
CALL for Open Experiments

Roman Efimov, Maxim Mozgovoy*, and John Brine*
The University of Aizu, Tsuruga, Ikki-machi, Aizuwakamatsu, Fukushima, Japan

{mozgovoy, brine}@u-aizu.ac.jp, romicher@gmail.com

Keywords: Computer-assisted language learning, intelligent systems, virtual labs

Abstract: In this paper, we briefly describe the limitations of present CALL systems, caused both by technological

factors and by the limited agenda of CALL developers, whose design goals tend not to result in software

tools for practical everyday language learning activities. We also note the lack of creative new ways of

using computers in language education and a gradual shift towards traditional teaching and learning

practices, enhanced with common computer technologies such as multimedia content delivery systems and

social media. However, computers can provide more options for interactive learning, as shown by the

emergence of virtual labs or virtual sandboxes that support and encourage open experimentation. Such

systems are well known in natural sciences, but still have had little impact on the world of CALL software.

We believe that the same “free experimentation” approach used in natural sciences can be applied in CALL,

and should have a positive impact on the quality of learning, being consistent with constructivist

perspectives on language education. In the present paper, we briefly introduce our work-in-progress to

develop a system that supports open experiments with words and phrases.

1 Introduction

When computers became commodities,

terms like “computer-assisted X” lost some

significant part of their initial meaning. We

do not refer to “ballpoint pen-assisted

writing” or “car-assisted traveling”, and yet

“computer-assisted language learning,” or

CALL, is still in common use. In regard to

CALL, we should probably imagine

dedicated educational systems that

somehow “assist” learning in a nontrivial

technologically-driven way, but ironically

common definitions of CALL simply refer

to the use of computers in language

learning activities (Levy, 1997). In

particular, using an electronic dictionary or

watching a foreign-language clip on

YouTube are perfect examples of

“computer-assisted language learning”,

though neither an electronic dictionary nor

a video-sharing website were explicitly

designed to support language learning.

Furthermore, it also seems to us that

such general-purpose software is the most

widely used and most helpful for the

learners. By contrast, there are hundreds if

not thousands of available dedicated

software packages for language acquisition,

but strikingly they are rarely mentioned in

numerous “language learning tips” found

online (Leick, 2013; Hessian, 2012).

In general, computer technology holds a

firm position as a helper within traditional

teaching and learning practices. We learn

language by listening, speaking, reading,

writing, and doing (established) exercises,

and computers provide unprecedented

support and convenience in these activities.

However, overall they still fail to provide

fundamentally new teaching and learning

practices, unavailable in traditional paper-

and-pencil scenarios.

Even dedicated CALL systems (such as

the ones developed by companies like

Eurotalk, Berlitz or Rosetta Stone) are

* Supported by JSPS KAKENHI Grant #25330410

typically designed as integrated packages of

traditional learning materials —

audio/video clips, pictures, texts, exercises,

and vocabularies. In other words, current

CALL systems can be considered primarily

as highly usable and modernized versions

of traditional “book + tape” self-learning

courses. The survey conducted by Hubbard

in 2002 revealed that even the CALL

experts are not convinced about the

effectiveness of educational software.

Hubbard notes: “…it is interesting that

questions of effectiveness still tend to

dominate. In fact, the basic questions of "Is

CALL effective?" and "Is it more effective

than alternatives?" remain popular even

among those who have been centrally

involved in the field for an extended period

of time.” (Hubbard, 2002).

We suggest that the reasons are both

technological and psychological: many

computer technologies relevant to language

learning are indeed not mature enough to be

used in practical CALL systems, and our

traditional learning habits make it hard to

design fundamentally new systems that

would utilize the full power of today’s

computing hardware.

2 CALL MEETS

TECHNOLOGICAL LIMITS

A number of language learning software

insturuments can do more than merely

support traditional learning activities, but

their overall capabilities are still limited

(Hubbard, 2009).

We can add that research efforts in this

area are limited, too. For example,

Volodina et al. observe that only three

natural language processing-backed CALL

systems have come into everyday

classroom use (Volodina et al., 2012).

