun or
noun anaphors with their antecedents. As a result, the spi-

Fig 4: Constituency parsing

der gets two text versions: the raw text and the text with re -
solved coreferences. The latter document is being processed
in other modules, but both are saved to the database. The
anaphora resolution module is a multithreaded server. The
number of threads is set up in the server configuration.

D. POS tagging and Dependency finder

These components are marked as “POSTagger” and
“DependencyParser” in the components diagram.

Component class diagram for these modules is similar to
the coreference resolution component it uses RPC-server
classes, singleton configuration classes and other.

MaltParser makes output data in the CoNLL format, sim-
ilar to the malttab format.

E. Web interface

The web interface is a web application, written in JavaS-
cipt/JQuery. The current web interface allows the user to in-
put three words: subject, predicate and object, to be sent to
the server via the REST API. The system processes the
query and finds the list of suitable sentences in the database.

REST API is implemented with Java Spring framework.

Using separate processing modules leads to ability of
search query NLP processing. This would allow users to
make queries as usual sentences.

IV. RELATED WORK

[9] also proposed similar semantic network storing ap-
proach. Author offers to store RDF structures like a graph
using object-oriented databases.

[10] describes a system that processes automatic text sen-
tences tagging for further text managing analyzing or
searching.

Our system novelty essence is the approach to process,
store and search text data. The method novelty lies in trans-
formation text into RDF-like semantic network and follow-
ing triplet search over the prepared semantic network index.

V. CONCLUSION

Our research aim was to try to create a semantic-powered
search engine that uses NLP technologies. During the devel-
opment we have analyzed different information retrieval
and NLP instruments and methods, such as syntactic pars-
ing, POS tagging, and coreference analysis.

As the result, we got a semantic sentence-structure search
engine prototype. Currently, the system has the following
limitations:

1. System processes English-language documents
only.

2. The useful content extraction module reliably
parses Wikipedia documents only.

3. The current system operates only with triplets. It
cannot process adjectives or adverbs.

4. The system does not use any synonyms dictionary.
Finally, system searches triplet like three English words

contacted with “AND” boolean operator and it is unusable
in current state as providing search service is very poor con-
cerning to internal Wikipedia search (cause Wikipedia is
used as testing data source). Search engine returns result
with given wittingly right query i.e. known triplet from
known document.

Also sentence parsing system is very poor at the moment.
We used several sentences from real text to test it. After the
system parsed example text and created text index, we
counted correctly processed sentences. The result is pre-
sented in Table 2. Only 5 examples displays poor processing
result.

Fig 5: Components diagram

TABLE II.
EXPERIMENT RESULTS

Parsed sentences Total text sentences Article

14 31 United Nations Charter parts

6 21 Benjamin Chu Min Xian, F. Zahari and D. Lukose, “Benchmarking ARS: Anaphora
Resolution System”

37 129 S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web search engine”

2 31 Natural language Wikipedia page

110 425 Porsche 911 Wikipedia article

Using synonyms dictionary, a more diverse knowledge-
base as a data source, and coreference resolution improve-
ments should make results better.

REFERENCES
[1] S. Ilyinsky, M. Kuzmin, A. Melkov and I. Segalovich, “An efficient

method to detect duplicates of Web documents with the use of inverted
index”, WWW Conference, 2002

[2] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web
search engine”, Proceedings of the seventh international conference on
World Wide Web 7, 1998, pp. 107-117

[3] C. D. Manning, P. Raghavan and H. Schütze, “Introduction to
Information Retrieval” Cambridge University Press. 2008 p. 6.

[4] A. Gulin, P. Karpovich, D. Raskovalov and I. Segalovich, “Ranking
algorithms optimisation using machine-learning methods”, Romip
proceedings, 2009

[5] A. Harth and S. Decker, “Optimized Index Structures for Querying RDF
from the Web”, Digital Enterprise Research Institute (DERI), National
University of Galway, Ireland, 2005, p. 2.

[6] S. Edunov, “How to extract useful content from HTML”,
“http://www.algorithmist.ru/2010/11/html-2.html”

[7] Benjamin Chu Min Xian, F. Zahari and D. Lukose, “Benchmarking
ARS: Anaphora Resolution System”, Proceedings of the 11th
International Conference on Knowledge Management and Knowledge
Technologies, 2011, p. 39

[8] A. Gareyshina, M. Ionov, O. Lyashevskaya, D. Privoznov, E. Sokolova
and S. Toldova, “RU-EVAL-2012: Evaluating dependency parsers for
Russian” Proceedings of COLING 2012: Posters, IIT Bombay, Mumbai,
India, pp. 349-360

[9] V. Bonstrom, A. Hinze, H. Schweppe, "Storing RDF as a graph", Web
Congress, 2003. Proceedings. First Latin American , vol., no., pp.27,36,
10-12 Nov. 2003

[10] M. Kalender, Jiangbo Dang, "SKMT: A Semantic Knowledge
Management Tool for Content Tagging, Search and Management,"
Semantics, Knowledge and Grids (SKG), 2012 Eighth International
Conference on , vol., no., pp.112,119, 22-24 Oct. 2012

http://www.algorithmist.ru/2010/11/html-2.html

