
UNIVERSITY OF JOENSUU

COMPUTER SCIENCE AND STATISTICS

DISSERTATIONS 18

MAXIM MOZGOVOY

ENHANCING COMPUTER-AIDED PLAGIARISM
DETECTION

ACADEMIC DISSERTATION

To be presented, with the permission of the Faculty of Science of
the University of Joensuu, for public criticism in Louhela
Audito
November 14, 2007, at 13 o'clock.

UNIVERSITY OF JOENSUU
2007

ii

Supervisors: Professor Erkki Sutinen

Department of Computer Science and Statistics

University of Joensuu

Joensuu, Finland

Doctor Kimmo Fredriksson
Department of Computer Science

University of Kuopio
Kuopio, Finland

Reviewers: Professor Lauri Malmi

Laboratory of Software Techniques

Helsinki University of Technology

Helsinki, Finland

Professor J. Michael Spector
Learning Systems Institute

Florida State University
Tallahassee, Florida, USA

Opponent: Doctor Kinshuk

School of Computing and Information Systems
Athabasca University

Athabasca, Canada

ISBN 978-952-219-049-9 (paperback)
ISSN 1796-8100 (paperback)
ISBN 978-952-219-050-5 (PDF)
ISSN 1796-8119 (PDF)

Computing Reviews (1998) Classification: E.1, H.3.3, H.3.4, J.1, K.3.1

Yliopistopaino
Joensuu 2007

iii

Enhancing Computer-Aided Plagiarism Detection
Maxim Mozgovoy
Department of Computer Science and Statistics
University of Joensuu
P.O.Box 111, FIN-80101 Joensuu FINLAND
mmozgo@cs.joensuu.fi

University of Joensuu, Computer Science and Statistics, Dissertations 18

Joensuu, 2007, 131 pages

Abstract
Plagiarism is a widespread phenomenon that frequently attracts attention of scholars.

Many works are dedicated to plagiarism, including pedagogical, juridical, ethical, and

technological aspects and issues.

Computer science does not deal with forming a right attitude to plagiarism nor with

developing plagiarism prevention instruments such as honor codes. Computers can be

create a

fair atmosphere at a classroom. Furthermore, studies indicate that the students are more

plagiarism-aware when they know about the usage of plagiarism-checking tools.

This thesis is dedicated to the problem of computer-aided plagiarism detection, i.e. to

the development and the use of software instruments that help to reveal plagiarism. The

creation of such tools raises specific algorithmic problems that deserve attention. The

results covered in this work, include:

Building the taxonomy of existing plagiarism detection methods according to their

speed and reliability characteristics.

Studying and improving string matching algorithms used in plagiarism detection.

I applying natural language

parsers for plagiarism detection in order to enhance the quality of the detectors.

iv

Optimizing the speed performance of string matching based plagiarism detection

algorithms by applying a combined fast and reliable scoring scheme. Developing an

efficient parameterized matching procedure.

Developing a fast string matching based plagiarism detection algorithm.

Keywords: plagiarism detection, text similarity detection, string matching, natural

language processing, tokenization, parameterized matching.

v

Acknowledgements
I am very grateful to my supervisors Prof. Erkki Sutinen and Dr. Kimmo Fredriksson

for their constant support and inspiration. Numerous creative ideas by Prof. Sutinen and

the critical mind of Dr. Fredriksson made this work much better than it could be

according to my initial plans.

I wish to thank also Prof. Lauri Malmi and Prof. J. Michael Spector, the reviewers of

this thesis, for their valuable comments and suggestions.

The Department of Computer Science and Statistics organized excellent summer

schools, which were very important for my PhD studies. The main contributions to

th

Research Dr. Jarkko Suhonen. The Department also provided necessary financial

support that made the participation in the conferences and the summer schools possible

for me. As a former IMPIT student, I am extremely grateful to all people involved into

Sincere thanks to all my co-authors. No research is possible without collaboration, and

some joint work was really pleasant for me. I hope this fruitful cooperation will be

continued in the future.

Maxim Mozgovoy, October 2007

vi

vii

List of Original Publications
[MFWJS05] M. Mozgovoy, K. Fredriksson, D. White, M. Joy, and E. Sutinen.

Fast Plagiarism Detection System. Lecture Notes in Computer

Science, vol. 3772, 2005, p. 267-270.

[Mozgovoy06] M. Mozgovoy. Desktop Tools for Offline Plagiarism Detection in

Computer Programs. Informatics in Education, vol. 5(1), 2006,

p. 97-112.

[FM06] K. Fredriksson, M. Mozgovoy. Efficient Parameterized String

Matching. Information Processing Letters, vol. 100(3), 2006, p. 91-

96.

[MTK06] M. Mozgovoy, V. Tusov, V. Klyuev. The Use of Machine Semantic

Analysis in Plagiarism Detection. Proc. of the 9th International

Conference on Humans and Computers, Japan, 2006, p. 72-77.

[MKK07] M. Mozgovoy, S. Karakovskiy, V. Klyuev. Fast and Reliable

Plagiarism Detection System. Proc. of , 2007.

[MKS07] M. Mozgovoy, T. Kakkonen, E. Sutinen. Using Natural Language

Parsers in Plagiarism Detection. ,

2007.

viii

ix

Contents

1. Introduction .. 1

1.1. Preventing Plagiarism: Technical, Cultural, and Legal Issues 1
1.1.1. Making Plagiarizing Hard to Perform .. 2
1.1.2. Promoting Fair Play Principles .. 2
1.1.3. Developing Honor Codes and Dishonesty Policies 3

1.2. Detecting Plagiarism .. 4
1.2.1. Investigating Plagiarism Cases Manually...................................... 4
1.2.2. Using Computer Tools to Detect Plagiarism 5

2. Research Contribution ... 9

2.1. Research Questions ... 9

2.2. Contribution of Individual Papers ... 10

3. Definitions of Plagiarism .. 13

4. Hermetic Plagiarism Detection Systems 17

4.1. Fingerprint-Based Systems .. 18

4.2. Content Comparison Techniques... 19
4.2.1. String Matching Based Content Comparison 19
4.2.2. Parse Trees Comparison .. 21

5. Input Preprocessing Algorithms... 23

5.1. Hiding Plagiarism.. 23

5.2. Overcoming Hiding Techniques by Preprocessing 24

5.3. Preprocessing Source Code .. 26
5.3.1. Tokenization.. 26
5.3.2. Parameterized Matching ... 27

5.4. Preprocessing Natural Language Texts 28
5.4.1. Using Word Sense Disambiguation Modules and Thesauri 28
5.4.2. Using Parsers ... 32

x

6. Speed and Reliability of Plagiarism Detectors 37

6.1. Performance Attributes of Plagiarism Detectors 37

6.2. Fast Parameterized Matching .. 39
6.2.1. Preliminaries ... 39
6.2.2. Parameterized Bit-Parallel Matching... 40
6.2.3. Parameterized Backward Trie Matching 42
6.2.4. Experimental Results .. 43

6.3. Reducing Asymptotic Complexity... 44
6.3.1. FPDS Algorithms .. 45
6.3.2. FPDS Performance... 46

6.4. Combining Speed and Accuracy .. 50

7. Conclusions ... 55

8. Perspectives .. 57

9. References... 59
Publications

1

1. Introduction
of the English Language defines

the representati [Webster01].

omputer-aided plagiarism

detection is mainly used in educational institutes.

Plagiarism in the universities

and colleges,

program, is a permanent subject of attention of any responsible administration, being

directly related to the overall quality of education. That's why c

It would be incorrect to reduce all plagiarism-related issues to the process of catching

and punishing a person who showed academic dishonesty. Plagiarism studies deal also

with plagiarism prevention a corpus of actions aimed at reducing both the

possibilities to plagiarize, and the will to plagiarize (see Fig. 1.1).

Fig. 1.1. Preventing and detecting plagiarism

1.1.Preventing Plagiarism: Technical, Cultural, and
Legal Issues

There are three main kinds of plagiarism prevention measures:

2

To make plagiarism technically hard to perform by preparing individual exercises,

concentrating on the classroom work, and by using software tools.

To

.

To publish legal documents such as honor codes and university regulations, stating

strict punishments for plagiarism.

1.1.1.Making Plagiarizing Hard to Perform
The most straightforward suggestion for a teacher is to create a unique assignment

for each student. In this case no solution can be reutilized. Obviously, while it may work

for small-sized groups, such a method is impractical for larger universities.

Hwang and Gibson [HG82] propose to provide a separate classroom quiz for every

assignment. The resulting grade in this scheme is the sum of the assignment grade and

the quiz grade. The students who have done the tasks on their own are expected to get

higher grades for the quiz; also a large difference between these two grades can be an

indication of plagiarism.

Wiedemeier [Wiedemeier02] suggests giving more freedom to the students in

specifying their tasks, at the same time keeping the same general requirements. For

example, in case of computer literacy courses the students can be asked to prepare MS

Word letters intended for different events (like birthday invitation or meeting

announcement), using fonts, styles and formatting tools specified by the teacher.

Some technical instruments can also help to prevent plagiarism. Vamplew and

Dermoudy [VD05] even propose to enforce students to use a special Anti-Plagiarism

Editor (APE) that keeps track of all potentially unfair actions, such as massive

copy & paste operations.

1.1.2.Promoting Fair Play Principles
It may seem unobvious, but many cases of plagiarism have an unintentional nature,

or are caused by low academic culture and lack of attitude to honesty principles.

