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 Abstract 
This work firstly summarizes basic ideas, concepts and hardships of so-called concurrent 
programming. It also proves that concurrent programming is a very important branch of 
modern computer science, and it is worth studying. Then you can find a survey of existing 
educational software, intended for using in this area. Moreover, the paper provides a possible 
classification of such software packages. Special attention is paid to a new tool — CPV, 
which was designed and implemented mostly by the author of this work. This section also 
proves the necessity of CPV-like educational software. The next part describes various design 
decisions, which determine actual CPV possibilities and applications. After all you can find a 
description and evaluation of a small experiment on CPV usability, which results allows us to 
consider our software as a handy tool for teaching concurrency, suitable both for teachers and 
students. 
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1. Concurrent Programming Basics 
To deal with concurrent (also known as multithreaded) programming, we should firstly 
consider this concept in more detail. 

The instructions of any “ordinary” (non-concurrent) program are executed sequentially; 
therefore, non-concurrent programs are often referred as sequential. Unlike them, concurrent 
programs allow simultaneous (at least, illusive) execution of two or more instructions. We can 
define a concurrent program as a set of sequential programs which are executed in abstract 
parallelism [Ben-Ari90]. Each of these sequential programs will be now called process, while 
program is a whole set of them. 

Note that the parallelism can be abstract: it is not necessary to have several physical 
processors for handling concurrency; instead we can share the power of the only one 
processor between different logical processes. To simulate concurrent behavior, single CPU 
can execute several instructions of the first process, switch to the second one, execute some its 
instructions and so on. 

Here we can clearly see the difference between concurrent and parallel programming: the 
concept of parallel programming aims on achieving higher execution speed by utilizing 
several physical processors. Obviously, we will not reach any additional performance by 
running multithreaded application on a machine with single processor. Hence the aims of 
concurrent programming are different. Consider several examples which can clarify this 
question (ideas of examples are taken from [Feldman96]). 

1.1. Time-sharing Operating Systems 
Probably, any of us is now able to run several programs simultaneously on the one’s PC. 
Right now I am typing this text using my favorite word processor; at the same time an audio 
player plays music, download manager downloads the latest Windows update from 
microsoft.com website, and a messenger allows me to stay online to able to contact my 
friends in case of need. I can also enable an antivirus monitor to protect my system from 
viruses and a firewall to ensure my Internet connection is safe. Each of these programs 
doesn’t require a lot of processor time, so it is possible to utilize such “extra” time in a better 
manner than just executing an empty loop. 

1.2. Real-time Systems 
There are different kinds of computer software, existing to control some real physical 
systems. For instance, a computer can receive data from numerous electrical counters of the 
factory and maintain a log of their indications; computers can control railroad switches, 
automotive fuel systems and medical devices. These domains require the software to 
simultaneously gather some data from different places and process it; therefore, such software 
should be concurrent. 

1.3. Modeling and Simulation 
Many real-world simulations become easier to create in terms of concurrent programming, 
because our world is very concurrent itself. For instance, if you should simulate the behavior 
of an underground railroad, it is natural to consider each train as a separate process, 
interacting with other objects. When you are simulating the development of some biological 
population, and you need updated information to be on the screen each 5 seconds, it is easier 
to write a separate process, which performs all mathematical computations (and nothing 
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more), and another one — “a visualizer”, which takes current data and builds necessary 
graphs on the screen from time to time. 

 

As we can see, the speed of execution can be not the main reason to divide the program into 
several different processes. Sometimes we can do it to get more accurate model of reality, 
sometimes we find concurrency to be an easy and a natural way for achieving desired 
functionality, and sometimes we are simply required to have a kind of multithreading inside 
the system. 

Now we should consider a more practical question: well, we see the usefulness of concurrent 
programming, but how a concurrent program can be built with some popular programming 
language? The answer can be quite disappointing for somebody. For now, only a few 
languages provide possibilities to design concurrent programs in a standard, portable manner. 
And, probably, only two of them are widely known to the society: Ada [TDT97] and Java 
[AGH00]. 

The Ada programming language allows using special syntax for task-declaration sections: 
task type MyTask is   -- declaration of task type 

... 

end MyTask; 

task body MyTask is   -- definition of task body 

... 

end MyTask; 

 

T1, T2 : MyTask;       -- create two processes of type MyTask 

Thus, a concurrent program in Ada can be developed in a reasonably simple, natural way, by 
utilizing language syntax and semantics directly. Java doesn’t provide any specific language 
constructions for the developers of concurrent programs; instead, it offers a special type 
Thread, which we can extend to obtain an independent process: 

class MyThread extends Thread { 

    public void run() { 

        // our process 

        ... 

    } 

} 

 

MyThread m1 = new MyThread();   // create two 

MyThread m2 = new MyThread();   // threads 

This simple example is demonstrative enough: a language, which gives us any possibilities for 
concurrent programming, usually provides some special data type for this purpose. The 
support of concurrent programming is a part of definition of both these languages — Ada and 
Java. An Ada compiler should be able to generate concurrent code on any platform; in case of 
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Java language the solution is even simpler: concurrency is supported directly by Java Virtual 
Machine. So, what about other languages? Probably, using any more or less modern language, 
it is possible to utilize an API, provided by underlying operating system. This solution is not 
portable, but it works, at least, on compatible operating systems. If OS API approach seems to 
be too low-leveled, you can try to find some additional library, providing more high-level 
objects and functions. For example, VCL, the standard library of Borland integrated 
development environments Delphi and C++ Builder, contains a special class TThread, more 
or less similar to Java Thread. 
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2. The Hardness of Concurrent Programming 
As it is pointed in [Ben-Ari98], students often show misunderstandings of the very basic, 
cornerstone concepts of computer science, such as “variable”, “parameter” or even “a 
computer” (or, from the constructivist point of view, the students have built consistent, but 
non-viable models of these concepts). Any kind of imperative programming introduces the 
ideas of variable, assignment and execution sequence; the paradigm of structural 
programming adds the concepts of procedure/function and user data type. OOP extends the 
world of concepts with classes, instances, methods, events and so on. Concurrent 
programming also adds its own, unique objects to this world; and, I believe, most of them are 
something, which is harder to understand than just a variable or a loop. 

2.1. Understanding State Space Diagrams 
To understand the basic difference between concurrent and sequential programming, let’s 
consider a concept of state space diagram. 

Our computers are finite machines, and a program is, basically, a sequence of instructions, 
transiting a computer from one state to another. If the execution of the program doesn’t 
depend on some “outer” factors, such as random values generator, user input or external 
devices behavior, we can uniquely describe each situation in the program (in concurrent 
program, generally speaking) by a set of tuples:1 

<GV1, ..., GVn>                 - global variables of the program 

<V1,1, ..., V1,n1, LineID_1>      - local variables of the 1st process and LineID 

<V2,1, ..., V2,n2, LineID_2>      - local variables of the 2nd process and LineID 

... 

<VK,1, ..., VK,nK, LineID_K>      - local variables of the Kth process and LineID 

LineID is an identifier of the current instruction2 of the process (basically, an instruction 
number3). Since a sequential program is just a particular case of a concurrent one, we can use 
this notation for such programs also: 

<GV1, ..., GVn, LineID> 

As long as we don’t have different processes, our set of tuples degenerates into one element. 