Furthermore, as noted in (Amaral et al.,

2011), “the development of systems using

NLP technology is not on the agenda of

most CALL experts, and interdisciplinary

research projects integrating computational

linguists and foreign language teachers

remain very rare”.

Possibly, the only “intelligent”

technology that has made its way into some

retail CALL systems is automated speech

analysis, which is used to evaluate the

quality of student pronunciation. Such an

instrument is implemented, e.g., in

commercial Rosetta Stone software, but its

resulting quality is sometimes criticized

(Santos, 2011).

We have to state that future development

of ICALL systems crucially depends on

significant achievements in the underlying

technologies. Language learning is a

sensitive area, where misleading computer-

generated feedback may harm students. So

it is impossible to expect any rise of

intelligent CALL systems before the related

natural language processing technologies

improve vastly.

3 THE PROBLEM OF LIMITED

AGENDA

However, computers can significantly

improve learner experience even without

advanced AI technologies, and provide

“killer features” that are inherently

computer-backed and cannot be easily

reproduced in traditional environments. A

good example of such an “inherently

computer” system is any electronic

dictionary, as it can implement a number of

unique capabilities that create new use

cases:

 approximate word search;

 partial search (find a word fragment);

 full-text search (find example phrases);

 arbitrary word form search;

 handwritten characters input.

Surprisingly, most popular dictionaries

implement only a fraction of this list. It

should be noted that none of the mentioned

functions require the use of any immature

research-stage technologies, and can be

implemented with established methods.

Another example is spaced repetition-

based flashcards software such as Anki

(Elmes, 2013) or SuperMemo (Wozniak,

2013). While in spaced repetition can be

exercised without a computer, it is a

laborious process, hardly tolerable for most

learners. So despite being relatively simple,

these tools are efficient learning aids (as

spaced repetition practices are proven to be

effective (Caple, 1996)), and yet seldom

mentioned in CALL-related papers.

So, it seems that CALL experts have not

paid much attention to the development of

everyday language learning tools. This

situation is unfortunate, as it is inconsistent

with the current trend of seamless

integration of technologies into existing

learning activities and with declarations of a

preference for a student-centered approach

that should presumably allow learners to

follow their preferred learning styles or at

least to ensure higher flexibility of the

learning process.

4 VIRTUAL SANDBOXES

Such a technology-backed, student-centered

approach is already implemented in a

number of educational systems for the

disciplines such as physics, chemistry, and

computer science. Notably, there are

sandbox-like environments (or “virtual

labs”) that do not restrict their users and do

support open experimentation.

For example, Open Source Physics

project (Christian et al., 2013) collects

together a vast amount of interactive

physical simulations with user-adjustable

parameters. The 2D physics sandbox

Algodoo is positioned by its authors as “the

perfect tool for learning, exploring,

experimenting and laborating [sic] with

real physics” (Algoryx, 2013). The

ChemCollective collection (Yaron et al.,

2013) includes a number of ready setups for

chemical experiments as well as a virtual

lab for open exploration. The JFLAP

environment (Rodger, 2013) allows

students to create, analyze and test finite-

state machines — the devices that

constitute the basis of computer science.

We consider such systems as great

examples of well-grounded uses of

computer technology in education. Virtual

labs provide safe and controlled

environments in which students can test

their ideas, and in this sense they can be

likened to flight simulation software, used

to train pilots: the students perform

predefined training routines, but also can

experience the outcome of any arbitrary

maneuver. Furthermore, virtual labs

contribute to the modeling of the problem

domain in the learner’s mind, and thus are

consistent with constructivist views on

educational process.

It is interesting to note that from the

technological point of view, virtual labs are

not necessarily complex systems. The

possibility of open experimentation

outweighs many technical limitations and

constraints.

Unfortunately, environments for open

experiments are barely provided by the

existing CALL systems. This perhaps can

be attributed to the unclarity of the notion

of an “experiment” in language learning. It

is evident, however, that a large portion of

active language learning is related to the

process of combining words and phrases

into meaningful sentences, and the analysis

of the subsequent feedback. We learn a

language both by comprehending other

people’s speech and writing, and by

creating our own phrases that are to be

tested for admissibility by our interlocutors.