3

Teachers note that in many cases plagiarism occurs because students do not know

how to cite properly, or because they want to avoid redundant quotations [Brainard05].

Keeping this fact in mind, university administration can provide courses on basic

scientific writing style. There are several guidelines dedicated to proper writing and

citing [TW04, Turabian96].

The educational and cultural background of the students also can considerably affect

their attitude to plagiarism. The study [AKVMVU04] discusses the attempt to compare

opinions on plagiarism-related issues of Finnish and Russian students, studying in

Lappeenranta University of Technology in Finland. The survey showed that cheating is

much more widespread among Russians, mostly due to the peculiarities of educational

system in Russia that pays little attention to academic honesty. Sometimes students even

do not recognize that they are doing something wrong. Similar cases are reported

in [IHBW03]. Thus, instruction may be needed to form the right attitude to plagiarism

among newcomers.

It should be also emphasized that possible academic dishonesties are not limited to

plagiarism. These actions include practicing unauthorized collaboration, using cribs,

substituting other students on the exams, falsifying results [Bliwise01]. Therefore, it is

important to develop high ethical standards in university environment from other points

of view, too.

1.1.3.Developing Honor Codes and Dishonesty Policies
While some measures aimed at forming the right attitude to plagiarism among

students can be effective, studies show that the strongest factor affecting the level of

academic honesty in the university is a clear dishonesty policy, maintained by the

administration. Correspondingly, the students are much more likely to cheat if they feel

that no legal consequences will follow in cases of discovered dishonesty

incidents [HCMS02]. Moreover, consistent administrative sanctions form negative

attitudes to dishonesty among students and personnel, so the perceived value of fair play

4

increases [CCWS99]. Harris [Harris94] suggests to constantly remind students of the

existence of policies in order to prevent plagiarism.

Having consistent policies, it also makes sense to inform the students that they have a

high probability of being caught on cheating in order to reduce plagiarism. Braumoeller

and Gaines [BG01] claim that the number of plagiarism incidents has reduced after

notifying the students that their work is going to be checked with a software tool.

It should be noted also that many university honor codes expect students to watch for

potential dishonesties, which means reporting the cases of unacceptable actions to

administration [Meizlish05]. However, reporting plagiarism is often considered as

rating, especially among students who cheat [CJ05], so the effectiveness and ethical

justification of this measure can be doubted.

1.2.Detecting Plagiarism
Even in institutions practicing good dishonesty preventing methods, plagiarism still

can occur. Therefore, it is important to be able to detect unfair actions when they

happen. Moreover, as it was already mentioned, the use of plagiarism detection methods

is a good deterrent measure itself.

Many plagiarism types can be now discovered only by thorough human

investigation. Other types are detectable with the help of computer instruments.

1.2.1.Investigating Plagiarism Cases Manually
Let u ughts

To make plagiarism in a certain work evident, it is necessary to find

the origin of separate unquoted sentences and thoughts. Sometimes it can be hard even

for a skillful teacher, and completely impossible for the computer.

A student can copy an old and obscure work that is not easily accessible. A text can

be obtained by translating a work composed in a foreign language. Translation takes

time, but it is still incomparable to the time needed to perform the assignment in a

proper way. A plagiarizer can just hire somebody to complete the assignment.

5

look for strange formatting elements such as unexpected line breaks or text blocks of

unusual font;

examine citations: they can be old a potential indication of copying an old work

with even older citations or inconsistent;

analyze writing style: it should be consistent with previous works by this student;

examine content: it can be created by gluing paragraphs of different style and topic;

there can be inconsistencies in the text.

1.2.2.Using Computer Tools to Detect Plagiarism
The cases of plagiarism, which are hard to reveal, are not very frequent. Usually,

students copy & paste an accessible source, possibly trying to hide plagiarism by

rearranging the text. The use of computer tools has been proved to be a fast and reliable

method of detecting such instances of plagiarism.

A teacher should select the corresponding software solution depending on the type of

course taught. Normally, a plagiarism detection system is specially designed for

program code or natural language processing. The tool can also be aimed either at a

global search for Internet-accessible documents that are similar to the submitted ones, or

at a thorough analysis of a local collection of documents for possible internal

borrowings. These types of detectors are called open systems and hermetic systems

correspondingly.

A teacher, suspecting the possibility of copying the works from the Internet, can use

one of the open systems to discover the original document. Such detectors are special

6

variations of Internet searching engines. They maintain huge databases of books and

journals, and index Internet pages. The user has to upload a collection of documents,

and they will be checked for potential occurrences of plagiarism.

Since dealing with such large amounts of data needs significant computational

resources, only a few large-scale open systems exist. The relevant examples are

Turnitin [Turnitin07] and MyDropBox [Mydropbox07]. On the other hand, a system

can utilize a third-party searching engine for detection, and consolidate results. This is

the method by which EVE2 [Eve07] works. Open systems are usually commercial

services, and the payments are set on the monthly subscription basis.

In practical computer science courses, copying from the Internet is not as common as

utilizing a program of another student. This happens because it is hard to find a

computer program that does exactly what was asked, while most students in the group

usually get similar assignments. In such cases it makes sense to compare individual files

in the submission against each other.

Since comparing individual files of small-sized collections does not require high-

performance computational devices, there are much more hermetic systems available,

and most of them were developed in the universities. Probably, the most popular and

well-known hermetic systems are MOSS [SWA03], JPlag [PMP02], and

YAP3 [Wise96]. Recently, an open-source project Plaggie [ASR06], based on the

similar approach to JPlag, was released.

From the algorithmic point of view, there is a serious difference between open and

hermetic systems. Open systems are similar to Internet searching engines. They have to

deal mostly with data storage problems, parallel and distributed computing, indexing

and performance issues, which are not directly related to file-file comparison

techniques. Arguably, the authors of open systems should have not so much freedom in

selecting a comparison algorithm. Such algorithms should be necessarily fast;

otherwise, the service will be impractical.

7

Being relatives of file-file comparison routines, such as UNIX command,

hermetic systems serve as a playground for researchers to test various similarity

detection techniques. There are plenty of projects, and quite many of them utilize novel

or ad hoc algorithms. Speed and space requirements are not so strict for local collection

analysis, so advanced techniques can be applied. For example, most present projects

implement special methods to fight the attempts to hide plagiarism. A plagiarizer can try

to substitute words with their synonyms (in case of natural language text collections) or

rename variables (in case of computer programs). Modern plagiarism detection systems

can overcome these tricks by using special thesauri and tokenizers (see Section 5.4.1).

The existence of a variety of online course management systems, such as

Moodle [Moodle07] and WebCT [Webct07] raises the question of automatic plagiarism

a feature is not offered. Currently, this functionality is provided by the BOSS course

management system [Boss07] and it seems natural to expect similar capabilities in other

course management or collaborative work environments in the future.

It should be also noted that a plagiarism detection tool can only provide the evidence

of similarity between pairs of documents. It cannot prove the existence of plagiarism.

Therefore, it is important for the human evaluator not to base the final judgment solely

on the similarity scores, generated by a software tool.

8

9

2. Research Contribution
As shown in the Introduction, the problem of plagiarism raises numerous research

questions in different scientific fields, so any single work has to be limited to a certain

subtopic. This thesis is primarily focused on hermetic systems for computer-aided

plagiarism detection.

2.1.Research Questions
Even a smaller subfield of hermetic software tools for plagiarism detection has much

to offer for researchers. There are issues related to speed, reliability, usability,

specialization for the documents of a specific nature, etc. Our studies are limited to the

following questions:

1. Which kinds of plagiarism detection systems exist today? There are numerous

hermetic plagiarism detection systems. However, not all of them implement

completely novel methods and algorithms. Most systems can fall into specific

categories of speed, method type, and expected reliability. These categories have to

be revealed.

2. -off inevitable in plagiarism detection? Most systems

are based on comp Reliable

content comparison takes time, while a fast fingerprint-based approach can be less

time consuming. The problem is to discover, is it possible to design a system that

combines the positive sides of both methods, i.e. which is fast and reliable at the

same time.

3. How can the quality of computer-aided plagiarism detection be improved?

Advanced plagiarism detection systems use auxiliary algorithms to fight against

possible attempts to hide plagiarism. The question is to examine these methods to

find how they can be developed further and modified to be applicable in adjacent

areas.

10

2.2.Contribution of Individual Papers
The paper [Mozgovoy06] analyzes existing plagiarism detection systems, focusing

on hermetic file collection analysis. Different approaches to plagiarism detection are

examined. As a result, the work proposes a classification of hermetic systems according

to algorithms used, execution speed, and expected reliability. The problem of definitions

of plagiarism is also analyzed in this paper.

The paper [MFWJS05] introduces a novel plagiarism detection system, mostly

designed at the University of Joensuu. We tried to combine the reliability of content

comparison methods with speed, achieved by using indexed data structures. As a result,

we have developed a system that is both accurate and fast. These claims are supported

by experimental data. The algorithm was developed by Kimmo Fredriksson and me.

Later I improved it, and implemented the whole system. Mike Joy and Daniel White

kindly supplied us with the tokenization module taken from their detection system

Sherlock, and helped to embed it. Erkki Sutinen was supervising the project, and also

proposed some useful ideas.