By using state space diagrams we can describe a behavior of any program (Ex. 1, Fig. 1; 
Ex. 2, Fig. 2). 

Example 1. Simple sequential program 
for i := 1 to 3 do 

    f(); 

                                                
1 If our program depends on outer factors, it can be also described in such manner, but these 
tuples will include additional parameters. 
2 which is supposed to be atomic (the processor cannot switch between processes while 
executing it). 
3 I will use also instruction itself as LineID, when such reference is unambiguous. 
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Fig. 1. State space diagram for Example 1 program 

State space diagrams of sequential programs are simple: each state has one and only one 
outgoing transition. Therefore, the graph of state space diagram is, basically, a list. Now 
consider a state space diagram of some concurrent program. 

Example 2. Simple concurrent program 
process1: for i := 1 to 3 do 

              f(); 

 

process2: for j := 1 to 3 do 

              f(); 

 
Fig. 2. State space diagram for Example 2 program 

Note: in two last examples f() is assumed to be an atomic instruction, which also doesn’t 
modify any variables. 

As it can be seen, a state space diagram of a concurrent program has more complex structure. 
At any moment of time we cannot be assured which of the processes — process1 or process2 
will change the current situation, so we should consider both possibilities. 

From the observation of state space diagram complexity in case of concurrent program, we 
can make several conclusions: 

1. There are several ways to execute one program; the behavior of the program may vary 
from one execution to another. 

2. Different executions of the program can lead to different results. 
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3. Concurrent programs are hard to debug, since it is impossible to reconstruct the state of the 
program, which leads to an error (due to the same reason: we cannot control the way of 
execution of the program — it is defined by underlying OS). 

4. Generally speaking, we should be able to obtain the same results regardless of actual 
execution flow. This observation is related to the concept of correctness, which is defined 
differently for sequential and multithreaded programs. 

5. In general, OS scheduler may provoke incorrect behavior of our application. Therefore, we 
need a mechanism to constrain it. 

State space diagram can be a powerful method of analyzing the behavior of the program. 
Later we will return to the role of state space diagrams in teaching concurrent programming. 
For now, just add state space diagrams to the collection of concurrency-related concepts. 

At this moment let’s consider in more detail an above stated question: how can we affect an 
actual execution of the program, to release it from the total control of the operating system? 

2.2. Semaphores 
Before proceeding, let’s consider an example, where a freedom in OS actions can lead to an 
erroneous behavior. 

Example 3. Prime-printing routine (error-prone) 
GLOBAL N : Integer := 1; 

 

process1: while true do 

          begin 

              Left := N; 

              N := N + 1000 + 1; 

              print_primes(Left, Left + 1000); 

          end; 

 

process2...processN: { the same } 

Here you can see a skeleton of concurrent prime-finding routine (which prints prime numbers 
in the range [1…+∞)). Suppose we have a multi-processor machine (or a cluster) and we want 
to utilize existing hardware. The suggested approach is simple. Maintain a global variable N, 
which indicates the left border of unexplored range of values. Each process (running on the 
separate processor) memorizes the current value of N and performs an assignment 

N := N + 1000 + 1; 

which means “I am responsible for the analysis of the next 1000 numbers”. After that this 
process analyzes its range, prints found primes and requests the next interval to be explored. 
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At the first sight this algorithm seems to be simple and correct: obtain next interval, shift the 
border value, process the interval and repeat. But a closer look can reveal a scenario, which 
leads to an error:4 

process1: Left := N;                         // N = 1, Left := 1; 

process2: Left := N;                         // N = 1, Left := 1; 

process1: N := N + 1000 + 1;                 // N := 1002 

process2: N := N + 1000 + 1;                 // N := 2003 

process1: print_primes(Left, Left + 1000);   // print_primes(1, 1001); 

process2: print_primes(Left, Left + 1000);   // print_primes(1, 1001); 

In other words, both processes firstly read the same value of N, and then increase it. As a 
result, each of these processes will analyze the same interval [1…1001], and, moreover, the 
next interval [1002…2002] will remain unconsidered at all! 

The standard way of solving such problems is to use semaphores [Dijkstra68]. As it is defined 
in [Ben-Ari90], a semaphore (S) is a non-negative integer variable with only two defined 
atomic operations:5 

Wait(S): if S > 0 then S := S – 1 else block the process. 

Signal(S): if there are any blocked processes on this semaphore, release one of them else 
S := S + 1 

Consider now a code fragment: 
GLOBAL S : Semaphore := 1;  // initial value 

 

process1: //... 

          Wait(S); 

          f1(); 

          f2(); 

          Signal(S); 

 

process2: //... 

          Wait(S); 

          g1(); 

          g2(); 

          Signal(S); 

                                                
4 Note that here I am assuming a so-called Load-Store model, which supposes instructions, 
reading and writing global variables as the only atomic. 
5 Strictly speaking, any semaphores are beyond the Load-Store model. From the theoretical 
point of view, there is a possibility to solve our problems remaining inside this model (by 
using so-called Dekker’s algorithm), but from the practical side there is no reason to do it.  
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When one of the processes executes the statement Wait(S) (there will be no process switching 
during the execution of this instruction due to its atomicity), another one cannot enter this 
Wait(S)…Signal(S) section. After first Wait(), the value of the semaphore will be set to zero, 
so any other process will be blocked during an attempt to execute this operation. An execution 
of Signal(S) operation releases one of suspended processes (in our example there are only two 
processes at all, so it just releases another process), and then it can continue working. Hence 
the number of possible scenarios reduces to two: 

Scenario 1.  
process1: Wait(S); 

process1: f1(); 

process1: f2(); 

process1: Signal(S); 

process2: Wait(S); 

process2: g1(); 

process2: g2(); 

process2: Signal(S); 

Scenario 2.  
process2: Wait(S); 

process2: g1(); 

process2: g2(); 

process2: Signal(S); 

process1: Wait(S); 

process1: f1(); 

process1: f2(); 

process1: Signal(S); 

So, semaphores can be used to group a set of instructions into one atomic block. Such blocks 
(between Wait(S) and Signal(S) are often referred as critical sections). 

The situation can be also illustrated by a real-world example with real semaphores and 
locomotives (Fig. 3). 
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Fig. 3. Real-world example of semaphore usage (1) 

When any locomotive passes through Wait(S) point, the semaphore blocks any other attempts 
to do it (Fig. 4). Now a semaphore allows passing only after Signal(S) command. 
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Fig. 4. Real-world example of semaphore usage (2) 

Now we can return to the example of prime printing routine and rewrite it using the 
semaphore: 

Example 4. Prime-printing routine 
GLOBAL N : Integer := 1; 

       S : Semaphore := 1; 

 

process1: while true do 

          begin 

              Wait(S); 

              Left := N; 

              N := N + 1000 + 1; 

              Signal(S); 

              print_primes(Left, Left + 1000); 

          end; 
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process2...processN: { the same } 

Note that only Wait(S)…Signal(S) section is protected. An OS still can perform task switching 
during the execution of print_primes() procedure. 

Semaphores can be used not only for critical sections organization; they are intended to be a 
tool, suitable for applying in various problems, where a synchronization of different 
processes’ actions is needed. 

As usual, any kind of additional possibilities cause additional responsibility. Once decided to 
affect the execution of the program, we should be ready for the new obstacles. Semaphores 
allow processes suspend an execution of other processes, and this possibility is intrinsically 
error-prone. 

