

Concurrent Program Verifier —
a tool for teaching concurrent programming

Maxim Mozgovoy

Master’s Thesis

Department of Computer Science

University of Joensuu, 2004

 1

 Abstract
This work firstly summarizes basic ideas, concepts and hardships of so-called concurrent
programming. It also proves that concurrent programming is a very important branch of
modern computer science, and it is worth studying. Then you can find a survey of existing
educational software, intended for using in this area. Moreover, the paper provides a possible
classification of such software packages. Special attention is paid to a new tool — CPV,
which was designed and implemented mostly by the author of this work. This section also
proves the necessity of CPV-like educational software. The next part describes various design
decisions, which determine actual CPV possibilities and applications. After all you can find a
description and evaluation of a small experiment on CPV usability, which results allows us to
consider our software as a handy tool for teaching concurrency, suitable both for teachers and
students.

 2

Table of contents
1. Concurrent Programming Basics.. 3

1.1. Time-sharing Operating Systems... 3

1.2. Real-time Systems... 3

1.3. Modeling and Simulation .. 3

2. The Hardness of Concurrent Programming... 6

2.1. Understanding State Space Diagrams .. 6

2.2. Semaphores... 8

3. Teaching concurrent programming... 14

3.1. Software Robots.. 14

3.2. Concurrency Simulators .. 17

3.3. Model Checking Software ... 20

4. CPV (Concurrent Program Verifier)... 23

4.1. Flowcharts in Concurrent Programming .. 26

4.2. Intermediate Language .. 29

4.3. Visualization Module .. 30

4.4. JGraph .. 35

5. Using CPV in Teaching ... 37

5.1. Preliminaries ... 37

5.2. Methodology... 37

5.3. Teaching Experience ... 37

5.4. CPV for the Student .. 40

6. Some Conclusions.. 42

7. References ... 43

 3

1. Concurrent Programming Basics
To deal with concurrent (also known as multithreaded) programming, we should firstly
consider this concept in more detail.

The instructions of any “ordinary” (non-concurrent) program are executed sequentially;
therefore, non-concurrent programs are often referred as sequential. Unlike them, concurrent
programs allow simultaneous (at least, illusive) execution of two or more instructions. We can
define a concurrent program as a set of sequential programs which are executed in abstract
parallelism [Ben-Ari90]. Each of these sequential programs will be now called process, while
program is a whole set of them.

Note that the parallelism can be abstract: it is not necessary to have several physical
processors for handling concurrency; instead we can share the power of the only one
processor between different logical processes. To simulate concurrent behavior, single CPU
can execute several instructions of the first process, switch to the second one, execute some its
instructions and so on.

Here we can clearly see the difference between concurrent and parallel programming: the
concept of parallel programming aims on achieving higher execution speed by utilizing
several physical processors. Obviously, we will not reach any additional performance by
running multithreaded application on a machine with single processor. Hence the aims of
concurrent programming are different. Consider several examples which can clarify this
question (ideas of examples are taken from [Feldman96]).

1.1. Time-sharing Operating Systems
Probably, any of us is now able to run several programs simultaneously on the one’s PC.
Right now I am typing this text using my favorite word processor; at the same time an audio
player plays music, download manager downloads the latest Windows update from
microsoft.com website, and a messenger allows me to stay online to able to contact my
friends in case of need. I can also enable an antivirus monitor to protect my system from
viruses and a firewall to ensure my Internet connection is safe. Each of these programs
doesn’t require a lot of processor time, so it is possible to utilize such “extra” time in a better
manner than just executing an empty loop.

1.2. Real-time Systems
There are different kinds of computer software, existing to control some real physical
systems. For instance, a computer can receive data from numerous electrical counters of the
factory and maintain a log of their indications; computers can control railroad switches,
automotive fuel systems and medical devices. These domains require the software to
simultaneously gather some data from different places and process it; therefore, such software
should be concurrent.

1.3. Modeling and Simulation
Many real-world simulations become easier to create in terms of concurrent programming,
because our world is very concurrent itself. For instance, if you should simulate the behavior
of an underground railroad, it is natural to consider each train as a separate process,
interacting with other objects. When you are simulating the development of some biological
population, and you need updated information to be on the screen each 5 seconds, it is easier
to write a separate process, which performs all mathematical computations (and nothing

 4

more), and another one — “a visualizer”, which takes current data and builds necessary
graphs on the screen from time to time.

As we can see, the speed of execution can be not the main reason to divide the program into
several different processes. Sometimes we can do it to get more accurate model of reality,
sometimes we find concurrency to be an easy and a natural way for achieving desired
functionality, and sometimes we are simply required to have a kind of multithreading inside
the system.

Now we should consider a more practical question: well, we see the usefulness of concurrent
programming, but how a concurrent program can be built with some popular programming
language? The answer can be quite disappointing for somebody. For now, only a few
languages provide possibilities to design concurrent programs in a standard, portable manner.
And, probably, only two of them are widely known to the society: Ada [TDT97] and Java
[AGH00].

The Ada programming language allows using special syntax for task-declaration sections:
task type MyTask is -- declaration of task type

...

end MyTask;

task body MyTask is -- definition of task body

...

end MyTask;

T1, T2 : MyTask; -- create two processes of type MyTask

Thus, a concurrent program in Ada can be developed in a reasonably simple, natural way, by
utilizing language syntax and semantics directly. Java doesn’t provide any specific language
constructions for the developers of concurrent programs; instead, it offers a special type
Thread, which we can extend to obtain an independent process:

class MyThread extends Thread {

 public void run() {

 // our process

 ...

 }

}

MyThread m1 = new MyThread(); // create two

MyThread m2 = new MyThread(); // threads

This simple example is demonstrative enough: a language, which gives us any possibilities for
concurrent programming, usually provides some special data type for this purpose. The
support of concurrent programming is a part of definition of both these languages — Ada and
Java. An Ada compiler should be able to generate concurrent code on any platform; in case of

 5

Java language the solution is even simpler: concurrency is supported directly by Java Virtual
Machine. So, what about other languages? Probably, using any more or less modern language,
it is possible to utilize an API, provided by underlying operating system. This solution is not
portable, but it works, at least, on compatible operating systems. If OS API approach seems to
be too low-leveled, you can try to find some additional library, providing more high-level
objects and functions. For example, VCL, the standard library of Borland integrated
development environments Delphi and C++ Builder, contains a special class TThread, more
or less similar to Java Thread.

 6

2. The Hardness of Concurrent Programming
As it is pointed in [Ben-Ari98], students often show misunderstandings of the very basic,
cornerstone concepts of computer science, such as “variable”, “parameter” or even “a
computer” (or, from the constructivist point of view, the students have built consistent, but
non-viable models of these concepts). Any kind of imperative programming introduces the
ideas of variable, assignment and execution sequence; the paradigm of structural
programming adds the concepts of procedure/function and user data type. OOP extends the
world of concepts with classes, instances, methods, events and so on. Concurrent
programming also adds its own, unique objects to this world; and, I believe, most of them are
something, which is harder to understand than just a variable or a loop.

2.1. Understanding State Space Diagrams
To understand the basic difference between concurrent and sequential programming, let’s
consider a concept of state space diagram.

Our computers are finite machines, and a program is, basically, a sequence of instructions,
transiting a computer from one state to another. If the execution of the program doesn’t
depend on some “outer” factors, such as random values generator, user input or external
devices behavior, we can uniquely describe each situation in the program (in concurrent
program, generally speaking) by a set of tuples:1

<GV1, ..., GVn> - global variables of the program

<V1,1, ..., V1,n1, LineID_1> - local variables of the 1st process and LineID

<V2,1, ..., V2,n2, LineID_2> - local variables of the 2nd process and LineID

...