Though the system introduced in [MFWJS05] can accurately compare submitted

files, it has inherent limitations in finding actually copied substrings of text. In other

words, the system is better to use for scoring documents, but not for close examination

of pairs of similar files. The paper [MKK07] shows how such a fast filter can be

combined with slower but accurate file-file comparison module. The obtained system

grades all the files using a fast module, and then applies accurate content comparison

algorithm only for pairs of similar files. Therefore, the resulting speed is still fast, while

the quality of detection is noticeably higher. The combined system was primarily

designed by me. Sergey Karakovskiy was working on experimental part: all tables and

graphs are his contributions. Vitaly Klyuev helped with writing; he also supported the

work with valuable statistical calculations.

Any plagiarism detection system that deals with source code files has to be able to

fight against simple techniques of plagiarism hiding, such as variable renaming, adding

or removing comments, and altering text formatting. It can be done, for instance, by

11

utilizing a well-known method called parameterized matching (p-matching). In paper

[FM06] we design a parameterized matching algorithm based on a widely used shift-or

string matching method. The resulting solution has lower computational complexity

than standard p-matching algorithm. This theoretical part was mostly performed by

Kimmo Fredriksson. I was working on implementation and experiments.

While plagiarism in source code can be hidden by means of variable renaming,

plagiarism in natural language is concealed with the help of synonyms. In paper

[MTK06] we develop a possible technique to fight against such kinds of actions. The

system, described in [MTK06], uses a special type of thesaurus which converts

synonymous words to identical sequences of tokens. The basic idea of using such a

module in plagiarism detection was mine. Vitaly Tusov, who works in the field of

natural language processing, provided a good parser/thesaurus module. Vitaly Klyuev

helped in evaluating the system and in writing the paper.

Synonyms are not the only allies of a plagiarizer. Plagiarism can be effectively

hidden by swapping words and phrases, where possible. Many plagiarism detection

systems are tuned to detect matches longer than a certain threshold only. So by

chunks that are not marked by the detection program. This technique can be overcome

by using a natural language parser that converts sentences into special structures with

predefined order of words. Such parser application is considered in [MKS07]. In this

research, I worked on both theoretical and experimental parts, Tuomo Kakkonen

adapted Stanford Parser for the document preprocessing algorithm, and Erkki Sutinen

was supervising the process.

Table 2.1 summarizes the contribution of the individual papers to the thesis. The

relations between the papers are shown in Fig. 2.1.

12

Table 2.1. Contribution of the individual papers.

Paper Research Questions Chapters
[MFWJS05] 2 6

[Mozgovoy06] 1 3, 4

[FM06] 3 6

[MTK06] 3 5

[MKK07] 2 6

[MKS07] 3 5

Fig. 2.1. Relations between the individual papers

13

3. Definitions of Plagiarism
The most common definitions of plagiarism come from dictionaries one example

is cited in the introductory section of this work. However, all of them are not

sufficiently formal to be directly implemented in a computer system. One may think that

omitting the exact definition does not make problems, since computer-detectable

plagiarism is something almost self-evident; at least, documentation of many systems

often just claim that plagiarism is detected without providing precise specification of the

. On the highest level of abstraction it is almost true, but there are

additional details on the lower levels.

Obviously, a computer can detect plagiarism if and only if it treats a number of

used as a synonym to the

, while similarity is calculated by means of a certain file-file

comparison function. In the real world, there is, at least, one difference: some

documents are original compositions, while others contain unauthorized borrowings.

Usually we do not expect that a computer knows who is an author, and who is a

plagiarizer, so generally we accept this kind of behavior. Moreover, a computer usually

cannot distinguish true plagiarism from proper citing, and we also understand that.

Keeping these facts in mind, it can be even noted that the established

f a tool, but may

lead to misunderstanding, since a real capability of a system is similarity check.

So it is clear that even the first simplification that is done literally by all plagiarism

detection systems reducing plagiarism to similarity is usually not stated explicitly,

though there is an obvious difference. Furthermore, by using any specific methods to

calculate document similarity, the system introduces more simplifications and

assumptions that can take us far away from the initial concept.

Nevertheless, any specific system implements a certain method, which calculates a

measure of plagiarism. Several authors try to identify these actions quite informally:

14

f

at

most content-comparison systems actually do. So the difference between common-sense

For

example, documents that include proper quotations contain common substrings with the

source they cite, but they are not plagiarized. On the other hand, Prechelt et al. [PMP02]

note that high file-file similarity, revealed by performing straightforward content

comparison, is usually considered as a good indication of plagiarism by human experts.

Misunderstanding of the basic work principles of plagiarism detection systems leads

to strong criticism expressed by the disappointed users. For example,

Turnitin [Turnitin07] is criticized for not distinguishing proper quotations from

plagiarized text, for treating self-quotations (when a student has published online some

parts of the work before) as plagiarism, for inconsistence (when some known quotes are

marked, while other ones are not), and so on [Gerald06]. One of the reasons for such

attacks is the lack of a

consider this system as a black-box that has its own opinion of what is plagiarism.

Turnitin is also criticized for a variety of ethical reasons, such as promoting

presumption o

rights [Carbone01, Glod06], but these issues are outside the scope of this work.

By accepting the close relationship between plagiarism detection and content

comparison, the authors of plagiarism detection systems can make use of existing string

matching algorithms, originally intended for other file-file comparison tasks. For

example, parameterized matching [Baker97] was designed to find duplicating code

blocks in large software systems (indicating more likely the need for refactoring, not the

presence of plagiarism). Analogously, UNIX tool that outputs the differences

between the two files is commonly used to create patches for transforming the first file

into the second one.

15

It is unlikely that a conventional plagiarism detection system will be able to

distinguish true plagiarism from file-file similarity in the foreseeable future, so

generally we have to accept plagiarism-as-similarity concept, when dealing with

software tools. A human evaluator just should be aware of this issue, as stated above.

16

17

4. Hermetic Plagiarism Detection Systems
The existence of a variety of plagiarism detection systems raises a question of

possible classification. Such a taxonomy can help teachers to select the most appropriate

software solutions for their needs. It can be usable for researchers, too, by revealing

core algorithms of different tools. Researchers, who work with string matching, may

consider plagiarism detection as one of possible applications of their achievements. The

classification of plagiarism detection systems is discussed in [Mozgovoy06]. Here we

will consider only the most important classes, shown in Fig. 4.1.

Naturally, there is no single criterion to perform classification. In the work of our

research group, we tried to improve existing solutions in terms of reliability and

performance. Therefore, we were primarily interested in evaluating current approaches

according to these parameters. Also, we were mostly aimed

textual submissions, so the problem of plagiarism in non-plain-textual data remains out

of scope of this work. Being interested in advanced text preprocessing algorithms, we

focused mainly on string matching-based systems.

Fig. 4.1. Simplified classification of plagiarism detection systems

18

It should be mentioned that most hermetic systems are either universal, i.e. can

process text documents of any nature, or are specially fine-tuned to detect plagiarism in

source code files. Natural language processing technologies are usually left for open

systems. This fact can be explained, keeping in mind that the students are more likely to

copy computer programs from each other, while natural language essays are easier to

find in the Internet. A student can ask another person to solve a programming task, but it

is difficult to find a ready-made solution for a particular assignment in the Web.

Meanwhile, natural language compositions on a variety of common topics are widely

available online.

4.1.Fingerprint-Based Systems
The core idea of fingerprinting is to create fingerprints for all documents in the

collection. Formally, fingerprint is a short sequence of bytes that characterizes a longer

file. For example, fingerprints can be obtained by applying any hash function to a file.

In plagiarism detection systems fingerprints are usually more advanced than simple

hash codes: each fingerprint contains several numerical attributes that reflect the

structure of the document. Typical attributes include average number of words per line,

the number of unique words, and the number of passages. If two fingerprints are close

to each other (according a given criterion, usually provided as a distance function in

mathematical sense), the corresponding documents are treated as similar.

Formerly, fingerprints were used in attribute counting systems, which represent the

early era in computer-aided plagiarism detection (see Fig. 4.2). The very first project of

77] to score file-file

similarity. In the following years, plenty of metrics have been tested, and more

advanced systems were built [Grier81, FR87]. Nowadays it is generally believed that

attribute counting is inferior to content comparison, since even small modifications can

greatly affect fingerprints. As a result, later systems usually do not follow this

technique [VW97].

19

There are several recent projects that combine fingerprinting with elements of string

matching. Such an approach is used e.g. in the notable MOSS program [SWA03]. Other

approaches to fingerprinting include the use of general-purpose text retrieval techniques

such as LSA [Nakov00] and vector space model [SE06].

Fig. 4.2. The timeline of hermetic plagiarism detection algorithms

4.2.Content Comparison Techniques
Content comparison techniques deserve a more in-depth study, being the

cornerstones of an overwhelming majority of present plagiarism detection systems.

There are different algorithms aimed at file-file comparison, varying in terms of speed,

memory requirements and expected reliability. Generally, most schemes follow already

cited similarity imilar if they contain

.

4.2.1.String Matching Based Content Comparison
Usually, content comparison systems work according to the following algorithm:

The core function that calculates similarity varies from one system to another. String

matching based methods compare files by treating them as strings. This approach,

though, usually does not take into account the hierarchical structure of the computer

program, considering it as raw data. The situation for natural language documents is the

same.

20

The similarity score calculation is tool-dependent. For example, FPDS [MFWJS05]

determines similarity between files and using the following formula:

Here denotes the number of tokens of the file , which

are matched in the file .

Early string matching based plagiarism detection systems like YAP [Wise92] used

simple mechanisms, such as line-by-line comparison of two files under edit

distance [Levenshtein66]. Later, more advanced general string matching methods, such

as Smith-Waterman algorithm, were applied [Irving04].