One of the common troubles is so-called deadlock, a situation, when some process A blocks 
process B, and at the meanwhile, the process B locks A. The program will obviously reside in 
this state forever, since no way out can be found. The typical example of the deadlock is the 
following sequence of database operations: 

Example 5. Deadlock scenario 
GLOBAL S1: Semaphore := 1; 

GLOBAL S2: Semaphore := 1; 

... 

                    // process1 wants to write Table1 

process1: Wait(S1); // lock Table1 

                    // process2 wants to write Table2 

process2: Wait(S2); // lock Table2 

                    // process1 wants to write Table2 

process1: Wait(S2); // trying to lock Table2; suspended on the semaphore S2 

                    // process2 wants to write Table1 

process2: Wait(S1); // trying to lock Table1; suspended on the semaphore S1 

// process1 waits until process2 unlocks Table2 

// process2 waits until process1 unlocks Table1 

The conclusion is simple: we should pay additional attention (up to formal verification) when 
working with semaphores. 
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3. Teaching concurrent programming 
Previous passages described the basics of concurrent programming (very shortly, since this 
work deals with concurrent programming, but isn’t dedicated to it). Now we can see that such 
kind of programming is a very specific branch of computer science with its own concepts, 
idioms, methods and even standard problems (such as “Readers and writers” or “Dining 
philosophers”, [Whiddet87]). Undoubtedly, these specific points require quite specific 
approach to the teaching process and specific educational tools. We will concentrate on the 
above described concepts (although, they are just a top of an iceberg): 

1. ways of program execution, state space diagrams 

2. the concept of correctness 

3. semaphores and semaphore-related problems 

There are many textbooks on concurrent programming available — both theoretical and 
practical-oriented ([MK99], [Snow92], [Hansen02], [Lea99]). The detailed discussion of 
approaches for the teaching is beyond of the scope of this work; instead we will consider 
software tools, which can be used by a teacher. 

3.1. Software Robots 
The first program of this sort I am familiar with is CRobots, written in a quite distant 
nowadays year 1985. The basic idea of this program is to provide a nice competition for the 
programmers: you are supposed to program a behavior of a “software robot” by using some 
special API. Basically a robot can examine an environment, turn, move, and fire its weapon. 
Then these programmed robots are gathered in a “playground” and the battle begins. The 
survivor is a winner of the competition. 

During the ensuing years such CRobots-like programs were noticeably developed. Among 
“bells and whistles” like nice SVGA graphics or network play support we obtained also the 
possibility of using object-oriented approach to program robots, special environments for 
designing robots and a support of some other programming languages, such as TCL or Java 
(Fig. 5, Fig. 6). 
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Fig. 5. IBM’s Robocode IDE 
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Fig. 6. IBM’s Robocode playground 

Many modern robot-designing environments are meant not for experienced programmers’ 
fun, but for providing an exciting starting point for the beginners. You can write just 10-15 
lines of more or less simple code, and you obtain a personal robot, which works exactly as 
you specified. Surely, it is more interesting than finding a maximum array element or 
implementing bubblesort! 

I should mention that not all roboworld simulators are aiming at deathmatch play (which is 
closer to an AI development). Some of them really intended to teach programming by 
providing a kind of simple and visual programming language; maybe it is legal to consider 
them as highly upgraded LOGO ([Yoder90]) versions. A book [BSRP97], which describes the 
world of Karel J. Robot simulator, explicitly claims the possibility to use this simulator as an 
environment for studying concurrency. The book contains several examples of “concurrent 
robots”; it shows how to illustrate some basic concepts of concurrent programming, such as 
simultaneous execution, so-called “race conditions”, deadlocks, etc. by means of roboworld. 
Ex. 6 contains a listing of the simplest concurrent robot program, which works in a Karel J. 
Robot world. 

Example 6. Concurrent robots 
class Racer extends Robot { 

    public Racer(int Street, int Avenue, Direction direction, int beepers) {
  

        super(Street, Avenue, direction, beepers); 

        World.setupThread(this); 

    } 

    public void race() { 
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        while(!nextToABeeper()) 

            move(); 

        pickBeeper(); 

        turnOff(); 

    } 

    public void run() { 

        race(); 

    } 

} 

... 

public static void main(String [] args) { 

    Racer first = new Racer(1, 1, East, 0); 

    Racer second = new Racer(2, 1, East, 0); 

} 
Robots in this example can race each other to some goal. The first racer begins on the 1st 
street, 1st avenue; the second one on the 2nd street, 1st avenue. Both robots face east; 
somewhere in front of each robot is a beeper. Next, we start them simultaneously to see who 
will be the winner. 

Links to Software Robots Related Resources: 
IBM’s Robocode: http://robocode.alphaworks.ibm.com/home/home.html 

CRobots: http://www.nyx.net/~tpoindex/crob.html 

TCLRobots: http://www.nyx.net/~tpoindex/tcl.html#TclRobots 

Karel J. Robot: http://csis.pace.edu/~bergin/karel.html 

3.2. Concurrency Simulators 
The tools, more directly related to multithreaded programming, are concurrency simulators. 
As noted in [Persky99], it can be difficult to get familiar with concurrent programming by 
using real programming languages from the very start. At first, concurrent systems 
development often requires knowledge of internal OS API (at the beginning of this work I’ve 
mentioned that only a few languages provide possibilities to design concurrent programs in 
standard, portable manner); at second, we cannot see details of an actual execution scenario, 
cannot perform step-by-step trace of a real multithreaded program. 

The popular solution suggests using a “concurrency simulator” — special software, which 
allows us to create, to trace and to retrace arbitrary execution scenarios of concurrent 
programs. 

One of the most (if not the most) popular concurrency simulator at the present time is BACI. 
Its webpage says that BACI is used in dozens of schools, colleges and universities all over the 
world. Current BACI package includes two compilers of simplified concurrent languages — 
C-- and Concurrent Pascal, and an actual simulator. The simulator, basically, executes 
compiled program (Ex. 7). 

http://robocode.alphaworks.ibm.com/home/home.html
http://www.nyx.net/~tpoindex/crob.html
http://www.nyx.net/~tpoindex/tcl.html#TclRobots
http://csis.pace.edu/~bergin/karel.html
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Example 7. BACI at work 
// listing of concurrent program 

const int m = 5;  
int n;  
 

void incr (char id)  
{  
    int i;  
 

    for (i = 1; i <= m; i = i + 1)  
    {  
        n = n +1;  
        cout << id << " n =" << n << "  i =";  
        cout << i << " " << id << endi;  
    }  
}  
 

main()  
{  
    n = 0;  
    cobegin  
    {  
        incr( 'A' ); incr( 'B' ); incr( 'C');  
    }  
    cout << "The sum is " << n << endl;  
} 

//------------------------------------------- 

... 