Within such a concept of experiments,

even a feature-rich electronic dictionary can

be a powerful experimental tool in the

hands of an avid learner. Indeed, with full-

text search it is possible to check actual

word use, test the correctness of certain

word combinations, the compatibility of

certain prefixes with certain stems, etc.

The ways in which students could do

“experiments with the language” are still to

be identified. Here we can only quickly

introduce our own work-in-progress system

that is intended to help language learners

master basic grammatical rules.

5 TOWARDS WORDBRICKS

One of the most basic aims of language

learning is to train the ability to formulate

grammatically correct sentences with

known words. Unfortunately, traditional

exercises lack active feedback mechanisms:

learners are unable to “play” with language

constructions to find out which word

combinations are admissible and which are

not. The best (and maybe the only) way to

train active writing skills is to write (essays,

letters…), and to get the writings checked

by the instructor. Some intelligent CALL

systems, such as Robo-Sensei (Nagata,

2009), can assess students’ writings by

using natural language processing

technologies, but the success of these

instruments is limited.

We suggest that active skills of sentence

composition can be improved by forming a

consistent model of language in the

learner’s mind. Metaphorically speaking,

the difference between a “consistent model”

and a set of declarative grammar rules in

this context is the same as the difference

between a Lego construction kit and a

lengthy manual describing which Lego

bricks can be connected and in which ways.

A child does not need manuals to play

Lego: the rules of brick linkage can be

easily inferred from brick shapes and with

some trial-and-error process. Unfortunately,

there is no such way to easily check

whether it is correct to combine certain

words in a sentence.

The idea of modeling syntactic rules

with shaped bricks was implemented in the

educational programming environment

Scratch (Resnick et al., 2009). In Scratch,

individual syntactic elements of a computer

program are represented with shaped bricks

that have to be combined to constitute a

program (Figure 1a). While Scratch code

may have logical errors, syntactically it is

always correct, since it is impossible to

combine mismatching bricks.

Scratch’s graphical editor is not just a

simpler way to write computer programs,

helpful for the beginners. It can be treated

as a construal (Gooding, 1990) that forms a

model of a programming language in the

learner’s mind, though this aspect is not

explicitly emphasized in Scratch.

In our research, we are working towards

implementation of a similar scheme for

natural language sentences. Undoubtedly,

natural language grammar is much more

complex and less formal than the syntax of

any programming language. However, for

the purposes of novice language learners, it

is reasonable to teach restricted grammar

(as it happens in traditional language

teaching), which is technologically feasible.

Even in the case of Scratch, the design of

brick linkage principles is not trivial. One

important problem is to make sure that the

links between the bricks reflect actual

structure of the corresponding computer

program. For example, a loop control

structure can be represented with the

separate “Begin Loop” and “End Loop”

bricks that surround bricks that constitute

the loop body; however, such a design

would make a false impression that “Begin

Loop” and “End Loop” are independent

program elements. Instead, a loop in

Scratch is represented with a single C-

shaped brick that embraces the loop body.

It is much harder to identify a consistent

set of rules that control such linking

principles of a natural language-based

system. However, they are actually

considered in a number of linguistic

theories. In particular, we base our rules on

the principles of dependency grammars

(Nivre, 2005). Existing guidelines, such as

the Stanford Typed Dependencies Manual

(Marneffe & Manning, 2008) describe in

detail how the words in the given sentence

should be linked to form a structure

consistent with the ideology of dependency

grammars. For example, a subject and an

object should be directly connected to their

head verb; an adjective should be directly

connected to its head noun (Figure 1b).

The resulting structure of a sentence is

represented with an n-ary tree. While this

structure is linguistically correct (according

to the theory of dependency grammars), it

arguably might be difficult for learners to

master it. Therefore, it is our challenge to

represent such trees as two-dimensional

brick puzzles. Furthermore, dependency

grammars do not express word order, while

it has to be reflected in the resulting brick

structure (Figure 1c).

The proposed learning environment can

be used in different scenarios, but we would

emphasize again the possibility to perform

open experiments. Learners will be able to

test which word combinations are

admissible and why.

We should also note that it is an open

question whether language learners (at least

in the early stages of learning) should study

sentence structure. However, we believe

that some gentle exposure is fruitful,

especially for learning languages with rich

morphology, where a single change in one

word may trigger changes in several of its

dependent words.