One of the most popular file comparison methods is Running-Karp-Rabin Greedy-

String-Tiling (RKR-GST) algorithm, implemented in a variety of systems, including

YAP3 [Wise96], JPlag [PMP02], and Plaggie [ASR06].

The basic aim of this algorithm is to find a maximal tiling for a pair of given files,

i.e. the joint coverage of non-overlapping strings that includes as many tokens from

both files as possible (see Fig. 4.3). Moreover, the use of short tiles of length smaller

than a specified threshold is forbidden. The problem of constructing such coverage

appears to be NP-complete [Wise94], so practical implementations always rely on

heuristic assumptions. RKR-GST algorithm utilizes greedy heuristics, assuming that

longer matches are more valuable than shorter ones.

The RKR-GST algorithm can be outlined as follows. The routine begins by

analyzing the matches of length and greater. These

matches are obtained by calling the Karp-Rabin procedure [KR87]. Then the matches

are analyzed (beginning from the longest one). If the current match does not overlap

with the existing tiling, it is added to the coverage as a new tile. After all matches are

processed, a new search occurs with the smaller match length. When the match length

reaches the threshold value, the algorithm finishes its

work.

21

Fig. 4.3. Joint coverage of two files

Our own string matching based system FPDS [MFWJS05] tries to get rid of

computationally inefficient file-file comparison by using a special index structure, based

on a suffix array, and by applying several ad hoc heuristics. This project is described in

Section 6.3.

4.2.2.Parse Trees Comparison
Clearly the actual file content better describes its structure than any kind of

fingerprints. However, raw content data is not structured, while most kinds of

documents do have an internal organization. Natural language texts are divided into

sections, subsections, paragraphs and sentences. Source code files contain classes,

functions, logic blocks and control structures.

While it is still not completely discovered how one can utilize such kind of

information effectively, there are systems that implement comparison techniques,

directly or indirectly based on the file structure.

The idea of using parse trees of computer programs was firstly implemented in the

Sim utility [GT99]. Sim relies on ordinary string matching methods, but instead of

comparing source files, it calculates file-file similarity between textual representations

of corresponding parse trees. Hence, a parser is used as a front-end for the string

matching algorithm. This approach was later applied in our own projects, too [MTK06,

MKS07].

22

The pure tree comparison procedure was implemented in the Brass project [BNH04].

Since tree comparison is more complex and therefore slower than string matching,

Brass uses a kind of string comparison routine to filter only suspicious documents. Then

a special micro comparison algorithm is applied to provide more reliable results.

Though this approach seems to be the most advanced, little research in this area has

been carried out so far. For example, it is still unknown how such a complex analysis of

input files influences the final results i.e., it is undiscovered whether parse trees

comparison is superior to usual string matching. Furthermore, any practical (in terms of

execution speed) tree comparison routine requires optimizations like greedy heuristics.

For now, it is not clear how these techniques affect reliability.

23

5. Input Preprocessing Algorithms
As stated before, most content comparis

plagiarism. In practice, though, there are situations when it turns out to be inapplicable,

definition) include clear

instances of plagiarism. For example, equivalent computer programs can greatly differ

in comments and in identifier naming conventions. However, such distorted similarity

can be revealed by utilizing specialized file preprocessing algorithms.

5.1.Hiding Plagiarism
paste plagiarism can be easily detected with most

methods of content comparison. However, there are tricks that can be used to hide

plagiarism, or, speaking more precisely, to make it harder to note.

For natural language texts such actions can include rewording and paraphrasing. The

use of different words does not eliminate the existence of plagiarism, since the use of

[Webster01] should be treated as an illegal action as well.

At the cost of hard effort, a plagiarizer can successfully make the case extremely

difficult to reveal. One notable example from the past experience is a small

group of international students, studying in English, who applied the following method:

take an article, translate to their native language, and pass it next to the fellow student to

translate it back into English. Obviously, the resulting text can greatly differ from the

original one, especially if the source text was composed by a native English speaker.

Though being labor-consuming, this type of plagiarism hiding seems to be effective

enough: a teacher can reveal it only by means of indirect hints.

For computer programs, the situation is rather different. On one hand, computer

programs are more structured; therefore there is not so much possibility to paraphrase

them. Moreover, such paraphrasing requires clear understanding of the underlying

algorithm, which is not usually expected from a plagiarizer. On the other hand, there are

24

very simple methods like variable renaming, which are easy to perform without any

understanding of a computer program.

Possible actions of plagiarism hiding in computer programs are listed in

works [JL99] and [Jones01]:

1. Changing comments (rewording, adding, changing comment syntax and omitting);

2. Changing white space and layout;

3. Renaming identifiers;

4. Reordering code blocks;

5. Reordering statements within code blocks,

6. Changing the order of operands/operators in expressions;

7. Changing data types;

8. Adding redundant statements or variables;

9. Replacing control structures with equivalent structures (while-loop by do-while loop;

nested if statements by a switch-case block and so on);

10. Replacing the functional call by the body of the function.

This list entails a broader definition of plagiarism, suitable for computer programs: a

plagiarized program is a program that can be obtained from the original one by means

of one or more of the actions listed above [Mozgovoy06].

when the plagiarizer performs -

5.2.Overcoming Hiding Techniques by Preprocessing
Most current plagiarism detection solutions somehow transform input files before

actual comparison to fight against the aforementioned tricks. Usually this process

includes tokenization and/or parsing. In this section we will talk in more detail about

different kinds of preprocessing algorithms, applicable in a variety of plagiarism

25

detection projects, regardless of their comparison scheme. The type of preprocessing

and the algorithms used do depend on the nature of the input documents (see Fig. 5.1).

It should be mentioned that not all the plagiarism hiding techniques are equally easy

to reveal. In the above list, the simplest tricks to fight are 1 and 2: the preprocessing

function only has to eliminate all the comments and redundant white spaces to make the

instances of plagiarism clear. The techniques 3, 7, and 9 can be overcome by means of

tokenization, described in the next section. The remaining tricks are resolved with an

advanced string matching algorithm, such as RKR-GST that can detect matches even if

they are reordered.

It should be noted that input preprocessing algorithms and heuristic string matching

procedures can lead to false matching and/or mismatching blocks of text. False

matching occurs when a preprocessor converts two different text strings into equal

character sequences. Sometimes such conversion makes sense, but in other cases it can

be incorrect. Mismatching problem arises when two equal strings are not matched

during comparison. It can happen if the file-file comparison routine utilizes a certain

heuristics like greedy matching, so the equal blocks of text can remain unprocessed.

Fig. 5.1. Instruments for text preprocessing

26

5.3.Preprocessing Source Code
Let us first consider the problem of plagiarism detection in computer programs. It is

important to mention that most of plagiarism-hiding techniques deal with lexical

changes of the document, not involving any semantic information. Keeping in mind this

fact, we can develop a tool that preprocesses input documents, eliminating lexical

differences.

5.3.1.Tokenization
Probably, the simplest tool that can be applied in such a case is a tokenizer. A

tokenizer is a program that takes a computer program as an input, and outputs the

corresponding sequence of tokens, (i.e. of minimal meaningful units of a language),

representing variables, function calls, statements, and control structures. Usually,

tokenizer also removes all comments.

For example, a Java fragment

can be preprocessed into the following sequence, where line breaks and white spaces are

kept for better readability:

Technically, a tokenizer is a simplified programming language translator that

transforms a program into the corresponding tokenized representation. Such a tool can

be quite easily obtained by utilizing numerous freely available parser generators with

ready-made grammars. For instance, our system [MFWJS05] relies on JavaCC parser

generator [Enseling00].

27

As seen from the example, the preprocessor substitutes every variable identifier with

token <IDENTIFIER>, and every numeric value with token <VALUE>. Therefore, if a

program contains a line

it will be replaced by a sequence

ated into the same tokenized string. Our tokenizer also

substitutes all kinds of loop structures by <LOOP> token. Hence, changing loop

statement type will not help to hide plagiarism as well.

Usually, a tokenizer preprocesses any single file in O(n) time, where n is a length of

a file. As will be shown, plagiarism detection has a higher complexity, so tokenization

should not be a major factor for the overall complexity of the algorithm.

5.3.2. Parameterized Matching
The obvious drawback of tokenization roots in the superficial analysis of input files.

Simply speaking, by reducing all variables to <IDENTIFIER>, all values to <VALUE>,

and all loops to <LOOP>, we lose significant information about possible differences of

the files. Therefore, the system is more likely to detect similarities, introduced by the

tokenizer.

To preserve differences in variable names, a parameterized match (p-match)

algorithm can be utilized. Since this method is a topic of our special interest (see

[FM06]), it will be described in more detail later in Section 6.2. Here we will consider

only its purpose.

A parameterized match algorithm will treat two given code fragments as identical if

one of them is obtained from the other one by a series of regular substitutions of

identifiers. It is assumed that the algorithm knows which elements are identifiers, and

28

which are not. For example, parameterized match routine considers the following code

fragments as equal:

Without going into details for now, it should be noted that this algorithm can be used

together with tokenization to get benefits of both methods.

5.4. Preprocessing Natural Language Texts
Since natural language documents do not have a strict formal structure like computer

programs, it is much harder to implement any reasonable preprocessing algorithm.

Actually, many plagiarism detection systems analyze

any preprocessing.