// resulting printout 

Source file: incremen.cm Wed Oct 22 21:18:02 1997  
Executing PCODE ...  
C n =1 i =A n =1 C2 i =  
1 A  
C n =4 i =2 C  
B n =A n =5 i = 24 A  
  i =1 B  
AC n = n =6 i =3 C6 i =3  
A  
C n =7 i =4 C  
B n =9 i=2 BA n =8  
  i =4 A  
C n =8 i =5 A n =9C  
  i =5 A  
B n =10 i =3 B  
B n =11 i =4 B  
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B n =12 i =4 B  
The sum is 12 

After BACI a BACI Debugger was released. It allows user to trace concurrent programs. Next 
steps of the development of this simulator led to the creation of GUI for BACI (unfortunately, 
works only under *nix systems) and jBACI (Fig. 7). 

jBACI is a new concurrency simulator, written in Java. Actually, it is more than just a 
simulator — jBACI is a complete IDE, which includes editor, necessary compilers (taken from 
BACI package) and visual debugger. It is possible to use graphical primitives in jBACI — this 
nice feature enables us to write more demonstrative programs. 

 
Fig. 7. jBACI concurrency simulator 

Except BACI variations, I can mention SimAda concurrency simulator, written in 1999 by 
Yakov Persky. It was developed using Ada 95 programming language and can execute 
programs written in “SimAda Language” — a special Ada subset. 

Links to Concurrency Simulators: 
BACI: http://www.mines.edu/fs_home/tcamp/baci/  

jBACI: http://stwww.weizmann.ac.il/g-cs/benari/jbaci/ 

SimAda:  http://stwww.weizmann.ac.il/g-cs/benari/files/simada.zip 

         http://stwww.weizmann.ac.il/g-cs/benari/files/ypthesis.zip  

http://www.mines.edu/fs_home/tcamp/baci/
http://stwww.weizmann.ac.il/g-cs/benari/jbaci/
http://stwww.weizmann.ac.il/g-cs/benari/files/simada.zip
http://stwww.weizmann.ac.il/g-cs/benari/files/ypthesis.zip
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3.3. Model Checking Software 
Probably, the only one way to be more or less assured in validity of your software, known to 
every programmer, is thorough testing. People develop various techniques for testing (see, for 
example, [Beck99]), write scientific, near-scientific and technical papers, explaining, how to 
perform testing in the right way, how to select input data and analyze results. Although, as 
Dijkstra noticed, program testing can be used to show the presence of bugs, but never to show 
their absence, testing still remains the most popular and widely used nowadays. I think, really 
well-performed testing is a quite sophisticated procedure, and alternative approaches are even 
trickier. But sometimes we have no choice (see also [Ben-Ari00], [KP99]): 

1. The device, intended to run our program has no capabilities for debugging and testing 
software (a rocket, a microchip). 

2. The software is too complex and the ways and conditions of its usage are unpredictable 
(operating systems). 

3. The conditions of testing are unrepeatable due to specific hardware. For example, if our 
application utilizes two processors of a multiprocessor machine, we cannot control which 
processor will be used for executing one or another algorithm of an application. It is 
extremely hard to catch a bug in this situation if it is caused by a processor malfunction 
([KP99]). 

4. The conditions of testing are unrepeatable due to a huge amount of possible ways of 
program execution. 

The last reason is the most interesting for us now, since it directly concerns to concurrent 
programming. If you gave numbers (1, 2, 3) as an input arguments to a sequential program 
and obtained 6 as a result, this is probably means that next time you will also obtain 6 for the 
same arguments (surely, if your program doesn’t depend on some random values or user 
input). For concurrent program such “testing” means nothing: next time an operating system 
can select another execution scenario and the result can be completely different. The mirror 
example of the same situation is even more offensive: suppose you found an erroneous 
behavior of your program. On some single run it produces 5 for the arguments (1, 2, 3). But 
all next runs produce 6 — the correct result — and you are unable to find the source of an 
error, since only one or several scenarios among hundreds and thousands can cause it. 

An alternative approach to usual testing (which is basically a kind of run-and-see-what-will-
happen technique) called formal verification. This term stands for proving or disproving the 
correctness of a system with respect to a specification, using mathematical methods. In 
practice it often means formulating some properties of your application by means of linear 
temporal logic or computational tree logic and using specific verification software which 
analyzes your program and tries to make conclusions. 

A small efficiency of an ordinary testing in concurrent programming increases the importance 
of formal verification methods. No wonder that many such “auto-verifiers” are aiming more 
at concurrent and distributed, not at sequential systems. 

All these observations entail the following conclusion: since formal verification methods are 
so important in the world of concurrent programming, a good course on this subject should 
include, at least, their basics. 

There are several enterprise-level verification software packages available. 

One of the most popular and well-known among them is Spin (and its recent convenient 
frontend jSpin) — a tool, which was developed in 80s at Bell Labs, and has been freely 
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available since 1991 [Holzmann03]. Spin uses a special high level language PROMELA to 
specify system properties. Once described your application, you can invoke Spin to perform 
checking for the logical consistency of a specification. The tool reports about found 
deadlocks, race conditions and other common obstacles of concurrent programs. 

The simplest example of PROMELA usage is ordinary assertions: 
assert (NumberOfLeaders == 1) 

This sentence tells to Spin that the value of  NumberOfLeaders variable should be equal to 
one at this moment. In case of a violation of this condition, Spin will report an error. 

More powerful feature of PROMELA is the support of temporal logic assertions. Temporal 
logic works with propositions that change with time. For instance, if prefix <> means 
“eventually” and [] — “always”, we can express the assertion “NumberOfLeaders should 
eventually become equal to 1 and remain in this state forever” in a following manner: 

<>[](NumberOfLeaders == 1) 

Similar aims and comparable possibilities can be found in other systems — SMV and TLV. 
The main difference between them is a way of describing properties: SMV uses computational 
tree logic while TLV utilizes linear temporal logic (like Spin). 

Among these serious systems I should mention STeP (stands for Stanford Temporal Prover) 
[BBCCKMSU96]. It works with hardware or software descriptions, expressed as transition 
systems and temporal logic formulas. STeP uses verifications rules and diagrams, auto-
generated invariants, model checking and decision procedures for software verification. 

A different enough approach is used in Uppaal — a very interesting system, designed jointly 
in Aalborg (Denmark) an Uppsala (Sweden) universities (Fig. 8, [BL96]). 
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Fig. 8. Uppaal IDE 

Uppaal uses a special guarded command language with data types to describe the program (as 
a network of automata) to be analyzed. Then a simulator can examine possible executions of 
your system. Uppaal also includes a model checker, which can check invariants and perform 
reachability analysis of the program. 

The “visuality” of the system (its authors explicitly underline the ease of usage as one of the 
main design criteria) makes it suitable for education purposes. 

Links to Model Checking Software: 
Spin: http://spinroot.com/spin/whatispin.html  

jSpin: http://stwww.weizmann.ac.il/g-cs/benari/jspin/ 

jBACI: http://stwww.weizmann.ac.il/g-cs/benari/jbaci/ 

SMV: http://www-2.cs.cmu.edu/~modelcheck/smv.html 

TLV: http://www.wisdom.weizmann.ac.il/~verify/tlv/index.shtml 

STeP: http://www-step.stanford.edu/ 

Uppaal: http://www.docs.uu.se/docs/rtmv/uppaal/ 

http://spinroot.com/spin/whatispin.html
http://stwww.weizmann.ac.il/g-cs/benari/jspin/
http://stwww.weizmann.ac.il/g-cs/benari/jbaci/
http://www-2.cs.cmu.edu/~modelcheck/smv.html
http://www.wisdom.weizmann.ac.il/~verify/tlv/index.shtml
http://www-step.stanford.edu/
http://www.docs.uu.se/docs/rtmv/uppaal/
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4. CPV (Concurrent Program Verifier) 
With high respect to all above described systems, I believe, there is a place under the sun for 
one more modest tool for teaching concurrent programming — CPV, which 1.0 version is 
written by me under supervision of prof. M. Ben-Ari. 