6 CONCLUSION

Computer technologies are widespread in

modern language education. Some

directions in CALL research, such as

intelligent systems, have not yet been as

fruitful as anticipated, while other

developments, such as multimedia and

networking capabilities, have surpassed our

expectations.

It seems that the present agenda of

CALL research is primarily focused on

exploring recent technologies such as

ubiquitous computing or Web 2.0.

However, we see that even basic language

learning tools, such as electronic

dictionaries or flashcard software, would

benefit from greater attention by CALL

developers. Ubiquitous and mobile

computing technologies stimulate learner’s

independence, but language learners still

lack tools that support independent

language exploration and make use of

computing hardware not just as a platform

for the delivery of multimedia data.

We would especially favor more

developments in open experimentation

language software. This direction has

promising advancements in a variety of

scientific fields, but not yet in CALL.

References

Algoryx, 2013. Algodoo: 2D Physics sandbox,
www.algodoo.com.

Amaral, L., Meurers, D. & Ziai, R., 2011. Analyzing
learner language: towards a flexible natural
language processing architecture for intelligent
language tutors. Computer Assisted Language
Learning 24 (1), 1–16.

Caple, C., 1996. The Effects of Spaced Practice and
Spaced Review on Recall and Retention Using
Computer Assisted Instruction. Ann Arbor, MI.

Christian, W., Belloni, M. & Brown, D. et al., 2013.
Open Source Physics,
www.opensourcephysics.org.

Nivre, J., 2005. Dependency grammar and
dependency parsing. MSI Report 05311, Växjö
University.

Elmes, D., 2013. Anki: Friendly, intelligent flash
cards, www.ankisrs.net.

Gooding, D., 1990. Experiment and the making of
meaning: Human agency in scientific
observation and experiment. Kluwer Dordrecht.

Hessian, J., 2012. Tips for Studying Foreign
Languages, University of Illinois at Chicago.
www.uic.edu/depts/ace/foreign_languages.shtml

Hubbard, P., 2002. Survey of unanswered questions
in Computer Assisted Language Learning,
Stanford University.
www.stanford.edu/~efs/callsurvey/index.html.

Hubbard, P., 2009. A General Introduction to
Computer Assisted Language Learning. In:
Hubbard, P. (ed.) Computer-Assisted Language
Learning (Critical Concepts in Linguistics),
New York: Routledge, pp. 1–20.

Leick, V., 2013. Tips on managing your language
learning, University of Birmingham.
www.birmingham.ac.uk/facilities/cml/learnersu

pport/skills/managing.aspx.

Levy, M., 1997. Computer-assisted language
learning: Context and conceptualization.
Clarendon Press, Oxford [u.a.].

Marneffe, M.-C. de & Manning, C. D., 2008.
Stanford typed dependencies manual.
Stanford University.

Nagata, N., 2009. Robo-Sensei’s NLP-based error
detection and feedback generation. Calico
Journal 26 (3), 562–579.

Resnick, M., Silverman, B. & Kafai, Y. et al., 2009.
Scratch: Programming for All. Communications
of the ACM 52 (11), 60-67.

Rodger, S., 2013. JFLAP, www.jflap.org.

Santos, V., 2011. Rosetta Stone Portuguese (Brazil)
levels 1, 2, & 3 Personal Edition Version 4
(TOTALe). Calico Journal 29 (1), 177–194.

Volodina, E., Borin, L., Loftsson, H.,
Arnbjörnsdóttir, B. & Leifsson, G. Ö., 2012.
Waste not, want not: Towards a system
architecture for ICALL based on NLP
component re-use. In: Proc. of the SLTC 2012
workshop on NLP for CALL, pp. 47–58.

Wozniak, P., 2013. SuperMemo,
www.supermemo.com.

Yaron, D., Ashe, C., Karabinos, M., Williams, K. &
Ju, L., 2013. ChemCollective,
www.chemcollective.org.

Figure 1: a) A fragment of Scratch program; b) Dependency tree of the phrase “I like my funny dog.”;

c) Dependency tree of the same phrase in the form of 2D puzzle.