<VK,1, ..., VK,nK, LineID_K> - local variables of the Kth process and LineID

LineID is an identifier of the current instruction2 of the process (basically, an instruction
number3). Since a sequential program is just a particular case of a concurrent one, we can use
this notation for such programs also:

<GV1, ..., GVn, LineID>

As long as we don’t have different processes, our set of tuples degenerates into one element.

By using state space diagrams we can describe a behavior of any program (Ex. 1, Fig. 1;
Ex. 2, Fig. 2).

Example 1. Simple sequential program
for i := 1 to 3 do

 f();

1 If our program depends on outer factors, it can be also described in such manner, but these
tuples will include additional parameters.
2 which is supposed to be atomic (the processor cannot switch between processes while
executing it).
3 I will use also instruction itself as LineID, when such reference is unambiguous.

 7

Fig. 1. State space diagram for Example 1 program

State space diagrams of sequential programs are simple: each state has one and only one
outgoing transition. Therefore, the graph of state space diagram is, basically, a list. Now
consider a state space diagram of some concurrent program.

Example 2. Simple concurrent program
process1: for i := 1 to 3 do

 f();

process2: for j := 1 to 3 do

 f();

Fig. 2. State space diagram for Example 2 program

Note: in two last examples f() is assumed to be an atomic instruction, which also doesn’t
modify any variables.

As it can be seen, a state space diagram of a concurrent program has more complex structure.
At any moment of time we cannot be assured which of the processes — process1 or process2
will change the current situation, so we should consider both possibilities.

From the observation of state space diagram complexity in case of concurrent program, we
can make several conclusions:

1. There are several ways to execute one program; the behavior of the program may vary
from one execution to another.

2. Different executions of the program can lead to different results.

 8

3. Concurrent programs are hard to debug, since it is impossible to reconstruct the state of the
program, which leads to an error (due to the same reason: we cannot control the way of
execution of the program — it is defined by underlying OS).

4. Generally speaking, we should be able to obtain the same results regardless of actual
execution flow. This observation is related to the concept of correctness, which is defined
differently for sequential and multithreaded programs.

5. In general, OS scheduler may provoke incorrect behavior of our application. Therefore, we
need a mechanism to constrain it.

State space diagram can be a powerful method of analyzing the behavior of the program.
Later we will return to the role of state space diagrams in teaching concurrent programming.
For now, just add state space diagrams to the collection of concurrency-related concepts.

At this moment let’s consider in more detail an above stated question: how can we affect an
actual execution of the program, to release it from the total control of the operating system?

2.2. Semaphores
Before proceeding, let’s consider an example, where a freedom in OS actions can lead to an
erroneous behavior.

Example 3. Prime-printing routine (error-prone)
GLOBAL N : Integer := 1;

process1: while true do

 begin

 Left := N;

 N := N + 1000 + 1;

 print_primes(Left, Left + 1000);

 end;

process2...processN: { the same }

Here you can see a skeleton of concurrent prime-finding routine (which prints prime numbers
in the range [1…+∞)). Suppose we have a multi-processor machine (or a cluster) and we want
to utilize existing hardware. The suggested approach is simple. Maintain a global variable N,
which indicates the left border of unexplored range of values. Each process (running on the
separate processor) memorizes the current value of N and performs an assignment

N := N + 1000 + 1;

which means “I am responsible for the analysis of the next 1000 numbers”. After that this
process analyzes its range, prints found primes and requests the next interval to be explored.

 9

At the first sight this algorithm seems to be simple and correct: obtain next interval, shift the
border value, process the interval and repeat. But a closer look can reveal a scenario, which
leads to an error:4

process1: Left := N; // N = 1, Left := 1;

process2: Left := N; // N = 1, Left := 1;

process1: N := N + 1000 + 1; // N := 1002

process2: N := N + 1000 + 1; // N := 2003

process1: print_primes(Left, Left + 1000); // print_primes(1, 1001);

process2: print_primes(Left, Left + 1000); // print_primes(1, 1001);

In other words, both processes firstly read the same value of N, and then increase it. As a
result, each of these processes will analyze the same interval [1…1001], and, moreover, the
next interval [1002…2002] will remain unconsidered at all!

The standard way of solving such problems is to use semaphores [Dijkstra68]. As it is defined
in [Ben-Ari90], a semaphore (S) is a non-negative integer variable with only two defined
atomic operations:5

Wait(S): if S > 0 then S := S – 1 else block the process.

Signal(S): if there are any blocked processes on this semaphore, release one of them else
S := S + 1

Consider now a code fragment:
GLOBAL S : Semaphore := 1; // initial value

process1: //...

 Wait(S);

 f1();

 f2();

 Signal(S);

process2: //...

 Wait(S);

 g1();

 g2();

 Signal(S);

4 Note that here I am assuming a so-called Load-Store model, which supposes instructions,
reading and writing global variables as the only atomic.
5 Strictly speaking, any semaphores are beyond the Load-Store model. From the theoretical
point of view, there is a possibility to solve our problems remaining inside this model (by
using so-called Dekker’s algorithm), but from the practical side there is no reason to do it.

 10

When one of the processes executes the statement Wait(S) (there will be no process switching
during the execution of this instruction due to its atomicity), another one cannot enter this
Wait(S)…Signal(S) section. After first Wait(), the value of the semaphore will be set to zero,
so any other process will be blocked during an attempt to execute this operation. An execution
of Signal(S) operation releases one of suspended processes (in our example there are only two
processes at all, so it just releases another process), and then it can continue working. Hence
the number of possible scenarios reduces to two:

Scenario 1.
process1: Wait(S);

process1: f1();

process1: f2();

process1: Signal(S);

process2: Wait(S);

process2: g1();

process2: g2();

process2: Signal(S);

Scenario 2.
process2: Wait(S);

process2: g1();

process2: g2();

process2: Signal(S);

process1: Wait(S);

process1: f1();

process1: f2();

process1: Signal(S);

So, semaphores can be used to group a set of instructions into one atomic block. Such blocks
(between Wait(S) and Signal(S) are often referred as critical sections).

The situation can be also illustrated by a real-world example with real semaphores and
locomotives (Fig. 3).

 11

Fig. 3. Real-world example of semaphore usage (1)

When any locomotive passes through Wait(S) point, the semaphore blocks any other attempts
to do it (Fig. 4). Now a semaphore allows passing only after Signal(S) command.

 12

Fig. 4. Real-world example of semaphore usage (2)

Now we can return to the example of prime printing routine and rewrite it using the
semaphore:

Example 4. Prime-printing routine
GLOBAL N : Integer := 1;

 S : Semaphore := 1;

process1: while true do

 begin

 Wait(S);

 Left := N;

 N := N + 1000 + 1;

 Signal(S);

 print_primes(Left, Left + 1000);

 end;

 13

process2...processN: { the same }

Note that only Wait(S)…Signal(S) section is protected. An OS still can perform task switching
during the execution of print_primes() procedure.

Semaphores can be used not only for critical sections organization; they are intended to be a
tool, suitable for applying in various problems, where a synchronization of different
processes’ actions is needed.

As usual, any kind of additional possibilities cause additional responsibility. Once decided to
affect the execution of the program, we should be ready for the new obstacles. Semaphores
allow processes suspend an execution of other processes, and this possibility is intrinsically
error-prone.