Probably, before deciding to develop any new educational tool, a researcher should first ask 
oneself: what kind of software a teacher needs? What kind of software a student needs? Why 
existing software solutions are not sufficient? 

Even if the different researchers’ answers are very similar, it is better to have two educational 
systems than one: the possibility to select is generally a very good thing. 

In our case (we are aiming at basic-level teaching) I can underline the following points: 

1. A teacher needs a tool, which can be used as an addition to ordinary slides for teaching 
basics of concurrent programming. 

2. This tool should be as visual as possible, so it can be utilized during lectures. 

3. The software should be easy to use; it also should not require specific knowledge or 
unusual skills from the teacher. 

4. Student’s needs are like a reverse of the medal. We want to develop a system, which could 
be used as an addition to the lecture notes (so student can use the tool to gain a better 
understanding of material) and as a nice companion during homeworks. Surely, we try to 
require as less experience and specific knowledge as possible from students. 

I have mentioned about “teaching basics” of concurrent programming. No doubt, different 
courses make emphasis on different points of concurrency, so these “basics” may vary. 
Educational software tools very seldom show themselves as “pure”: almost always we can see 
the direction of the authors’ courses. For instance, I have doubts about studying the world of 
Karel J. Robot just to use it for demonstrating concurrency. The authors of Karel J. Robot use 
their tool for various purposes, and concurrency teaching is only one of them. Similarly, I 
believe, the usage of automata in Uppaal is not accidental: it is very likely that automata 
theory plays an important role in the courses of Aalborg and Uppsala universities. 

Our approach also falls under influence of our interests. For example, in certain applications it 
is very important to be able to control different threads: to create them, to communicate via 
messages, to suspend or destroy if necessary. As I told before in “Teaching concurrent 
programming” section, we are more interested in rather theoretical, low-leveled concepts: 

1. The process of concurrent program execution. Different execution paths. 

2. State space diagrams as a method of visualization and verification. 

3. Basic concurrency-related concepts: semaphores, mutual exclusion, deadlocks, etc. 

The core idea is simple: since state space diagrams is a universal method of visualization and 
verification, we can try to develop a tool, which builds a state space diagram for any given 
program. Although, details make a program in reality; details can spoil any excellent idea and 
details can turn even a weak basis into something impressive. That’s why I’d like to explicitly 
substantiate the rationale for our design decisions. I will also provide some technical aspects 
(e.g. the architecture of the system) to make this description more complete. 

As we are talking about analyzing an execution of the program, it is rationally firstly to define 
how we can describe a program. 



 24 

One way is quite obvious: use some existing programming language or create your own. 
Generally speaking, such solution provides the highest expressive power for the user. No 
wonder, serious simulators like Spin or TLV use this approach. On the other hand, “textual” 
languages are not visual; moreover, to introduce any such language means to enforce a 
teacher/student to learn “yet another programming language”. In case of Spin this is not 
important, since Spin is intended to be a serious long-term instrument for serious people. If 
you really decided to use Spin at the work, there should be no problems to dedicate several 
days to PROMELA studying; but our situation is quite different: the need of dealing with 
some new programming language can discourage many people. 

An example of an alternative approach is shown in Uppaal: a text-based programming 
language is not the only way to program! Uppaal’s “automata language” is very specific, 
that’s why we cannot use it in our software, but in any case I can point, at least, three 
disadvantages of any “graphic language” of such kind: 

1. Usually, an expressive power of graphic languages is lower in comparison with ordinary 
ones. 

2. Graphic programs require more space. 

3. The process of drawing is considerably slower than typing; therefore, for an experienced 
programmer it is easier to write a program than to draw it (although, for a newcomer, who 
is not yet familiar with a syntax, it is not so). 

Anyway, for educational software, aiming at small program analysis, such graphic language 
can be a good choice. Surely, I am talking not about graphic automata representation, “robot 
control language” or something like that; it should be a simple, very well-known concept. 

We believe that so-called flowcharts are good candidates for representing our sample 
programs. Flowchart is a very common “graphic language”, which uses different blocks, 
connected by arrows (Fig. 9). At least, as I remember, I studied flowcharts at school before 
any ordinary programming language. 
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Fig. 9. Flowchart example 

After language selection, we can discuss visualization module. A naïve approach assumes the 
usage of straightforward architecture: 

Flowchart Editor à Visualization Module 

But after a closer look this scheme shows serious disadvantages. At first, it is enough 
complicated to create a simulator, which directly executes flowcharts. A standard solution in 
such situations is to use a kind of “intermediate language”. For example, a C++ compiler can 
work according to the following scheme: 

C++ à C à Assembler à Object code 

It is much easier to convert C++ program to a C analogue than to compile it directly, and C 
program can be converted to Assembler statements instead of straight compilation also. Only 
at Assembler level you have no choice: next step is machine code. This approach also allows 
us to utilize existing Assembler compiler when developing a C translator and existing C 
compiler during design of C++ one. 

The second disadvantage is a high level of integration of two logically different modules of 
the program — Flowchart Editor and Visualization Module. Generally speaking, any modules 
should be bound to each other as weak as possible — it makes program logic clearer and 
simplifies maintenance. 

That’s why I’ve decided to use slightly more complex architecture (and now I think this 
decision noticeably simplified the process of development): 

Flowchart Editor à Intermediate Language à Visualization Module 

Let’s have a closer look on the design principles of these elements. 
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4.1. Flowcharts in Concurrent Programming 
There are not so many modifications we should introduce to ordinary school flowcharts to 
adapt them for our needs. 

In traditional flowchart a variable declaration section is almost always omitted. You just use 
expressions like X := 5 without explicit X definition. On the other hand, probably any model 
checking software requires you to specify a domain for every variable. If you clearly 
understand the logic of your program, this action will take only a bit of time, while 
advantages are more than just noticeable, since a simulator can catch and report out-of-range 
errors. In case of state space diagram building the usage of such constrained variables is 
crucial. Consider, for example, the following (probably, senseless) fragment: 

while true do 

    i := i + 1; 

Theoretically, the value of i should increase to infinity, but in practice (since our computers 
are finite machines) we should stop at some point. The only question is when? After 1000 
generated states? 65535? 232? To specify a variable domain mean to tell simulator: “I know 
what I am doing” and to decide this question. A simulator should perform state generation 
while every variable is inside its range.6 

These observations lead us to the conclusion: each variable in CPV should be typified and 
constrained; a variable should also have an initial value to exclude any random factors while 
building a state space diagram. 

Another “variable issue” concerns the fact that in concurrent programming we have global 
and local (in a certain process) variables. It should be also taken into account. 