Fortunately, there are no such straightforward methods for plagiarism hiding like

variable renaming for natural language texts. Any attempt to conceal plagiarism requires

some mental work. Therefore, it i are so

carefully disguised that the system will be unable to find, at least, some of them. There

are exceptions like careful double translation of the source documents, but the

abundance of this technique is doubtful.

Nevertheless, plagiarism hiding occurs in natural language texts, too. So any sensible

methods of preprocessing such documents can be beneficial.

5.4.1.Using Word Sense Disambiguation Modules and Thesauri
One of the common techniques of hiding plagiarism is to substitute words with their

synonyms. It can sometimes confuse even humans, while computers are completely

unable to fight with such tricks if natural language processing algorithms are not

applied.

Such word substitution can be considered as a rough equivalent of variable renaming.

mous words with the same

29

token, the trick will not help a plagiarizer. Fortunately, there are electronic thesauri

available (such as WordNet [Fellbaum98]) that can be used for this purpose. Since

words can have different meanings

given context should be firstly discovered by means of a word sense disambiguation

(WSD) method [EK03].

The problem of applying this idea is a topic of our work [MTK06]. For natural

language processing, we have used semantic analyzer for the Russian

language [Tusov04], but similar solutions, suitable for other natural languages, can be

utilized as well.

A semantic analyzer [Tusov04] is a complex natural language processing system. We

use its module that classifies the words of the input text according to the built-in tree of

concept classes, currently containing about 1600 elements. A small extraction of the tree

is shown in Fig. 5.2.

For example, a class <PHYSICAL-OBJECT> has a subclass <ALIVE>, having, in

its turn, a subclass <ANIMAL> that includes classes <ANIMAL-WILD> and

<ANIMAL-DOMESTIC>. The current version of the tree reflects the general

knowledge about the human environment. It can be reasonable to perform some tuning

of the tree for the specific tasks.

The use of such a tree of concept classes can be considered as applying a thesaurus,

paired with a WSD module. By processing input documents with a semantic analyzer,

we get lists of word classes instead of original words. Next, these files can be graded by

using any conventional plagiarism detection system.

The detection quality of this approach was evaluated by analyzing a collection of 350

documents taken from the news server. Most downloaded files are short

news messages, falling into one of the following categories: In Russia, In the World,

Economics, Religion, Criminal, Sport, and Culture. The size of the articles varies from

30

450 bytes to 19 KB with the median size of about 2 KB. The typical article consists of

8-12 small paragraphs that are made of strict narrative sentences and quotations.

Fig. 5.2. A fragment of concept classes tree

The rationale for selecting newsreels is a high probability of having two or more

documents related to the same event or quoting each other. Therefore, the chances of

finding, at least, several pairs of similar files are high, too. Direct plagiarism is not

expected in this case.

It should be noted that evaluation is a hard issue to deal with in plagiarism detection.

For large data sets, thorough human evaluation is almost impossible. We can make use

of other detection systems, assuming that the commonly marked subset of files reliably

enough indicates truly similar documents. This jury-based approach was used in

[MFWJS05], and will be described in more detail in Section 6.3.2. Unfortunately, we

had no access to other systems that use natural language processing, so the only option

was to use a smaller collection and manual evaluation. The following results are

provided in [MTK06].

To evaluate the preprocessor, we ran FPDS [MFWJS05] on original and

preprocessed collections of documents. Without preprocessing, the system found 20

31

relevant pairs of similar documents with at least 4% degree of similarity. Typical

examples include:

A pair of documents about the solar eclipse on 20th of March, 2006. The first tells

about the countries where this phenomenon was observed; the second is dedicated

purely to the observation of the eclipse in Russia.

A pair of documents on the weather conditions in Europe. The first is about floods in

the EU (Spring 2006); the second contains some weather predictions for the EU,

including subsequent floods.

A pair of documents on rumors about Russian military assistance to the Iraqi

government in March of 2003. The first outlines the position of Moscow; the second

states the reaction of Washington.

After tokenization the similarity degrees of the same file pairs increased, in most

cases, by a factor of 1.5, and remained the same in few cases. Meanwhile, four

additional false pairs were detected, but with very low similarity ratios that did not

exceed 4-5%.

The consequences of tokenization are especially noticeable in several typical

situations. They include:

Changes to grammar cases in Russian. The phrases in one of resorts and of one of

resorts are not matched due to the changes of the endings of the words. After

tokenization they become almost identical.

The use of distinct words of the same classes in the same contexts in different

documents. The phrases the residence in Greece and the residence in Athens do not

match, but do match after the tokenization (Greece and Athens are translated to the

same class <PLACE>).

The latter case is related to mismatches as well. For example, the phrases Vladimir

Putin claimed and George Bush claimed are treated as the same sequence

<NAME><NAME><SPEAK> after the tokenization. It may be argued, though, that the

32

system of classes, currently implemented in semantic analyzer, was not specially

designed for plagiarism/similarity detection procedures. A more advanced hierarchy

may include a careful taxonomy that minimizes such collisions.

It should be noted that in the simplest case our preprocessing can be considered as a

variation of stemming technique that is widely used in information retrieval. This can be

very helpful when dealing with languages with developed morphology (like Russian).

5.4.2.Using Parsers
As noted, replacing words with their synonyms can be treated as a rough equivalent

of variable renaming technique to hide plagiarism. We can try to overcome it using

WSD modules and thesauri. Unfortunately, the plagiarizer can also add structural

changes to the document, for example, by modifying the word order where possible. For

losing its meaning.

Formally, since most modern plagiarism detection systems are aimed at finding joint

coverage of a pair of analyzed files, such a rewording should not hide plagiarism. The

system In practice,

current systems usually limit the shortest substring to detect. Plaggie [ASR06] and

FPDS [MFWJS05] include -tunable constants

explicitly. The reason for this decision is a large number of false short matches. If we

match every single word of the text, the resulting grade will be a measure of closeness

This holds both for natural language and

for program code: any computer program consists of the same statements, and most

programmers use the same variable names in similar situations (for example, i and j for

loop counters). is defined

manually. The problem of its automatic selection is a reasonable research topic;

however, it has not been investigated properly so far.

33

Sadly,

problem [MKS07]. For instance, if the system is programmed to ignore all matches

Overcoming this issue is a topic of our work [MKS07]. The key idea is an

observation that a natural language parser can transform the input sentences into

sequences, reflecting the internal structure of the phrases, while not preserving precise

order of words. For instance, a parser can recognize homogeneous parts of the sentence,

and sort them in alphabetical order.

but the detector is insensible to such changes.

For our experiments, we used Stanford Parser, based on an unlexicalized model

[KM03]. Like most parsers, it produces an output in the form of dependency trees (see

Fig. 5.3). We have designed and implemented a post-processing tool that transforms the

dependency trees into a format where the word order has no effect. The format

represents the words in the sentence sorted according to their grammatical relations

(GR) that designate the type of the dependency between the words. Stanford Parser

supports most types of GRs, recognized by linguists (see Table 5.1). The complete list

of grammatical relations is provided in [MMCM06]. The words inside each GR group

are sorted in alphabetical order. The example of the original Stanford Parser output and

of the transformed format (is

shown in Fig. 5.4.

Fig. 5.3. Dependency tree of the phrase the monkey ate the banana

34

Table 5.1. Examples of grammatical relations

Abbreviation Full name
DET Determiner

DOBJ Direct object

NN Noun compound modifier

NUM Numeric modifier

NSUBJ Nominal subject

It should be mentioned that the use of such a parser-based preprocessor for

plagiarism detections system introduces a noticeable drawback. Since the initial

structure of the sentences is not preserved, the plagiarism detection system that analyses

preprocessed files only is unable to highlight matches in the original documents. There

are two obvious ways to overcome this problem: either the system should be

programmed to highlight the whole plagiarized sentences instead of word chains, or the

parser should generate some metadata about the parsed files, helping to restore the links

between words in original and parsed files. The latter gives more flexibility, but requires

serious modifications of the parser, so we do not consider this scenario.

Fig. 5.4. Stanford Parser (top) and post-processor (bottom) outputs

35

The evaluation of the idea was performed according to the same scheme as used in

[MTK06]. We graded the files collection using FPDS [MFWJS05], then ran the same

process for the collection of preprocessed files. The results were analyzed manually.

A collection of 128 messages was obtained from the website of BBC NEWS

(). Each message was assigned one of the following categories:

Business, Europe, Science/Nature, or Technology. The median size of each message

(after removing all formatting) is about 2 KB. We have also prepared several files with

intentional plagiarism, performed using copy & paste with subsequent change of word

and phrase order. It should be mentioned that news is hard to plagiarize with such a

method, since the reels are laconic, and do not contain enough adjectives or phrases to

swap. However, in free-form essays we used there are more possibilities for such swap-

powered plagiarism.

As a result, FPDS found 11 pairs of messages containing vast quotations from each

other, and 3 pairs of messages informing about the same event while scoring initial (not

preprocessed) collection. The similarity ratios of later pairs were 5%-33%. There were

no other similar pairs, according to manual evaluation. The similarity scores of

plagiarized free-form essays lay in the range 10%-30%. The inclusion of parser

increased similarity ratios for overlapping news messages by 7%-13%. This observation

indicates that the combined system has an overall tendency to assign higher similarity

grades to the same file pairs. Consequently, two more file pairs of similarity 5% and 7%

appeared in the resulting log, but they were not considered as similar by human graders.