One of the common troubles is so-called deadlock, a situation, when some process A blocks
process B, and at the meanwhile, the process B locks A. The program will obviously reside in
this state forever, since no way out can be found. The typical example of the deadlock is the
following sequence of database operations:

Example 5. Deadlock scenario
GLOBAL S1: Semaphore := 1;

GLOBAL S2: Semaphore := 1;

...

 // process1 wants to write Table1

process1: Wait(S1); // lock Table1

 // process2 wants to write Table2

process2: Wait(S2); // lock Table2

 // process1 wants to write Table2

process1: Wait(S2); // trying to lock Table2; suspended on the semaphore S2

 // process2 wants to write Table1

process2: Wait(S1); // trying to lock Table1; suspended on the semaphore S1

// process1 waits until process2 unlocks Table2

// process2 waits until process1 unlocks Table1

The conclusion is simple: we should pay additional attention (up to formal verification) when
working with semaphores.

 14

3. Teaching concurrent programming
Previous passages described the basics of concurrent programming (very shortly, since this
work deals with concurrent programming, but isn’t dedicated to it). Now we can see that such
kind of programming is a very specific branch of computer science with its own concepts,
idioms, methods and even standard problems (such as “Readers and writers” or “Dining
philosophers”, [Whiddet87]). Undoubtedly, these specific points require quite specific
approach to the teaching process and specific educational tools. We will concentrate on the
above described concepts (although, they are just a top of an iceberg):

1. ways of program execution, state space diagrams

2. the concept of correctness

3. semaphores and semaphore-related problems

There are many textbooks on concurrent programming available — both theoretical and
practical-oriented ([MK99], [Snow92], [Hansen02], [Lea99]). The detailed discussion of
approaches for the teaching is beyond of the scope of this work; instead we will consider
software tools, which can be used by a teacher.

3.1. Software Robots
The first program of this sort I am familiar with is CRobots, written in a quite distant
nowadays year 1985. The basic idea of this program is to provide a nice competition for the
programmers: you are supposed to program a behavior of a “software robot” by using some
special API. Basically a robot can examine an environment, turn, move, and fire its weapon.
Then these programmed robots are gathered in a “playground” and the battle begins. The
survivor is a winner of the competition.

During the ensuing years such CRobots-like programs were noticeably developed. Among
“bells and whistles” like nice SVGA graphics or network play support we obtained also the
possibility of using object-oriented approach to program robots, special environments for
designing robots and a support of some other programming languages, such as TCL or Java
(Fig. 5, Fig. 6).

 15

Fig. 5. IBM’s Robocode IDE

 16

Fig. 6. IBM’s Robocode playground

Many modern robot-designing environments are meant not for experienced programmers’
fun, but for providing an exciting starting point for the beginners. You can write just 10-15
lines of more or less simple code, and you obtain a personal robot, which works exactly as
you specified. Surely, it is more interesting than finding a maximum array element or
implementing bubblesort!

I should mention that not all roboworld simulators are aiming at deathmatch play (which is
closer to an AI development). Some of them really intended to teach programming by
providing a kind of simple and visual programming language; maybe it is legal to consider
them as highly upgraded LOGO ([Yoder90]) versions. A book [BSRP97], which describes the
world of Karel J. Robot simulator, explicitly claims the possibility to use this simulator as an
environment for studying concurrency. The book contains several examples of “concurrent
robots”; it shows how to illustrate some basic concepts of concurrent programming, such as
simultaneous execution, so-called “race conditions”, deadlocks, etc. by means of roboworld.
Ex. 6 contains a listing of the simplest concurrent robot program, which works in a Karel J.
Robot world.

Example 6. Concurrent robots
class Racer extends Robot {

 public Racer(int Street, int Avenue, Direction direction, int beepers) {

 super(Street, Avenue, direction, beepers);

 World.setupThread(this);

 }

 public void race() {

 17

 while(!nextToABeeper())

 move();

 pickBeeper();

 turnOff();

 }

 public void run() {

 race();

 }

}

...

public static void main(String [] args) {

 Racer first = new Racer(1, 1, East, 0);

 Racer second = new Racer(2, 1, East, 0);

}
Robots in this example can race each other to some goal. The first racer begins on the 1st
street, 1st avenue; the second one on the 2nd street, 1st avenue. Both robots face east;
somewhere in front of each robot is a beeper. Next, we start them simultaneously to see who
will be the winner.

Links to Software Robots Related Resources:
IBM’s Robocode: http://robocode.alphaworks.ibm.com/home/home.html

CRobots: http://www.nyx.net/~tpoindex/crob.html

TCLRobots: http://www.nyx.net/~tpoindex/tcl.html#TclRobots

Karel J. Robot: http://csis.pace.edu/~bergin/karel.html

3.2. Concurrency Simulators
The tools, more directly related to multithreaded programming, are concurrency simulators.
As noted in [Persky99], it can be difficult to get familiar with concurrent programming by
using real programming languages from the very start. At first, concurrent systems
development often requires knowledge of internal OS API (at the beginning of this work I’ve
mentioned that only a few languages provide possibilities to design concurrent programs in
standard, portable manner); at second, we cannot see details of an actual execution scenario,
cannot perform step-by-step trace of a real multithreaded program.

The popular solution suggests using a “concurrency simulator” — special software, which
allows us to create, to trace and to retrace arbitrary execution scenarios of concurrent
programs.

One of the most (if not the most) popular concurrency simulator at the present time is BACI.
Its webpage says that BACI is used in dozens of schools, colleges and universities all over the
world. Current BACI package includes two compilers of simplified concurrent languages —
C-- and Concurrent Pascal, and an actual simulator. The simulator, basically, executes
compiled program (Ex. 7).

http://robocode.alphaworks.ibm.com/home/home.html
http://www.nyx.net/~tpoindex/crob.html
http://www.nyx.net/~tpoindex/tcl.html#TclRobots
http://csis.pace.edu/~bergin/karel.html

 18

Example 7. BACI at work
// listing of concurrent program

const int m = 5;
int n;

void incr (char id)
{
 int i;

 for (i = 1; i <= m; i = i + 1)
 {
 n = n +1;
 cout << id << " n =" << n << " i =";
 cout << i << " " << id << endi;
 }
}

main()
{
 n = 0;
 cobegin
 {
 incr('A'); incr('B'); incr('C');
 }
 cout << "The sum is " << n << endl;
}

//---

...

// resulting printout

Source file: incremen.cm Wed Oct 22 21:18:02 1997
Executing PCODE ...
C n =1 i =A n =1 C2 i =
1 A
C n =4 i =2 C
B n =A n =5 i = 24 A
 i =1 B
AC n = n =6 i =3 C6 i =3
A
C n =7 i =4 C
B n =9 i=2 BA n =8
 i =4 A
C n =8 i =5 A n =9C
 i =5 A
B n =10 i =3 B
B n =11 i =4 B

 19

B n =12 i =4 B
The sum is 12

After BACI a BACI Debugger was released. It allows user to trace concurrent programs. Next
steps of the development of this simulator led to the creation of GUI for BACI (unfortunately,
works only under *nix systems) and jBACI (Fig. 7).

jBACI is a new concurrency simulator, written in Java. Actually, it is more than just a
simulator — jBACI is a complete IDE, which includes editor, necessary compilers (taken from
BACI package) and visual debugger. It is possible to use graphical primitives in jBACI — this
nice feature enables us to write more demonstrative programs.