Suppose we have a special “declaration area” in any process and a “global declaration area” in 
the program. Now we can define variable declaration syntax: 

Type Syntax Example 
Integer Name : integer(MinValue..MaxValue) := InitValue; a : integer(-5..100) := 5; 

Boolean Name : boolean := InitValue; flag : boolean := true; 

Semaphore Name : semaphore := InitValue; S : semaphore := 3; 

 

As it can be seen, in CPV you should supply an exact range for every integer variable. In most 
programming environments variable type implicitly specifies its range: for instance, char 
almost always means [0..255], while unsigned int stands for [0..232-1]. Such syntax in CPV is 
forbidden: we require an explicit specification of the inverval, so that we can ensure that only 
a very few values are possible for each variable, and thus the state diagram will be small 
enough to be displayed. 

I should mention that “semaphore” in our case is a general semaphore. 

Next question is related to flowchart blocks. After several discussions we stopped on the 
following types: 

Type Description 

                                                
6 Nevertheless, it makes sense to stop analysis also if the state space diagram becomes really 
huge. 
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Assignment Ordinary assignments like A := B, X := Y + 1, etc. 

Semaphore op. Wait() and Signal() operations. 

Branching Conditionals: A < B, Z >= 5 and so on. 

End End-of-process indicator. 

 

There is also a possibility to mark any existing block as starting. 

It is not enough to define block types. Then we should agree what to put inside these blocks. 
In our case it is a set of Pascal-styled statements: 

Statements for Assignment Blocks 

Syntax Examples Comment 
Lvalue :=  Rvalue; a := b; 

flag := true; 

x := 15; 

Simplest assignment: works both 
for integer and Boolean variables. 
Lvalue is a variable, Rvalue is a 
variable or constant of the same 
type (integer or Boolean). 

Lvalue := not Rvalue; flag := not flag; 

end := not false; 

Assignment with NOT operation. 
Works with Boolean values only. 
Lvalue is a Boolean variable, 
Rvalue is a Boolean variable or 
constant. 

Lvalue := Rvalue1 + Rvalue2; addr := base + offset; 

i := i + 1; 

Assignment with “+” operation. 
Works with integer values only. 
Lvalue is an integer variable, 
Rvalue1 and Rvalue2 are integer 
variables or constants. 

Lvalue := Rvalue1 - Rvalue2; num := num – 1; 

weight := full – cargo; 

Assignment with “-” operation. 
Works with integer values only. 
Lvalue is an integer variable, 
Rvalue1 and Rvalue2 are integer 
variables or constants. 

Lvalue := Rvalue1 and Rvalue2; result := op1 and op2; Assignment with AND operation. 
Works with Boolean values only. 
Lvalue is an integer variable, 
Rvalue1 and Rvalue2 are 
Boolean variables or constants. 

Lvalue := Rvalue1 or Rvalue2; Flag := flag or mask; Assignment with OR operation. 
Works with Boolean values only. 
Lvalue is an integer variable, 
Rvalue1 and Rvalue2 are 
Boolean variables or constants. 
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Statements for Semaphore Blocks 

Syntax Examples Comment 
wait(SemaphoreName); wait(S); Standard semaphore operation Wait(). 

signal(SemaphoreName); signal(S); Standard semaphore operation Signal(). 

 

Statements for Branching Blocks 

Syntax Examples Comment 
value1 op value2, 

where op is =, <>, <, 
<=, > or >= 

a = 5 

height <> width 

flag <= true 

Condition test: value1 and value2 are variables or 
values of the same type (integer or Boolean). 
Boolean values can be used only for equality and 
inequality test. 

 

Our flowchart editor realizes these principles (Fig. 10). Note that different processes are 
shown on different flowcharts. 

 
Fig. 10. Flowchart Editor 
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4.2. Intermediate Language 
After you command to begin state space diagram building, CPV firstly performs a flowcharts-
to-intermediate language translation. Intermediate language has the same expressive power as 
flowcharts, but it is much easier to execute. Consider various IL elements: 

IL Element Corresponding Flowchart 
Element 

Description 

__commonvariables — Beginning of the common 
variables declaration section. 

__endofcommonvariables — End of the common variables 
declaration section. 

__process ProcName — Beginning of the process 
ProcName and its local variables 
declaration section. 

__code — End of the local variables 
declaration section, beginning of 
the actual code. 

__endproc — End of the process. 

bool x Value x : boolean := Value; Boolean variable declaration. 

int x Min Max Value x : integer(Min..Max) := Value; Integer variable declaration. 

sem x Value x : semaphore := Value; Semaphore variable declaration. 

asgn x y goto N x := y; Simple assignment. 

asgn x not y goto N x := not y; Boolean NOT-assignment. 

asgn x y op z goto N x := y op z; Assignment with operation op. 

wait s goto N wait(s); Semaphore Wait() operation. 

signal s goto N signal(s); Semaphore Signal() operation. 

if x ifop y goto N else M x ifop y IF construction with ifop 
relation. 

 

Note that each imperative instruction includes an obligatory goto clause, which states a line 
number of the next statement to be executed (in flowcharts we use arrows for the same 
purpose). 

Each imperative intermediate language statement can also have an optional section 
“//description” (e.g. “asgn x y goto 5//x := y;”). State space diagram builder uses the first part 
of the statement (before “//”) to analyze program behavior, and the second part (after “//”) to 
print a current process line in state space diagram nodes. 

Consider an example of intermediate language representation (Fig. 11, Ex. 8). 
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Fig. 11. Flowchart of a trivial concurrent program 

Example 8. Intermediate language representation of a program from Fig. 11 
__commonvariables 

int S 0 100 0 

__endofcommonvariables 

__process p1 

__code 

asgn S S + 5 goto 1//S := S + 5; 

__endproc 

__process p2 

__code 

asgn S S + 10 goto 1//S := S + 10; 

__endproc 

4.3. Visualization Module 
This module is intended for actual state space diagram building. You have two choices: either 
to press Initialize button to expand only starting state and then perform manual step-by-step 
expansion, or to press Expand All to build entire diagram at once. It is also possible firstly to 
expand several states by hand and then continue in automatic mode. 

The visualization algorithm works in the following way. Firstly it generates starting state. It is 
quite simple: we know initial values of the variables, and the first line of each process 
becomes current in it. 

To expand any existing state (i.e. to find all derived states), an algorithm should simulate one 
step of program execution, and it is possible, since the current state provides any necessary 
information about the situation at the moment. An OS scheduler can execute a statement from 
any process (CPV statements are considered as atomic), so we should consider all 
possibilities. In pseudo-code it looks like this: 

for every process p in the program 

    State s1 := CloneCurrentState(); 

    s1.MakeOneStepInProcess(p); 
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    s1.Draw(); 

end 

During simulation the only tricky moment arises when dealing with semaphores: from a 
record like <S=0, wait(S)> it is impossible to conclude is the process already blocked on the 
semaphore S, or it is just about to execute wait(S) statement. That’s why we need to have an 
additional flag for any process (blocked / not blocked) and an additional syntax for 
representing this flag on state space diagram nodes. In CPV this difficulty is solved by means 
of using color: blocked processes are marked with red7. If two nodes contain identical 
information about variables values, but some process is marked with different colors, they are 
treated as different also. Another semaphore point concerns logic of statement execution. For 
any non-semaphore operation CPV executes something like 

PerformOperation(); 

GotoNextFlowchartBlock(); 

In case of semaphore operations the logic is different: 
PerformOperation(); 

if(ProcessIsNotBlocked()) 

    GotoNextFlowchartBlock(); 

Drawing a state is not so trivial also. For a start, we should remember all states, which are 
already on the screen in a separate set. If the state you are about to draw is already drawn, it is 
enough to make a transition from the parent state to it; otherwise we should firstly paint the 
new state. Transitions in CPV are different. Mostly they are straight, but if there is a transition 
from state A to state B and conversely, CPV changes them to curved arrows, see Fig. 12 (this 
concerns both visualizer and flowchart editor) 

 
Fig. 12. Curved arrows in CPV 

To perform automatic state expansion CPV executes the following code: 
put all onscreen states into MySet set 

while MySet is not empty 

    s := MySet.TakeOutAnyElement(); 

    Draw s on the screen, if necessary 

    if s is not analyzed yet 

        generate all states, derived from s, then put them into MySet set 

        mark s as analyzed 

                                                
7 CPV also uses blue font to mark the final state, but it is just a “color sugar”. 
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       end 

end 

This algorithm works until all states are drawn on the screen and have an attribute “analyzed”. 