In practice, it is possible to get rid of incorrectly matched pairs by raising a similarity

threshold for final file pair list. For the plagiarized free-form essays the similarity ratios

have increased significantly to 50%-80%. The results were also noticeably affected

The smaller the constant, the

less effective is the use of the parser. Large constant values cause higher probability to

not identify swap-powered plagiarism, detectable by means of parser.

The use of the parser can also have two positive side effects. First, plagiarism

36

MFWJS05]). Second, the

difference between similarity scores of original and preprocessed collections can itself

serve as a good indication of word swaps, and therefore, of plagiarism. However, this

supposition is not yet researched.

Another good idea for future research is to utilize tree matching approach [BNH04]

for natural language texts. Since parsers do provide tree-like representation of sentences

of the documents, it can be sensible to compare these trees directly.

37

6. Speed and Reliability of Plagiarism Detectors
The existence of variety of plagiarism detection technologies necessarily entails a

question about their performance both in terms of time and space requirements, and

in terms of detection quality. Observations show that usually speed is achieved at the

cost of reducing detection quality and vice versa. The central part of this chapter is

dedicated to the problem of designing plagiarism detection schemes that can be fast and

reliable at the same time.

The quality of detection, i.e. the reliability of the system, can be estimated either by

human evaluation, or by comparing the output with the results, provided by other

plagiarism detection systems. We use both approaches to evaluate our solutions.

6.1.Performance Attributes of Plagiarism Detectors
Common sense suggests a simple principle: the more time is invested to file

comparison, the more reliable results can be obtained; in some cases, it is possible to

save some time by using more memory space. These guesses are generally supported by

work [Mozgovoy06] that studies speed and reliability of various plagiarism detection

projects. Its main conclusions can be expressed in several theses (see also Fig. 6.1):

Classic fingerprinting methods, such as attribute counting, are the fastest, but

unreliable [VW97]. If the fingerprint size is constant, the system requires O(nN) time

to create fingerprints, and O(N2) time to grade the collection. All-against-all

comparison is assumed. Here n is the average file size, and N is a number of

documents in the collection.

RKR-GST-based content comparison methods have worst case complexity of O(n3)

for one file-file comparison procedure. However, experimentally discovered average

complexity is just O(n1.12) [Wise94]. So, the resulting complexity of all-against-all

comparison can be estimated as O(N2n1.12). First implemented in YAP3 project

[Wise96], this approach is still used in recent systems like Plaggie [ASR06], being

considered as highly reliable.

38

Most preprocessors, such as tokenizers, run in linear time O(nN) to preprocess the

whole collection of N files, and do not make a dominating contribution into

asymptotic complexity of any content comparison-based system.

Advanced tree matching-based projects can require even quadratic (in respect to file

length) time for one file-file comparison, so for complete collection scoring the time

needed can be estimated as O(N2n2) [GT99].

Fig. 6.1. Speed and reliability of different plagiarism detection schemes

Our work [MFWJS05] shows that the core ideas of content comparison-based

systems can be paired with specially organized data structures and reasonably applied

heuristics in order to get better speed performance. Time is an important factor when

large collections are processed. Since the same techniques can be applied to any sort of

file-file similarity calculation, not limited to plagiarism detection, the possibility to get a

set of documents of considerable size becomes obvious. The importance of scalability is

underlined, e.g. in [BTZ07].

39

6.2.Fast Parameterized Matching
Let us first consider the problem of improving performance of standard

implementations of parameterized match algorithm. Only main results will be given

here, see [FM06] for more details.

Parameterized matching (see also section 5.3.2) is a special type of string comparison

routine that treats two strings as equal if one can be obtained from the other one by a

series of regular substitutions of identifiers. It is assumed that a set of admissible

identifiers is given, so the program can distinguish identifier tokens from non-identifier

tokens. The core idea of parameterized matching can be implemented as a separate

preprocessor that erases all information about actual variable names in the input text,

while preserving their relational structure. This makes possible to use p-matching-based

preprocessor as an advanced tokenizer for plagiarism detection and similarity checking

systems, aimed at software source code analysis.

6.2.1.Preliminaries
Formally speaking, parameterized matching deals with strings over two non-

intersecting alphabets: the alphabet of fixed), and the alphabet of

parameter symbol). These alphabets correspond to non-identifier and to

identifier tokens of the programming language.

called parameterized strings. The problem is to find a match of pattern

1] in a text st 1]. A match is found at position j if and only if for all i {0,

m 1} holds that Mj(P[i]) = T[j + i], where:

Mj(x): is one-to-one mapping, and is an arbitrary set;

Mj(x) = x, for all x .

Such a matching can be reduced to ordinary string comparison by utilizing prev()

encoding [Baker97]. This algorithm takes a parameterized string, and substitutes all

parameter symbols s in it with non-negative integers, equal to the number of symbols

since the last occurrence of s in the input string. The first occurrence of the parameter

40

symbol is represented by zero. So, prev() encoding is one of possible practical

implementations of Mj(x) mapping. Consider, for example, a pattern P =

aaZYZabXYZaX over alphabets = {a, b} and = {X, Y, Z}. Then prev(P) =

aa002ab055a4. Note that prev() function remains the same for any position j.

The only problem here is how to maintain prev(T[j j + m 1]) and all dependent

values efficiently as j increases. The solution is constructed by utilizing the following

proposition, proved in [Baker97]:

1]), for any j, i: S[i]

that S''[i] = S'[j + i] iff S'[i] < i. Otherwise S''[i] = 0.

In addition to the classical definition of p-matching problem, a task of multiple-

pattern search can be considered as well. The rationale is simple: when searching

several patterns, a special multi-patterned version of matching algorithm can be

significantly faster than a series of consequent calls of the single-patterned routine

version.

To the present day, only a few string matching algorithms were generalized to

support parameterized matching [AFM94, Baker95, IS96, ST06]. Our work shows how

to generalize well-known Shift-Or [BYG92] and Backward DAWG Matching

[CCGJLPR94] methods for parameterized strings. Both these algorithms are designed to

search a given pattern string P inside a given text string T. For simplicity, we assume

that the input alphabets are of constant size.

6.2.2.Parameterized Bit-Parallel Matching
The standard Shift-Or is implemented as a finite automaton [BYG92], which is

constructed according to the following scheme (see Fig. 6.2). There are m + 1 states in

total, marked as 0 m. The state 0 is the initial state, while the state m is the final

state. The transitions of the automaton are:

from i to i + 1, for character P[i], i m 1;

from 0 to 0, for every c

41

Fig. 6.2. Shift-Or algorithm automaton

The transitions of the automaton are implemented by means of the table B, having

one bit-mask entry for each c , and

the states are stored in the bit vector D:

B[c] has ith bit unset P[i] = c, for i = 0 m 1

state i is active D has ith bit unset
Initially, all bits of D are set. For each input symbol c, the vector is updated as

follows:

To generalize Shift-Or [BYG92] algorithm, we have to make sure that:

pattern P is encoded using prev() function;

prev(T[j j + m 1]) is maintained in O(1) time per text position;

bit-mask array B (see [BYG92]) must be built so that all parameterized pattern

prefixes can be searched in parallel.

These issues are solved using some nontrivial preprocessing (see [FM06]), finally

resulting in Algorithm 6.1 (w is machine word size in bits).

Algorithm 6.1. Parameterized_Shift-Or(T, n, P, m)

42

The algorithm runs in O(n ceiling(m/w)) worst case time. For longer patterns (m > w)

it is possible to search first w symbols of pattern using our algorithm, then check the

whole pattern with the help of a conventional routine only if w-symbol prefix is found.

This technique results in O(n) average time.

Shift-Or algorithm can be improved to run in O(n (m)/m) average time, which is

optimal [FG05]. The same technique can be applied for our version of parameterized

Shift-Or [FM06]. However, for multiple patterns our method is inferior to Aho-Corasick

based approach [AC75, IS96].

6.2.3.Parameterized Backward Trie Matching
Another finite automata-based Backward DAWG Matching [CCGJLPR94] algorithm

also can be generalized for parameterized strings. We are scanning the text window

T[i i + m 1] backwards. The text window is (backwards) prev-encoded as we go,

and the read substring of T is matched against the trie of prev-encoded suffixes of a

reverse pattern Pr. The algorithm remembers the longest matched suffix to continue

search if the window size is not enough. If the length of that suffix was l, the next

window to be searched is T[i + m l i + m 1 + m l]. The process is repeated until

the whole text is scanned (see Algorithm 6.2).

Algorithm 6.2. Parameterized_BDM(T, n, P, m)

43

Under various reasonable assumptions [FM06] the average running time of the

(m)/m) too. In case of r patterns it becomes

O(n (r m)/m).

6.2.4.Experimental Results
For experiments, we created a long tokenized string of concatenated Java source

files, taken from various open source projects, including jPOS [jPOS07],

smppapi [smppapi07], and TM4J [TM4J]. This string was used as a text to be searched.

Then it was encoded using JavaCC-based parser into a sequence of 1259799 tokens,

including 51 reserved Java words and 10213 unique identifiers. A set of 100 patterns for

each length of 1 32 symbols was randomly extracted from the input text.

Fig. 6.3 shows the average number of tokens searched per second for each algorithm.

Besides the above described algorithms, we have evaluated modified versions of Shift-

Or and Backward Trie Matching methods. Shift-Or procedure was optimized as

proposed in [FG05]. The underlying data structure of Backward Trie Matching

algorithm was substituted with a suffix array. In Fig. 6.3, PSO denotes the basic

parameterized Shift-Or algorithm, PFSO is the optimized Shift-Or version, PBTM is the

parameterized Backward Trie Matching algorithm, and PBAM is the suffix array-based

version of PBTM.