Fig. 7. jBACI concurrency simulator

Except BACI variations, I can mention SimAda concurrency simulator, written in 1999 by
Yakov Persky. It was developed using Ada 95 programming language and can execute
programs written in “SimAda Language” — a special Ada subset.

Links to Concurrency Simulators:
BACI: http://www.mines.edu/fs_home/tcamp/baci/

jBACI: http://stwww.weizmann.ac.il/g-cs/benari/jbaci/

SimAda: http://stwww.weizmann.ac.il/g-cs/benari/files/simada.zip

 http://stwww.weizmann.ac.il/g-cs/benari/files/ypthesis.zip

http://www.mines.edu/fs_home/tcamp/baci/
http://stwww.weizmann.ac.il/g-cs/benari/jbaci/
http://stwww.weizmann.ac.il/g-cs/benari/files/simada.zip
http://stwww.weizmann.ac.il/g-cs/benari/files/ypthesis.zip

 20

3.3. Model Checking Software
Probably, the only one way to be more or less assured in validity of your software, known to
every programmer, is thorough testing. People develop various techniques for testing (see, for
example, [Beck99]), write scientific, near-scientific and technical papers, explaining, how to
perform testing in the right way, how to select input data and analyze results. Although, as
Dijkstra noticed, program testing can be used to show the presence of bugs, but never to show
their absence, testing still remains the most popular and widely used nowadays. I think, really
well-performed testing is a quite sophisticated procedure, and alternative approaches are even
trickier. But sometimes we have no choice (see also [Ben-Ari00], [KP99]):

1. The device, intended to run our program has no capabilities for debugging and testing
software (a rocket, a microchip).

2. The software is too complex and the ways and conditions of its usage are unpredictable
(operating systems).

3. The conditions of testing are unrepeatable due to specific hardware. For example, if our
application utilizes two processors of a multiprocessor machine, we cannot control which
processor will be used for executing one or another algorithm of an application. It is
extremely hard to catch a bug in this situation if it is caused by a processor malfunction
([KP99]).

4. The conditions of testing are unrepeatable due to a huge amount of possible ways of
program execution.

The last reason is the most interesting for us now, since it directly concerns to concurrent
programming. If you gave numbers (1, 2, 3) as an input arguments to a sequential program
and obtained 6 as a result, this is probably means that next time you will also obtain 6 for the
same arguments (surely, if your program doesn’t depend on some random values or user
input). For concurrent program such “testing” means nothing: next time an operating system
can select another execution scenario and the result can be completely different. The mirror
example of the same situation is even more offensive: suppose you found an erroneous
behavior of your program. On some single run it produces 5 for the arguments (1, 2, 3). But
all next runs produce 6 — the correct result — and you are unable to find the source of an
error, since only one or several scenarios among hundreds and thousands can cause it.

An alternative approach to usual testing (which is basically a kind of run-and-see-what-will-
happen technique) called formal verification. This term stands for proving or disproving the
correctness of a system with respect to a specification, using mathematical methods. In
practice it often means formulating some properties of your application by means of linear
temporal logic or computational tree logic and using specific verification software which
analyzes your program and tries to make conclusions.

A small efficiency of an ordinary testing in concurrent programming increases the importance
of formal verification methods. No wonder that many such “auto-verifiers” are aiming more
at concurrent and distributed, not at sequential systems.

All these observations entail the following conclusion: since formal verification methods are
so important in the world of concurrent programming, a good course on this subject should
include, at least, their basics.

There are several enterprise-level verification software packages available.

One of the most popular and well-known among them is Spin (and its recent convenient
frontend jSpin) — a tool, which was developed in 80s at Bell Labs, and has been freely

 21

available since 1991 [Holzmann03]. Spin uses a special high level language PROMELA to
specify system properties. Once described your application, you can invoke Spin to perform
checking for the logical consistency of a specification. The tool reports about found
deadlocks, race conditions and other common obstacles of concurrent programs.

The simplest example of PROMELA usage is ordinary assertions:
assert (NumberOfLeaders == 1)

This sentence tells to Spin that the value of NumberOfLeaders variable should be equal to
one at this moment. In case of a violation of this condition, Spin will report an error.

More powerful feature of PROMELA is the support of temporal logic assertions. Temporal
logic works with propositions that change with time. For instance, if prefix <> means
“eventually” and [] — “always”, we can express the assertion “NumberOfLeaders should
eventually become equal to 1 and remain in this state forever” in a following manner:

<>[](NumberOfLeaders == 1)

Similar aims and comparable possibilities can be found in other systems — SMV and TLV.
The main difference between them is a way of describing properties: SMV uses computational
tree logic while TLV utilizes linear temporal logic (like Spin).

Among these serious systems I should mention STeP (stands for Stanford Temporal Prover)
[BBCCKMSU96]. It works with hardware or software descriptions, expressed as transition
systems and temporal logic formulas. STeP uses verifications rules and diagrams, auto-
generated invariants, model checking and decision procedures for software verification.

A different enough approach is used in Uppaal — a very interesting system, designed jointly
in Aalborg (Denmark) an Uppsala (Sweden) universities (Fig. 8, [BL96]).

 22

Fig. 8. Uppaal IDE

Uppaal uses a special guarded command language with data types to describe the program (as
a network of automata) to be analyzed. Then a simulator can examine possible executions of
your system. Uppaal also includes a model checker, which can check invariants and perform
reachability analysis of the program.

The “visuality” of the system (its authors explicitly underline the ease of usage as one of the
main design criteria) makes it suitable for education purposes.

Links to Model Checking Software:
Spin: http://spinroot.com/spin/whatispin.html

jSpin: http://stwww.weizmann.ac.il/g-cs/benari/jspin/

jBACI: http://stwww.weizmann.ac.il/g-cs/benari/jbaci/

SMV: http://www-2.cs.cmu.edu/~modelcheck/smv.html

TLV: http://www.wisdom.weizmann.ac.il/~verify/tlv/index.shtml

STeP: http://www-step.stanford.edu/

Uppaal: http://www.docs.uu.se/docs/rtmv/uppaal/

http://spinroot.com/spin/whatispin.html
http://stwww.weizmann.ac.il/g-cs/benari/jspin/
http://stwww.weizmann.ac.il/g-cs/benari/jbaci/
http://www-2.cs.cmu.edu/~modelcheck/smv.html
http://www.wisdom.weizmann.ac.il/~verify/tlv/index.shtml
http://www-step.stanford.edu/
http://www.docs.uu.se/docs/rtmv/uppaal/

 23

4. CPV (Concurrent Program Verifier)
With high respect to all above described systems, I believe, there is a place under the sun for
one more modest tool for teaching concurrent programming — CPV, which 1.0 version is
written by me under supervision of prof. M. Ben-Ari.

Probably, before deciding to develop any new educational tool, a researcher should first ask
oneself: what kind of software a teacher needs? What kind of software a student needs? Why
existing software solutions are not sufficient?

Even if the different researchers’ answers are very similar, it is better to have two educational
systems than one: the possibility to select is generally a very good thing.

In our case (we are aiming at basic-level teaching) I can underline the following points:

1. A teacher needs a tool, which can be used as an addition to ordinary slides for teaching
basics of concurrent programming.

2. This tool should be as visual as possible, so it can be utilized during lectures.

3. The software should be easy to use; it also should not require specific knowledge or
unusual skills from the teacher.

4. Student’s needs are like a reverse of the medal. We want to develop a system, which could
be used as an addition to the lecture notes (so student can use the tool to gain a better
understanding of material) and as a nice companion during homeworks. Surely, we try to
require as less experience and specific knowledge as possible from students.