There is one more point, related to the state expansion algorithm. In real systems the 
difference between breadth-first and depth-first expansion is important (any good book on 
graphs should provide suitable cases for each of these approaches). In our case we expand all 
remaining states at once (when user presses Expand All button), so it doesn’t matter which 
algorithm to use. An actual solution is hidden inside an implementation of set type. In CPV I 
used HashSet class from the standard Java library as a type of MySet; therefore, I have no 
right to discuss its behavior. 

Additional attention should be paid to graph layout manager: it is not enough to produce 
states; we should also place them on the graph surface in some reasonable way. For now a 
very simple scheme was applied (Fig. 13).  

 
Fig. 13. CPV graph layouting scheme 

Graph nodes are moveable, so it is possible to rearrange them manually. Examples of 
generated state space diagrams are shown on Fig. 14 and Fig. 15. 
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Fig. 14. State space diagram of a trivial concurrent program 
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Fig. 15. State space diagram of a concurrent program with semaphores 
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4.4. JGraph 
Since two CPV modules — the flowchart editor and the visualizer — implement, basically, a 
bunch of graph-drawing functions, it is reasonable to have some generic framework. For this 
purpose CPV uses an open source JGraph library. JGraph is quite big (dozens of classes) and 
complicated extensible Swing component for graphs visualization. JGraph itself provides 
only quite basic possibilities for graph handling: you can create simple labeled rectangular 
nodes and connect them using straight arrows. On the other hand, it is possible to provide 
custom node/vertex views, mouse handlers, etc., so the flexibility of JGraph is very high; for 
now it satisfies all our requirements. CPV seriously extends JGraph classes (Fig. 16). 

 
Fig. 16. CPV JGraph extension 

Although JGraph is really powerful and extensible, I should say it is not so easily extensible 
and easy to use in general. To my mind, JGraph architecture is very complicated and not 
always rational. In many occasions JGraph requires you to spend a lot of time to make rather 
simple things; on the other hand, it can be a very good training for your nerves. 

It stands to reason that JGraph is not just the first graph visualization library I found inside 
the Web. It is worth to mention other possible alternatives. 

The first one — to write our own library — we tried to avoid by all means. The concept of 
graph is very common in mathematics and computer science, so it is hard to believe that 
nobody created an acceptable solution before us. 

There were several criteria for choosing the library among existing ones: 

1. It should be written in Java, since we use Java. 

2. It should be free (for the obvious reason) and open source, if possible. 

3. It should be standalone and lightweight. I see no reasons to create a 5 Mb “free addition” to 
100 Kb software package, even if this addition contains 1000 great, but useless (for us) 
classes. 

JGraph author, Gaudenz Alder, position his work as “the most powerful, lightweight, feature-
rich, and thoroughly documented open-source graph component available for Java”. Although 
this characterization looks very ambitious, I have to agree with, at least, most its aspects. 
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JGraph lacks several important features (in my opition), and the documentation is far from 
ideal also, but I was unable to find better library. 

Most good graph visualization packages, such as MonarchGraph or yFiles, are commercial, 
and the common problem of almost all free libraries is the lack of informational resources. 
Programmers often consider the process of writing technical documentation as a very boring 
activity, and, therefore, many good libraries remain obscured. The sites of such projects 
frequently consist of one or two pages with a short description, optional screenshots and only 
one link, proudly entitled “downloads”. Libraries like Graph Visualization Framework or 
Otter remained out of our scope due to these problems. 

The truth becomes known only in comparison. And after consideration of several libraries, it 
is clear, that the documentation of JGraph is not so poor, the number of included features is 
more than just satisfiable and so on. You also have an access to a good quickstart tutorial, 
FAQ, detailed JavaDoc documentation, several ready-to-use examples and a serious Internet 
forum. 

CPV Links: 
CPV homepage: http://stwww.weizmann.ac.il/G-CS/BENARI/cpv/ 

JGraph homepage: www.jgraph.org 

http://stwww.weizmann.ac.il/G-CS/BENARI/cpv/
http://www.jgraph.org
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5. Using CPV in Teaching 
CPV is intended to be an educational tool. Now we’ll discuss situations, where CPV can be 
utilized. As I mentioned before, the original idea was to provide a good tool both for students 
and teachers. To provide a more or less sensible basis for the conclusions it was decided to 
arrange a small experiment on CPV usability. 

5.1. Preliminaries 
Before performing any actions, it is necessary to formulate our aims more precisely: 

1. How a student can use CPV when studying concurrency? Why he/she should use CPV? 

2. How a teacher can use CPV in his/her work? Why he/she should use CPV? 

In other words: a teacher/student can use either traditional pencil and paper or CPV. What 
advantages can CPV usage bring? Any teacher looks for some “visual” methods, which can 
simplify teaching process, can help teacher in explanation of the material. Is CPV a kind of 
such helpful tool, which can make a process of teaching simpler and more effective (for a 
teacher)? 

Students look for a tool, which can help them to understand the material better in a smaller 
amount of time. Is CPV a kind of tool, which provides better, more fundamental 
understanding in a short space of time (in comparison with traditional approaches)? 

What points of teaching/studying CPV actually affects? 

5.2. Methodology 
Firstly I’ve gathered a group of mostly second-year students (about ten persons), not familiar 
with concurrent programming concepts. After that I’ve conducted a tutorial on concurrency. 
Both slides and CPV were used. Then these students were asked to solve several problems. 
The problems were designed to be easily solvable via our tool, but nobody enforced students 
to use CPV instead of pencil and paper. 

5.3. Teaching Experience 
Here I’d like to explicitly mention ways of CPV usage during tutorial session (i.e. CPV as a 
demonstrational tool): 

1. Explaining the concept of state space diagram. Very simple, but good way of utilizing 
CPV. By means of trivial examples, it is possible to demonstrate numerous generated state 
space diagrams, to show different ways of execution for multithreaded programs and list-
like diagrams for single-processed applications. 

2. Explaining potential problems, which can be caused by the existance of various execution 
scenarios. As I mentioned before, generally we should be able to obtain the same results 
regardless of actual execution flow, which means (for most simple educational programs, 
which can be handled by CPV) the uniqueness of the final state. A good example of a 
program with unique final state is shown on the Fig. 2; the Fig. 17 demonstrates a program 
with multiple final states. 
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Fig. 17. A program with multiple final states 

3. Semaphores as mutexes. The concepts of mutual exclusion, critical sections and deadlocks. 
Semaphores in CPV were considered earlier; here I’ll mention that state space diagram 
demonstrate deadlocks in a very clear manner (Fig. 18; both processes are blocked). 