We also experimented with the multi-pattern version of PBAM (searching 100

patterns simultaneously). The plot clearly indicates that the amortized (average) speed

per pattern is better than for any of the single pattern matching algorithms.

As a result, we conclude that the proposed methods of Shift-Or and BDM

generalization are easy to implement and work well in practice [FM06].

44

Fig. 6.3. The search speed of different p-matching algorithms

6.3.Reducing Asymptotic Complexity
As shown in Section 6.1, a high-quality content comparison-based method requires

O(N2f(n)) time to grade the whole input collection. Here N is the total number of files in

the collection, n is an average file size, and f(n) is time required to grade one file pair.

Typically, the asymptotic complexity of f(n) is at least linear.

In this section we will consider Fast Plagiarism Detection System (FPDS), proposed

in [MFWJS05]. It is a content comparison program that utilizes additional data

structures and special heuristics in order to achieve better asymptotic complexity. Our

system works with tokenized Java files, but any similarly preprocessed data can be

analyzed as well. Sublinear complexity makes our system scalable, unlike most existing

solutions. Another scalable approach is described in [BTZ07].

45

6.3.1.FPDS Algorithms
FPDS is based on a special suffix array-like data structure. A suffix array is a

lexicographically sorted array of all suffixes of a given string [MM90]. Our index

structure is a bit more complex: it stores all input collection files (as strings of tokens) in

the suffix array, while each array entry also contains the file identifier of the

corresponding suffix. The use of such index structure requires additional O(nN) space,

where n is an average file size, and N is a number of files in the collection. The

construction of the array takes O(n nN)) time using a specialized

algorithm [MM90]. It can be improved to O(nN), see [KSB03]. Our index structure

allows it to rapidly find a file (or files) containing any given substring. This is achieved

with a binary search, and requires O(m + log(nN)) time on average, where m is the

length of the substring.

A query file Q is compared against an existing collection using Algorithm 6.3. It tries

to find the substrings of Q in the suffix array (see Fig. 6.4). Matching substrings are

recorded, and each match contributes to the similarity score.

Algorithm 6.3. Scoring Single File

Matching every token of the input file leads to a plenty of false matches, so we use a

parameter in tokens. The matches are

stored in the repository, see Algorithm 6.4. The similarity between the file being tested

and any file in the collection is just a number of tokens matched in the collection file

divided by the total number of tokens in the test file, so it is a value between 0 and 1.

46

Fig. 6.4. Matching a file against repository
The procedure of repository update resolves two types of collisions when two or

more matches are found, but only one of them should be stored in order to preserve

consistent scoring scheme. The first collision type appears when more than one match is

found in the same collection file, since every match should be taken into account only

once. The second collision type is just a reverse problem: the situation when two

different chunks of the query file correspond to the same chunk in a specific collection

Algorithm 6.4. Updating the Repository

6.3.2.FPDS Performance
Line 3 of Algorithm 6.3 takes O(+ log nN) average time, where as before, n is an

-tunable constant, and N is the size of the collection. If the

substring was found, we call Algorithm 6.4. This can happen at most O(n

line 5 of Algorithm 6.3 takes at most O(n 6.4). If we make the

47

simplifying assumption that two randomly picked tokens match each other with fixed

probability p, then on average we obtain np matches The

total complexity of Algorithm 6.4 is on average O((n/ nNp)2). To keep the total

average complexity of Algorithm 6.3 to O(n nN), it is enough t

(log nN). Since the score of each file can be computed in O(N) time, the total average

complexity of Algorithm 6.4 can be made O(n nN) + N). Using suffix trees

nN) factors can be reduced to O(1), so the

resulting complexity is O(n + N).

Furthermore, the scoring has to be performed N times to obtain scores for all

collection files, so the time becomes O(nN + N2) with suffix tree, and O(nN nN) +

N2) with suffix array.

These estimations were experimentally tested using a collection of Java files of a

medium size of 14KB, The time

required to grade one file is shown in Fig 6.5; the all-against-all scoring time is

represented in Fig. 6.6. make the algorithm run faster with a constant

factor.

It is quite easy to estimate asymptotic complexity of the system and to test it

experimentally, but the more significant feature of any detector is its reliability, which is

much harder to evaluate.

It is not feasible to perform thorough human evaluation of the output due to the large

size of input collection. However, we can examine the reports that are produced by

different plagiarism detection systems on the same dataset. While these reports can vary

highly, the simple sets of files that contain plagiarisms usually correlate quite well,

according to the output of each particular system [MFWJS05].

48

Fig. 6.5. Time required to grade a single file

Fig. 6.6. Time required to grade a collection

49

To evaluate FPDS, we have used a jury approach. The idea is to get lists of

suspicious files in the collection from various systems, and then to organize a simple

voting. If a particular document is considered as suspicious, i.e. having enough

instances of plagiarism by the majority of systems, we expect our program to mark it as

suspicious as well. The systems can be fine-tuned to show more or less files, so we tried

to obtain equal-size outputs.

For FPDS evaluation we used MOSS [SWA03], JPlag [PMP02], and Sherlock

[JL99] systems as the jury. The reports of different systems are shown in Fig. 6.7. The

diagram represents the score of every file of an example 50-files collection, proposed by

each system, including FPDS.

Fig. 6.7. Reports of the jury
At a glance, the votes seem to vary greatly from one system to another. However, the

situation becomes clearer after conformist test. To perform it, we have compared the

opinion of each particular system with the joint voting of three remaining programs (the

jury). The file is considered to be marked by the jury if at least two of three jury systems

considered it as suspicious. The results of the test for the collection of 155 Java files are

summarized in Fig. 6.8.

50

The table clearly shows that our system (FPDS) is even more conformist than other

systems, agreeing with the jury in 115 cases of 155.

Fig. 6.8. The results of conformist test

6.4.Combining Speed and Accuracy
While FPDS proved to be a fast and reliable plagiarism detector, it still suffers from

the problems of another kind. It is not enough for a modern plagiarism detection system

to print a list of similar file pairs. The system should provide a convenient user interface

for analyzing matched pairs. Following Sherlock, FPDS implements a handy

similarities graph visualization window (see Fig. 6.9).

Fig. 6.9. Similarities graph window
This tool allows the user to see matched file pairs at any given similarity threshold.

By clicking on some graph edge, the user opens a window with two text boxes filled

with the contents of the corresponding files. For the further convenience of the manual

evaluation, a good system should highlight found matches.

51

Here comes the problem of FPDS. Its algorithm is inherently not designed to build

continuous coverage of file pairs (in contrast to, e.g., RKR-GST). The equal textual

chunks, detected with FPDS, can be disorderedly scattered through the files. While

these matches still serve as reliable indication of plagiarism, they are not suitable for

visualization. Furthermore, the heuristics used in FPDS can lead to occasional ignoring

of the matches, which makes visualization even worse. It also can be argued that direct

file-file comparison can give more precise similarity score instead of a rough estimation

made by FPDS.

One of possible solutions is to use a combined approach. In the first step FPDS

serves as a filter that quickly determines a set of suspicious files. In the second step a

precise file-file comparison routine is invoked.

This idea is studied in our work [MKK07]. As a file-file comparison routine we have

used RKR-GST-based Plaggie system [ASR06]. On large collections, Plaggie works

considerably slower (see Fig. 6.10).

Fig. 6.10. Running time of FPDS and Plaggie

It should be noted that such combined method makes sense only if:

52

the resulting system has to be significantly faster than Plaggie otherwise we can

just use Plaggie;

FPDS and Plaggie should agree in most cases; in other words, generally FPDS

should not exclude files, which are considered as plagiarized by Plaggie, from the

input set.

Fig. 6.11. Agreement in Plaggie and FPDS results

We have tested these assumptions using five sample collections of 100, 200, 300,

400, and 500 distinct Java files taken from Apache Tomcat project source code. We do

not expect plagiarism in Tomcat, but some code duplication in a large software project

is likely to occur. The median file size is 6.15KB; the size of the largest (500-file)

53

collection is 4.58MB. The table in Fig. 6.11 illustrates an agreement between Plaggie

and FPDS,

Fig. 6.12. Running time of Plaggie and Combined system
This conclusion is supported by statistical analysis. In order to prove an association

between the two variables, we have applied

correlation [Lehmann98] to the data presented in Fig. 6.11. According to the procedure,

the null hypothesis is: there is no correlation between two variables; the rank correlation

coefficient for the entire population is equal to zero. The alternative hypothesis claims

that there is a correlation between two variables and the aforementioned rank correlation

coefficient is not equal to zero. The obtained results show that there is a significant

correlation between the data we obtained using Plaggie and FPDS (n = 10, = 0.01, rs

= 0.997, critical value z = 0.794). Here rs is the sample statistic; n is the number of pairs

of sample data (see columns 2 and 3 of the input table); is the significance level, and z

is a critical interval. Because the sample statistic exceeds the critical value, we made a

conclusion about significant correlation. The same strong correlation is found between

the data generated by Plaggie and common fractions of files marked by both systems

(columns 2 and 5 of the input table). From this outcome, we can expect the same

behavior of two systems when they analyze Java source code, and we conclude that

FPDS is quite an accurate filter for Plaggie.