I have mentioned about “teaching basics” of concurrent programming. No doubt, different
courses make emphasis on different points of concurrency, so these “basics” may vary.
Educational software tools very seldom show themselves as “pure”: almost always we can see
the direction of the authors’ courses. For instance, I have doubts about studying the world of
Karel J. Robot just to use it for demonstrating concurrency. The authors of Karel J. Robot use
their tool for various purposes, and concurrency teaching is only one of them. Similarly, I
believe, the usage of automata in Uppaal is not accidental: it is very likely that automata
theory plays an important role in the courses of Aalborg and Uppsala universities.

Our approach also falls under influence of our interests. For example, in certain applications it
is very important to be able to control different threads: to create them, to communicate via
messages, to suspend or destroy if necessary. As I told before in “Teaching concurrent
programming” section, we are more interested in rather theoretical, low-leveled concepts:

1. The process of concurrent program execution. Different execution paths.

2. State space diagrams as a method of visualization and verification.

3. Basic concurrency-related concepts: semaphores, mutual exclusion, deadlocks, etc.

The core idea is simple: since state space diagrams is a universal method of visualization and
verification, we can try to develop a tool, which builds a state space diagram for any given
program. Although, details make a program in reality; details can spoil any excellent idea and
details can turn even a weak basis into something impressive. That’s why I’d like to explicitly
substantiate the rationale for our design decisions. I will also provide some technical aspects
(e.g. the architecture of the system) to make this description more complete.

As we are talking about analyzing an execution of the program, it is rationally firstly to define
how we can describe a program.

 24

One way is quite obvious: use some existing programming language or create your own.
Generally speaking, such solution provides the highest expressive power for the user. No
wonder, serious simulators like Spin or TLV use this approach. On the other hand, “textual”
languages are not visual; moreover, to introduce any such language means to enforce a
teacher/student to learn “yet another programming language”. In case of Spin this is not
important, since Spin is intended to be a serious long-term instrument for serious people. If
you really decided to use Spin at the work, there should be no problems to dedicate several
days to PROMELA studying; but our situation is quite different: the need of dealing with
some new programming language can discourage many people.

An example of an alternative approach is shown in Uppaal: a text-based programming
language is not the only way to program! Uppaal’s “automata language” is very specific,
that’s why we cannot use it in our software, but in any case I can point, at least, three
disadvantages of any “graphic language” of such kind:

1. Usually, an expressive power of graphic languages is lower in comparison with ordinary
ones.

2. Graphic programs require more space.

3. The process of drawing is considerably slower than typing; therefore, for an experienced
programmer it is easier to write a program than to draw it (although, for a newcomer, who
is not yet familiar with a syntax, it is not so).

Anyway, for educational software, aiming at small program analysis, such graphic language
can be a good choice. Surely, I am talking not about graphic automata representation, “robot
control language” or something like that; it should be a simple, very well-known concept.

We believe that so-called flowcharts are good candidates for representing our sample
programs. Flowchart is a very common “graphic language”, which uses different blocks,
connected by arrows (Fig. 9). At least, as I remember, I studied flowcharts at school before
any ordinary programming language.

 25

Fig. 9. Flowchart example

After language selection, we can discuss visualization module. A naïve approach assumes the
usage of straightforward architecture:

Flowchart Editor à Visualization Module

But after a closer look this scheme shows serious disadvantages. At first, it is enough
complicated to create a simulator, which directly executes flowcharts. A standard solution in
such situations is to use a kind of “intermediate language”. For example, a C++ compiler can
work according to the following scheme:

C++ à C à Assembler à Object code

It is much easier to convert C++ program to a C analogue than to compile it directly, and C
program can be converted to Assembler statements instead of straight compilation also. Only
at Assembler level you have no choice: next step is machine code. This approach also allows
us to utilize existing Assembler compiler when developing a C translator and existing C
compiler during design of C++ one.

The second disadvantage is a high level of integration of two logically different modules of
the program — Flowchart Editor and Visualization Module. Generally speaking, any modules
should be bound to each other as weak as possible — it makes program logic clearer and
simplifies maintenance.

That’s why I’ve decided to use slightly more complex architecture (and now I think this
decision noticeably simplified the process of development):

Flowchart Editor à Intermediate Language à Visualization Module

Let’s have a closer look on the design principles of these elements.

 26

4.1. Flowcharts in Concurrent Programming
There are not so many modifications we should introduce to ordinary school flowcharts to
adapt them for our needs.

In traditional flowchart a variable declaration section is almost always omitted. You just use
expressions like X := 5 without explicit X definition. On the other hand, probably any model
checking software requires you to specify a domain for every variable. If you clearly
understand the logic of your program, this action will take only a bit of time, while
advantages are more than just noticeable, since a simulator can catch and report out-of-range
errors. In case of state space diagram building the usage of such constrained variables is
crucial. Consider, for example, the following (probably, senseless) fragment:

while true do

 i := i + 1;

Theoretically, the value of i should increase to infinity, but in practice (since our computers
are finite machines) we should stop at some point. The only question is when? After 1000
generated states? 65535? 232? To specify a variable domain mean to tell simulator: “I know
what I am doing” and to decide this question. A simulator should perform state generation
while every variable is inside its range.6

These observations lead us to the conclusion: each variable in CPV should be typified and
constrained; a variable should also have an initial value to exclude any random factors while
building a state space diagram.

Another “variable issue” concerns the fact that in concurrent programming we have global
and local (in a certain process) variables. It should be also taken into account.

Suppose we have a special “declaration area” in any process and a “global declaration area” in
the program. Now we can define variable declaration syntax:

Type Syntax Example
Integer Name : integer(MinValue..MaxValue) := InitValue; a : integer(-5..100) := 5;

Boolean Name : boolean := InitValue; flag : boolean := true;

Semaphore Name : semaphore := InitValue; S : semaphore := 3;

As it can be seen, in CPV you should supply an exact range for every integer variable. In most
programming environments variable type implicitly specifies its range: for instance, char
almost always means [0..255], while unsigned int stands for [0..232-1]. Such syntax in CPV is
forbidden: we require an explicit specification of the inverval, so that we can ensure that only
a very few values are possible for each variable, and thus the state diagram will be small
enough to be displayed.

I should mention that “semaphore” in our case is a general semaphore.

Next question is related to flowchart blocks. After several discussions we stopped on the
following types:

Type Description

6 Nevertheless, it makes sense to stop analysis also if the state space diagram becomes really
huge.

 27

Assignment Ordinary assignments like A := B, X := Y + 1, etc.

Semaphore op. Wait() and Signal() operations.

Branching Conditionals: A < B, Z >= 5 and so on.

End End-of-process indicator.

There is also a possibility to mark any existing block as starting.

It is not enough to define block types. Then we should agree what to put inside these blocks.
In our case it is a set of Pascal-styled statements:

Statements for Assignment Blocks

Syntax Examples Comment
Lvalue := Rvalue; a := b;

flag := true;

x := 15;

Simplest assignment: works both
for integer and Boolean variables.
Lvalue is a variable, Rvalue is a
variable or constant of the same
type (integer or Boolean).

Lvalue := not Rvalue; flag := not flag;

end := not false;

Assignment with NOT operation.
Works with Boolean values only.
Lvalue is a Boolean variable,
Rvalue is a Boolean variable or
constant.