 
Fig. 18. Deadlock example in CPV 

4. Semaphore as a synchronization mechanism. Semaphores can be also used to specify that a 
certain code should be executed only after some other actions. For instance, consider the 
following concurrent array sorting routine: 
GLOBAL S : Semaphore := 1; 

 



 39 

process1: SortFirstHalf(); 

          Signal(S); 

 

process2: SortSecondHalf(); 

          Signal(S); 

 

process3: Wait(S); 

          Wait(S); 

          MergeHalves(); 

Here a semaphore doesn’t allow MergeHalves() execution until both array halves are 
sorted. 

5. Basic concepts of program verification. As it said before, during the verification process 
we usually have to check some properties of the program. There are two kinds of such 
properties: savety properties and liveness properties. Informally speaking, safety property 
means that bad things never happen while liveness property ensures us that good things 
eventually take place. Have a look, for example, at the simple program with semaphores, 
shown on the Fig. 15. For this program we can formulate two safety properties (there is no 
deadlock scenario; at most one process enters the critical section) and one liveness 
property (a process, trying to enter the critical section, must eventually succeed in doing 
so). With CPV we can check fulfilment of such properties by examination of the state 
space diagram. “Bad things never happen” (safety) means the absence of “bad” states. 
Thus, “no deadlock scenario” means the absence of deadlock states (see Fig. 18), and 
mutual exclusion property can be proved if we found no states, where both processes are in 
their critical sections. To prove liveness properties we should analyze all possible 
execution scenarios and check if they all lead to the desired result. A good example 
program for checking liveness properties is Ex. 2, Fig. 2. Here two liveness properties 
should be satisfied: eventually i=3, j=3; eventually the program should terminate. The 
analysis of all execution scenarios shows: every path leads to the unique final state, where 
i=3 and j=3, so our properties are fulfilled. 

Surely, my own opinion about CPV cannot be objective, since I am also a developer of this 
tool. On the other hand, not only my observations make up a basis for making conclusions. I 
also discussed CPV with other teachers and people, whom I consider as experienced users. 

Overall conclusion is simple: CPV usage during the lectures is defensible. Our software will 
not substitute slides, but can serve as a kind of auxiliary tool for demonstrating the concepts 
on the middle level (lectures are to “high-leveled” and far from the reality, while actual 
programming language code is too technical, “low-leveled” for the first consideration of 
concurrency). The experience of applying CPV in practice showed several directions for the 
possible future improvement. The most serious observation concerns transitions visualization. 
When you see a state with, say, three outgoing arrows, it is not so easy to figure out the 
relation between them and corresponding processes. A possible improvement suggests using 
different colors for different processes/transitions. Suppose that the process p1 is marked with 
brown. Then if you want to know what happened after one step in process p1, just study 
brown outgoing arrow. 

Another idea is related more to CPV package than to CPV itself. It was noted that any good 
educational software package includes standard examples, which can be directly utilized by 
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the teacher. Thus, it is reasonable to add ready-made flowcharts for deadlock explanation, 
Dekker’s algorithm, etc. to CPV package. A kind of “quickstart guide” was considered as a 
good addition also. 

5.4. CPV for the Student 
A list below contains all suggested problems during the experiment. 

1. Prove mutual access exclusion property. Find the possibility of deadlock. 
GLOBAL int Turn := 1; 

 

proc1: for(;;)  

       {  

           NON_CRITICAL_SECTION; 

           while(Turn != 1)  

               ;  

           CRITICAL_SECTION; 

           Turn := 2;  

       }  

 

proc2: for(;;) 

       { 

           NON_CRITICAL_SECTION;  

           while(Turn != 2) 

               ; 

           CRITICAL_SECTION; 

           Turn := 1; 

       } 

2. Find a deadlock scenario. 
GLOBAL semaphore S := 1; 

GLOBAL Boolean B := true; 

 

proc1: Wait(S);  

       if(B == true) 

       { 

           B := false; 

           Signal(S); 

       } 
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       Wait(S); 

       B := true; 

       Signal(S); 

 

proc2: { THE SAME } 

3. Prove/disprove the uniqueness of the final state in the program. 
GLOBAL Boolean N := false; 

GLOBAL Boolean B := true; 

 

proc1: while(B)  

           N := not(N);  

 

proc2: while(B) 

           if(N == false) 

               B := false; 

The students had about 1.5 hours to complete these tasks, and then I talked with each of them 
personally about CPV. 

The biggest surprise for me was the fact that many students regarded these tasks as pretty 
hard; maybe I just forgot myself at their age and educational level. Only several students 
showed really deep understanding of the material. They correctly solved proposed problems 
and presented CPV screenshots with solutions. Despite these difficulties with problem 
solving, I’ve received some valuable information from the group. 

Although politeness is a good thing in general, sometimes people are too polite. Most students 
tried to avoid direct CPV criticizing. It was quite typical to receive a response like: “your tool 
is good, but it can be even better if you do X”. One interesting idea was to add “statistics”: the 
student thinks CPV should output some information about the program, such as the number of 
states and final states, the number of deadlocks, etc. 

Among positive replies students note good CPV demonstrative and usability sides: “It makes 
the diagrams easier to understand”, “It made easier to understand what is it all about and how 
program really works”, “I don't know if there are other (possibly better) tools for 
demonstrating problems one might encounter using multiple threads, but CPV worked 
reasonably well”, “It is quite easy to use”. 

Negative responses mostly concern minor problems in user interface, which will be fixed in 
the nearest future. Some students also mentioned a well-known problem: for any “real-world” 
problem state space diagram becomes too large for manual exploration. 
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6. Some Conclusions 
Although it is very simple, CPV has the potential to be a useful tool for teaching an 
introduction to concurrent programming. For now, CPV can be used to demonstrate basic 
concepts of multithreaded programming by means of small examples. It can be utilized also 
by students as an “educative toy” suitable for self-studying matters. 

To the present moment, only 1.0 version was released. Now we have several good ideas for 
the further development and evaluation, which will be eventually realized. Here is a short 
summary: 

1. Wider color usage. Marking different processes and outgoing edges with different colors. 
This change should noticeably increase the “visuality” of our software, since it will be 
much easier to consider various execution scenarios. 

2.  More complete software package. A good tool should include a quickstart guide and 
ready-made examples, suitable both for a student and for a teacher (as “standard” addition 
to the lecture notes). 

3. Various user interface improvements. From the very first implementation (“alpha version”) 
CPV interface noticeably evolved. For instance, we added templates for different 
commands and variable declarations, rewrote arrow creation method, added support for 
multi-segmented arrows. But there are still enough places for improvements. For example, 
there is a contradiction: if state space diagram nodes are small, you can see bigger portion 
of the graph on the screen, but only a part of each state’s textual representation and vice 
versa. One of ideas is to implement single state zooming to enable user easily magnify 
single state without a need to resize them. 

4. Possible integration with Spin. I’ve already mentioned this model checking tool. Now this 
direction of our work is on a very early stage, so it is quite untimely to discuss its aspects, 
but the basic idea is to somehow combine CPV visualization capabilities with Spin model 
checking functions to obtain a much more powerful educational instrument. 
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