Lvalue := Rvalue1 + Rvalue2; addr := base + offset;

i := i + 1;

Assignment with “+” operation.
Works with integer values only.
Lvalue is an integer variable,
Rvalue1 and Rvalue2 are integer
variables or constants.

Lvalue := Rvalue1 - Rvalue2; num := num – 1;

weight := full – cargo;

Assignment with “-” operation.
Works with integer values only.
Lvalue is an integer variable,
Rvalue1 and Rvalue2 are integer
variables or constants.

Lvalue := Rvalue1 and Rvalue2; result := op1 and op2; Assignment with AND operation.
Works with Boolean values only.
Lvalue is an integer variable,
Rvalue1 and Rvalue2 are
Boolean variables or constants.

Lvalue := Rvalue1 or Rvalue2; Flag := flag or mask; Assignment with OR operation.
Works with Boolean values only.
Lvalue is an integer variable,
Rvalue1 and Rvalue2 are
Boolean variables or constants.

 28

Statements for Semaphore Blocks

Syntax Examples Comment
wait(SemaphoreName); wait(S); Standard semaphore operation Wait().

signal(SemaphoreName); signal(S); Standard semaphore operation Signal().

Statements for Branching Blocks

Syntax Examples Comment
value1 op value2,

where op is =, <>, <,
<=, > or >=

a = 5

height <> width

flag <= true

Condition test: value1 and value2 are variables or
values of the same type (integer or Boolean).
Boolean values can be used only for equality and
inequality test.

Our flowchart editor realizes these principles (Fig. 10). Note that different processes are
shown on different flowcharts.

Fig. 10. Flowchart Editor

 29

4.2. Intermediate Language
After you command to begin state space diagram building, CPV firstly performs a flowcharts-
to-intermediate language translation. Intermediate language has the same expressive power as
flowcharts, but it is much easier to execute. Consider various IL elements:

IL Element Corresponding Flowchart
Element

Description

__commonvariables — Beginning of the common
variables declaration section.

__endofcommonvariables — End of the common variables
declaration section.

__process ProcName — Beginning of the process
ProcName and its local variables
declaration section.

__code — End of the local variables
declaration section, beginning of
the actual code.

__endproc — End of the process.

bool x Value x : boolean := Value; Boolean variable declaration.

int x Min Max Value x : integer(Min..Max) := Value; Integer variable declaration.

sem x Value x : semaphore := Value; Semaphore variable declaration.

asgn x y goto N x := y; Simple assignment.

asgn x not y goto N x := not y; Boolean NOT-assignment.

asgn x y op z goto N x := y op z; Assignment with operation op.

wait s goto N wait(s); Semaphore Wait() operation.

signal s goto N signal(s); Semaphore Signal() operation.

if x ifop y goto N else M x ifop y IF construction with ifop
relation.

Note that each imperative instruction includes an obligatory goto clause, which states a line
number of the next statement to be executed (in flowcharts we use arrows for the same
purpose).

Each imperative intermediate language statement can also have an optional section
“//description” (e.g. “asgn x y goto 5//x := y;”). State space diagram builder uses the first part
of the statement (before “//”) to analyze program behavior, and the second part (after “//”) to
print a current process line in state space diagram nodes.

Consider an example of intermediate language representation (Fig. 11, Ex. 8).

 30

Fig. 11. Flowchart of a trivial concurrent program

Example 8. Intermediate language representation of a program from Fig. 11
__commonvariables

int S 0 100 0

__endofcommonvariables

__process p1

__code

asgn S S + 5 goto 1//S := S + 5;

__endproc

__process p2

__code

asgn S S + 10 goto 1//S := S + 10;

__endproc

4.3. Visualization Module
This module is intended for actual state space diagram building. You have two choices: either
to press Initialize button to expand only starting state and then perform manual step-by-step
expansion, or to press Expand All to build entire diagram at once. It is also possible firstly to
expand several states by hand and then continue in automatic mode.

The visualization algorithm works in the following way. Firstly it generates starting state. It is
quite simple: we know initial values of the variables, and the first line of each process
becomes current in it.

To expand any existing state (i.e. to find all derived states), an algorithm should simulate one
step of program execution, and it is possible, since the current state provides any necessary
information about the situation at the moment. An OS scheduler can execute a statement from
any process (CPV statements are considered as atomic), so we should consider all
possibilities. In pseudo-code it looks like this:

for every process p in the program

 State s1 := CloneCurrentState();

 s1.MakeOneStepInProcess(p);

 31

 s1.Draw();

end

During simulation the only tricky moment arises when dealing with semaphores: from a
record like <S=0, wait(S)> it is impossible to conclude is the process already blocked on the
semaphore S, or it is just about to execute wait(S) statement. That’s why we need to have an
additional flag for any process (blocked / not blocked) and an additional syntax for
representing this flag on state space diagram nodes. In CPV this difficulty is solved by means
of using color: blocked processes are marked with red7. If two nodes contain identical
information about variables values, but some process is marked with different colors, they are
treated as different also. Another semaphore point concerns logic of statement execution. For
any non-semaphore operation CPV executes something like

PerformOperation();

GotoNextFlowchartBlock();

In case of semaphore operations the logic is different:
PerformOperation();

if(ProcessIsNotBlocked())

 GotoNextFlowchartBlock();

Drawing a state is not so trivial also. For a start, we should remember all states, which are
already on the screen in a separate set. If the state you are about to draw is already drawn, it is
enough to make a transition from the parent state to it; otherwise we should firstly paint the
new state. Transitions in CPV are different. Mostly they are straight, but if there is a transition
from state A to state B and conversely, CPV changes them to curved arrows, see Fig. 12 (this
concerns both visualizer and flowchart editor)

Fig. 12. Curved arrows in CPV

To perform automatic state expansion CPV executes the following code:
put all onscreen states into MySet set

while MySet is not empty

 s := MySet.TakeOutAnyElement();

 Draw s on the screen, if necessary

 if s is not analyzed yet

 generate all states, derived from s, then put them into MySet set

 mark s as analyzed

7 CPV also uses blue font to mark the final state, but it is just a “color sugar”.

 32

 end

end

This algorithm works until all states are drawn on the screen and have an attribute “analyzed”.

There is one more point, related to the state expansion algorithm. In real systems the
difference between breadth-first and depth-first expansion is important (any good book on
graphs should provide suitable cases for each of these approaches). In our case we expand all
remaining states at once (when user presses Expand All button), so it doesn’t matter which
algorithm to use. An actual solution is hidden inside an implementation of set type. In CPV I
used HashSet class from the standard Java library as a type of MySet; therefore, I have no
right to discuss its behavior.

Additional attention should be paid to graph layout manager: it is not enough to produce
states; we should also place them on the graph surface in some reasonable way. For now a
very simple scheme was applied (Fig. 13).

Fig. 13. CPV graph layouting scheme

Graph nodes are moveable, so it is possible to rearrange them manually. Examples of
generated state space diagrams are shown on Fig. 14 and Fig. 15.

 33

Fig. 14. State space diagram of a trivial concurrent program

 34

Fig. 15. State space diagram of a concurrent program with semaphores

 35

4.4. JGraph
Since two CPV modules — the flowchart editor and the visualizer — implement, basically, a
bunch of graph-drawing functions, it is reasonable to have some generic framework. For this
purpose CPV uses an open source JGraph library. JGraph is quite big (dozens of classes) and
complicated extensible Swing component for graphs visualization. JGraph itself provides
only quite basic possibilities for graph handling: you can create simple labeled rectangular
nodes and connect them using straight arrows. On the other hand, it is possible to provide
custom node/vertex views, mouse handlers, etc., so the flexibility of JGraph is very high; for
now it satisfies all our requirements. CPV seriously extends JGraph classes (Fig. 16).

Fig. 16. CPV JGraph extension

Although JGraph is really powerful and extensible, I should say it is not so easily extensible
and easy to use in general. To my mind, JGraph architecture is very complicated and not
always rational. In many occasions JGraph requires you to spend a lot of time to make rather
simple things; on the other hand, it can be a very good training for your nerves.

It stands to reason that JGraph is not just the first graph visualization library I found inside
the Web. It is worth to mention other possible alternatives.

The first one — to write our own library — we tried to avoid by all means. The concept of
graph is very common in mathematics and computer science, so it is hard to believe that
nobody created an acceptable solution before us.

There were several criteria for choosing the library among existing ones:

1. It should be written in Java, since we use Java.

2. It should be free (for the obvious reason) and open source, if possible.

3. It should be standalone and lightweight. I see no reasons to create a 5 Mb “free addition” to
100 Kb software package, even if this addition contains 1000 great, but useless (for us)
classes.

JGraph author, Gaudenz Alder, position his work as “the most powerful, lightweight, feature-
rich, and thoroughly documented open-source graph component available for Java”. Although
this characterization looks very ambitious, I have to agree with, at least, most its aspects.

 36

JGraph lacks several important features (in my opition), and the documentation is far from
ideal also, but I was unable to find better library.

Most good graph visualization packages, such as MonarchGraph or yFiles, are commercial,
and the common problem of almost all free libraries is the lack of informational resources.
Programmers often consider the process of writing technical documentation as a very boring
activity, and, therefore, many good libraries remain obscured. The sites of such projects
frequently consist of one or two pages with a short description, optional screenshots and only
one link, proudly entitled “downloads”. Libraries like Graph Visualization Framework or
Otter remained out of our scope due to these problems.

The truth becomes known only in comparison. And after consideration of several libraries, it
is clear, that the documentation of JGraph is not so poor, the number of included features is
more than just satisfiable and so on. You also have an access to a good quickstart tutorial,
FAQ, detailed JavaDoc documentation, several ready-to-use examples and a serious Internet
forum.

CPV Links:
CPV homepage: http://stwww.weizmann.ac.il/G-CS/BENARI/cpv/

JGraph homepage: www.jgraph.org

http://stwww.weizmann.ac.il/G-CS/BENARI/cpv/
http://www.jgraph.org

 37

5. Using CPV in Teaching
CPV is intended to be an educational tool. Now we’ll discuss situations, where CPV can be
utilized. As I mentioned before, the original idea was to provide a good tool both for students
and teachers. To provide a more or less sensible basis for the conclusions it was decided to
arrange a small experiment on CPV usability.

5.1. Preliminaries
Before performing any actions, it is necessary to formulate our aims more precisely:

1. How a student can use CPV when studying concurrency? Why he/she should use CPV?

2. How a teacher can use CPV in his/her work? Why he/she should use CPV?

In other words: a teacher/student can use either traditional pencil and paper or CPV. What
advantages can CPV usage bring? Any teacher looks for some “visual” methods, which can
simplify teaching process, can help teacher in explanation of the material. Is CPV a kind of
such helpful tool, which can make a process of teaching simpler and more effective (for a
teacher)?

Students look for a tool, which can help them to understand the material better in a smaller
amount of time. Is CPV a kind of tool, which provides better, more fundamental
understanding in a short space of time (in comparison with traditional approaches)?

What points of teaching/studying CPV actually affects?

5.2. Methodology
Firstly I’ve gathered a group of mostly second-year students (about ten persons), not familiar
with concurrent programming concepts. After that I’ve conducted a tutorial on concurrency.
Both slides and CPV were used. Then these students were asked to solve several problems.
The problems were designed to be easily solvable via our tool, but nobody enforced students
to use CPV instead of pencil and paper.

5.3. Teaching Experience
Here I’d like to explicitly mention ways of CPV usage during tutorial session (i.e. CPV as a
demonstrational tool):

1. Explaining the concept of state space diagram. Very simple, but good way of utilizing
CPV. By means of trivial examples, it is possible to demonstrate numerous generated state
space diagrams, to show different ways of execution for multithreaded programs and list-
like diagrams for single-processed applications.

2. Explaining potential problems, which can be caused by the existance of various execution
scenarios. As I mentioned before, generally we should be able to obtain the same results
regardless of actual execution flow, which means (for most simple educational programs,
which can be handled by CPV) the uniqueness of the final state. A good example of a
program with unique final state is shown on the Fig. 2; the Fig. 17 demonstrates a program
with multiple final states.

 38

Fig. 17. A program with multiple final states

3. Semaphores as mutexes. The concepts of mutual exclusion, critical sections and deadlocks.
Semaphores in CPV were considered earlier; here I’ll mention that state space diagram
demonstrate deadlocks in a very clear manner (Fig. 18; both processes are blocked).

Fig. 18. Deadlock example in CPV

4. Semaphore as a synchronization mechanism. Semaphores can be also used to specify that a
certain code should be executed only after some other actions. For instance, consider the
following concurrent array sorting routine:
GLOBAL S : Semaphore := 1;

 39

process1: SortFirstHalf();

 Signal(S);

process2: SortSecondHalf();

 Signal(S);

process3: Wait(S);

 Wait(S);

 MergeHalves();

Here a semaphore doesn’t allow MergeHalves() execution until both array halves are
sorted.

5. Basic concepts of program verification. As it said before, during the verification process
we usually have to check some properties of the program. There are two kinds of such
properties: savety properties and liveness properties. Informally speaking, safety property
means that bad things never happen while liveness property ensures us that good things
eventually take place. Have a look, for example, at the simple program with semaphores,
shown on the Fig. 15. For this program we can formulate two safety properties (there is no
deadlock scenario; at most one process enters the critical section) and one liveness
property (a process, trying to enter the critical section, must eventually succeed in doing
so). With CPV we can check fulfilment of such properties by examination of the state
space diagram. “Bad things never happen” (safety) means the absence of “bad” states.
Thus, “no deadlock scenario” means the absence of deadlock states (see Fig. 18), and
mutual exclusion property can be proved if we found no states, where both processes are in
their critical sections. To prove liveness properties we should analyze all possible
execution scenarios and check if they all lead to the desired result. A good example
program for checking liveness properties is Ex. 2, Fig. 2. Here two liveness properties
should be satisfied: eventually i=3, j=3; eventually the program should terminate. The
analysis of all execution scenarios shows: every path leads to the unique final state, where
i=3 and j=3, so our properties are fulfilled.

Surely, my own opinion about CPV cannot be objective, since I am also a developer of this
tool. On the other hand, not only my observations make up a basis for making conclusions. I
also discussed CPV with other teachers and people, whom I consider as experienced users.

Overall conclusion is simple: CPV usage during the lectures is defensible. Our software will
not substitute slides, but can serve as a kind of auxiliary tool for demonstrating the concepts
on the middle level (lectures are to “high-leveled” and far from the reality, while actual
programming language code is too technical, “low-leveled” for the first consideration of
concurrency). The experience of applying CPV in practice showed several directions for the
possible future improvement. The most serious observation concerns transitions visualization.
When you see a state with, say, three outgoing arrows, it is not so easy to figure out the
relation between them and corresponding processes. A possible improvement suggests using
different colors for different processes/transitions. Suppose that the process p1 is marked with
brown. Then if you want to know what happened after one step in process p1, just study
brown outgoing arrow.

Another idea is related more to CPV package than to CPV itself. It was noted that any good
educational software package includes standard examples, which can be directly utilized by

 40

the teacher. Thus, it is reasonable to add ready-made flowcharts for deadlock explanation,
Dekker’s algorithm, etc. to CPV package. A kind of “quickstart guide” was considered as a
good addition also.

5.4. CPV for the Student
A list below contains all suggested problems during the experiment.

1. Prove mutual access exclusion property. Find the possibility of deadlock.
GLOBAL int Turn := 1;

proc1: for(;;)

 {

 NON_CRITICAL_SECTION;

 while(Turn != 1)

 ;

 CRITICAL_SECTION;

 Turn := 2;

 }

proc2: for(;;)

 {

 NON_CRITICAL_SECTION;

 while(Turn != 2)

 ;

 CRITICAL_SECTION;

 Turn := 1;

 }

2. Find a deadlock scenario.
GLOBAL semaphore S := 1;

GLOBAL Boolean B := true;

proc1: Wait(S);

 if(B == true)

 {

 B := false;

 Signal(S);

 }

 41

 Wait(S);

 B := true;

 Signal(S);

proc2: { THE SAME }

3. Prove/disprove the uniqueness of the final state in the program.
GLOBAL Boolean N := false;

GLOBAL Boolean B := true;

proc1: while(B)

 N := not(N);

proc2: while(B)

 if(N == false)

 B := false;

The students had about 1.5 hours to complete these tasks, and then I talked with each of them
personally about CPV.

The biggest surprise for me was the fact that many students regarded these tasks as pretty
hard; maybe I just forgot myself at their age and educational level. Only several students
showed really deep understanding of the material. They correctly solved proposed problems
and presented CPV screenshots with solutions. Despite these difficulties with problem
solving, I’ve received some valuable information from the group.

Although politeness is a good thing in general, sometimes people are too polite. Most students
tried to avoid direct CPV criticizing. It was quite typical to receive a response like: “your tool
is good, but it can be even better if you do X”. One interesting idea was to add “statistics”: the
student thinks CPV should output some information about the program, such as the number of
states and final states, the number of deadlocks, etc.

Among positive replies students note good CPV demonstrative and usability sides: “It makes
the diagrams easier to understand”, “It made easier to understand what is it all about and how
program really works”, “I don't know if there are other (possibly better) tools for
demonstrating problems one might encounter using multiple threads, but CPV worked
reasonably well”, “It is quite easy to use”.

Negative responses mostly concern minor problems in user interface, which will be fixed in
the nearest future. Some students also mentioned a well-known problem: for any “real-world”
problem state space diagram becomes too large for manual exploration.

 42

6. Some Conclusions
Although it is very simple, CPV has the potential to be a useful tool for teaching an
introduction to concurrent programming. For now, CPV can be used to demonstrate basic
concepts of multithreaded programming by means of small examples. It can be utilized also
by students as an “educative toy” suitable for self-studying matters.

To the present moment, only 1.0 version was released. Now we have several good ideas for
the further development and evaluation, which will be eventually realized. Here is a short
summary:

1. Wider color usage. Marking different processes and outgoing edges with different colors.
This change should noticeably increase the “visuality” of our software, since it will be
much easier to consider various execution scenarios.

2. More complete software package. A good tool should include a quickstart guide and
ready-made examples, suitable both for a student and for a teacher (as “standard” addition
to the lecture notes).

3. Various user interface improvements. From the very first implementation (“alpha version”)
CPV interface noticeably evolved. For instance, we added templates for different
commands and variable declarations, rewrote arrow creation method, added support for
multi-segmented arrows. But there are still enough places for improvements. For example,
there is a contradiction: if state space diagram nodes are small, you can see bigger portion
of the graph on the screen, but only a part of each state’s textual representation and vice
versa. One of ideas is to implement single state zooming to enable user easily magnify
single state without a need to resize them.

4. Possible integration with Spin. I’ve already mentioned this model checking tool. Now this
direction of our work is on a very early stage, so it is quite untimely to discuss its aspects,
but the basic idea is to somehow combine CPV visualization capabilities with Spin model
checking functions to obtain a much more powerful educational instrument.

 43

7. References
[AGH00] K. Arnold, J. Gosling, D. Holmes: The Java Programming Language,

Third Edition. Addison-Wesley, 2000

[BBCCKMSU96] N. Bjorner, A. Browne, E. Chang, M. Colon, A. Kapur, Z. Manna,
H. Sipma, T. Uribe: STeP: Deductive-Algorithmic Verification of
Reactive and Real-time Systems. International Conference on Computer
Aided Verification, pp.415-418. vol. 1102 of Lecture Notes in Computer
Science, Springer-Verlag, 1996

[Ben-Ari00] M. Ben-Ari: The Bug That Destroyed a Rocket, 2000

[Ben-Ari90] M. Ben-Ari: Principles of Concurrent and Distributed Programming.
Prentice Hall, Cambridge, 1990

[Ben-Ari98] M. Ben-Ari: Constructivism in Computer Science Education. The
Proceedings of the 29th ACM SIGCSE Technical Symposium on
Computer Science Education, Atlanta Georgia February 25th – March
1st 1998, pages 257 – 261

[BL96] J. Bengtsson, F. Larsson: Uppaal — a Tool for Automatic Verification
of Real-Time Systems. DoCS Technical Report Nr 96/67, Uppsala
University, 1996

[BSRP97] J. Bergin, M. Stehlik, J. Roberts, R. Pattis: Karel++. A Gentle
Introduction to the Art of Object-Oriented Programming. John Wiley &
Sons, 1997

[Dijkstra68] E. Dijkstra: Cooperating sequential processes. Programming Languages
Academic Press, New York, 1968

[Feldman96] M. Feldman: Software Construction and Data Structures with Ada 95.
Addison-Wesley, 1996

[Hansen02] P. Brinch Hansen: The Origins of Concurrent Programming: From
Semaphores to Remote Procedure Calls. Springer Verlag, 2002

[Holzmann03] G. Holzmann: The Spin Model Checker. Primer and Reference Manual.
Addison-Wesley, 2003

[KP99] B. Kernighan, R. Pike: The Practice of Programming. Addison-Wesley,
1999

[Lea99] D. Lea: Concurrent Programming in Java: Design Principles and Pattern
(2nd Edition). Addison-Wesley, 1999

[MK99] J. Magee, J. Kramer: Concurrency: State Models & Java Programs. John
Wiley & Sons, 1999

[Persky99] Y. Persky: SimAda Concurrency Simulator. MSc thesis at Tel-Aviv
University, 1999

[Snow92] C. Snow: Concurrent Programming. Cambridge University Press, 1992

[TDT97] S. Taft, R. Duff, T. Taft: Ada 95 Reference Manual: Language and
Standard Libraries: International Standard Iso/Iec 8652:1995(E)
(Lecture Notes in Computer Science, 1246). Springer Verlag, 1997

 44

[Whiddet87] D. Whiddet: Concurrent Programming for Software Engineers. Ellis
Horwood Ltd, Chichester, England, 1987

[Yoder90] S. Yoder: Introduction to Programming in Logo Using Logo Plus. Intl
Soc for Tech in Educ, 1990