54

Since the probability distribution of plagiarized files in the collection is hard to

estimate, the speed of the combined system was tested experimentally (see Fig. 6.12).

The graphs clearly show that the combined system runs significantly faster.

As the main result, we can expect that the proposed system will filter files very

rapidly and quite accurately with the help of FPDS-based algorithm. The number of

files sent for a detailed investigation to the Plaggie part is small enough. Then the RKR-

GST-based Plaggie can provide a detailed similarity report, which is more reliable and

much better suitable for further human evaluation.

55

7. Conclusions
The algorithms of plagiarism detection are constantly developed. We have seen how

similarity checking evolved from simple attribute counting systems to the complex

procedures of tree matching over tokenized input files. Several novel techniques for

plagiarism detection are demonstrated in this work.

This thesis shows how modern plagiarism detection systems can fight with

rewording, paraphrasing, variable renaming and other similar methods of plagiarism

hiding. It explains how a plagiarism detection system can be fast and reliable at the

same time, how it can score files and present the final results to the user. The work also

reveals the frontiers of current plagiarism detection techniques, suggesting possible

directions for future research.

The proposed research questions are answered as follows:

1. The classification scheme, developed in [Mozgovoy06], shows the state of the art in

hermetic plagiarism detection algorithms. It is clear, which types of algorithms are

used today, what are their advantages, drawbacks, time requirements, and quality.

The scheme also helps the developers to position their systems better.

2. The paper [MFWJS05] shows how to build a hermetic plagiarism detection system

that can have speed characteristics of fingerprint-based algorithms and reliability of

content comparison. This is done by using suffix tree-based data structures with

heuristic string matching. The work [MKS07] proposes a tandem of the algorithm,

explained in [MFWJS05], with a conventional content comparison system. This

approach allows getting more precise similarity scores and is better suitable for the

human analysis of the results.

3. It is hard to overestimate the importance of text preprocessing in plagiarism

detection. Simple textual transformations can reveal carefully camouflaged

plagiarism. The papers [MTK06] and [MKK07] demonstrate how text processing can

be used for plagiarism detection in natural language essays. The paper [FM06]

56

proposes several algorithms of efficient parameterized matching a preprocessing

technique, helpful for plagiarism detection in software source code.

57

8. Perspectives
The last 25 years of plagiarism detection systems development have achieved

impressive results. Started from simple attribute counting systems that are more like

proofs-of-concept than tools that can be recommended for everyday use, software

plagiarism detectors evolved into complex content comparison analyzers and successful

commercial web services.

However, there are still unsolved problems and possible applications that will be

subjects of future research:

Broader use. Taking into account the growing popularity of online submission

systems, we can expect the broader use of automatic plagiarism detection. An essay,

submitted to a course instructor or a paper, uploaded to a conference website, can be

automatically checked for instances of plagiarism, just like e-mail messages are

commonly checked for viruses by the mail server.

Social impact. Being just file comparison services, Internet searching engines

developed into a social phenomenon. The results they provide can have a noticeable

impact on business [Lenssen06] or interfere with local laws [McLaughlin06].

Likewise, computer-calculated plagiarism detection scores should be used with care.

Currently, the number of social collisions is relatively small in this field [Glod06,

MM07] but we can expect their growth.

Better detection quality. Current systems are still unable distinguish plagiarism

from proper quotations. They are also unable to detect borrowings, translated from

the other languages. Finally, they cannot decide which of the similar documents was

the original source. Rewording and paraphrasing are efficient plagiarism hiding

measures, since natural language parsers are still rarely used.

58

59

9. References
[AC75] A. Aho, M. Corasick. Efficient String Matching: an Aid to

Bibliographic Search. Communications of the ACM, vol. 18(6),

1975, p. 333-340.

[AFM94] A. Amir, M. Farach, S. Muthukrishnan. Alphabet Dependence in

Parameterized Matching. Information Processing Letters,

vol. 49(3), 1994, p. 111-115.

[AKVMVU04] S. Alaoutinen, N. Kontro-Vesivalo, D. Medvedev, J. Voracek,

A. Uteshev. Academic Honesty in Cross-Border Education

Opinions of Involved Students. Proc. of FIE Conference,

vol. 3, 2004, p. S3E/20-S3E/25.

[ASR06] A. Ahtiainen, S. Surakka, M. Rahikainen. Plaggie: GNU-Licensed

Source Code Plagiarism Detection Engine for Java Exercises.

Proc. of the 6th Baltic Sea Conference on Computing Education

Research, 2006, p. 141-142.

[Baker95] B. Baker. Parameterized Pattern Matching by Boyer-Moore-type

Algorithms. Proc. of ACM-SODA, 1995, p. 541-550.

[Baker97] B. Baker. Parameterized Duplication in Strings: Algorithms and an

Application to Software Maintenance. SIAM Journal on

Computing, vol. 26(5), 1997, p. 1343-1362.

[BG01] B. Braumoeller, B. Gaines. Actions Do Speak Louder than Words:

Deterring Plagiarism with the Use of Plagiarism-Detection

Software. PS: Political Science and Politics, vol. 34(4), 2001,

p. 835-839.

[Bliwise01] R. Bliwise. A Matter of Honor. Duke Magazine, vol. 87(4), 2001,

p. 2-7.

60

[BNH04] B. Belkhouche, A. Nix, J. Hassell. Plagiarism Detection in

Software Designs. Proc. of the 42nd Annual Southeast Regional

Conference, 2004, p. 207-211.

[Boss07] BOSS website: www.dcs.warwick.ac.uk/boss (accessed: 21-Aug-

2007).

[Brainard05] S. Brainard. Avoiding Plagiarism Guide. Milne Library, SUNY

Geneseo, USA, 2005.

[BTZ07] S. Burrows, S. M. M. Tahaghoghi, J. Zobel. Efficient Plagiarism

Detection for Large Code Repositories. Software Practice &

Experience, vol. 37(2), 2007, p. 151-175.

[BYG92] R. Baeza-Yates, G. Gonnet. A New Approach to Text Searching.

Communications of the ACM, vol. 35(10), 1992, p. 74-82.

[Carbone01] N. Carbone. Turnitin.com, a Pedagogic Placebo for Plagiarism.

Bedford/St. , 2001.

[CCGJLPR94] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek,

T. Lecroq, W. Plandowski, W. Rytter. Speeding Up Two String

Matching Algorithms. Algorithmica, vol. 12(4), 1994, p. 247-267.

[CCWS99] J. Cochran, M. Chamlin, P. Wood, and C. Sellers. Shame,

Embarrassment and Formal Sanction Threats: Extending the

Deterrence/Rational Choice Model to Academic Dishonesty.

Sociological Inquiry, vol. 69(1), 1999, p. 91-105.

[CJ05] J. Colwell, F. Jenks. Student Ethics in Online Courses. Proc. of

, 2005, p. T2D/17-T2D/19.

[EK03] Ph. Edmonds, A. Kilgarriff (Eds.) Journal of Natural Language

Engineering (Special Issue Based On Senseval-2), vol. 9(1), 2003.

[Enseling00] O. Enseling. Build Your Own Languages with JavaCC.

61

JavaWorld, Dec. 2000.

[Eve07] EVE2 website: www.canexus.com (accessed: 21-Aug-2007).

[Fellbaum98] C. Fellbaum. WordNet: An Electronic Lexical Database. The MIT

Press, 1998, 423 p.

[FG05] K. Fredriksson, Sz. Grabowski. Practical and Optimal String

Matching. Lecture Notes in Computer Science, vol. 3772, 2005,

p. 374-385.

[FM06] K. Fredriksson, M. Mozgovoy. Efficient Parameterized String

Matching. Information Processing Letters, vol. 100(3), 2006,

p. 91-96.

[FR87] J. Faidhi, S. Robinson. An Empirical Approach for Detecting

Program Similarity within a University Programming

Environment. Computers & Education, vol. 11(1), 1987, p. 11-19.

[Gerald06] S. Gerald. Confessions of a User. Composition Southeast Weblog,

2006.

[Glod06] M. Glod. Students Rebel Against Database Designed to Thwart

Plagiarists. Washington Post, September 22, 2006.

[Grier81] S. Grier. A Tool that Detects Plagiarism in Pascal Programs. ACM

SIGCSE Bulletin, vol. 13(1), 1981, p. 15-20.

[GT99] D. Gitchell, N. Tran. Sim: a Utility for Detecting Similarity in

Computer Programs. Proc. of the 30th SIGCSE Technical

Symposium on Computer Science Education, 1999, p. 266-270.

[Halstead77] M. Halstead. Elements of Software Science. Elsevier, 1977, 142 p.

[Harris94] J. Harris. Plagiarism in Computer Science Courses. Ethics in the

Computer Age, 1994, p. 122-134.

[HCMS02] T. Harding, D. Carpenter, S. Montgomery, N. Steneck. A

62

Comparison of the Role of Academic Dishonesty Policies of

Several colleges on the Cheating Behavior of Engineering and Pre-

Engineering Students. Proc. of FIE Conference, vol. 3, 2002,

p. S1H/15-S1H/20.

[HG82] C. Hwang, D. Gibson. Using an Effective Grading Method for

Preventing Plagiarism on Programming Assignments. Proc. of the

13th SIGCSE Technical Symposium, 1982, p. 50-59.

[IHBW03] L. Introna, N. Hayes, L. Blair, and E. Wood. Cultural Attitudes

Towards Plagiarism: Developing a Better Understanding of the

Needs of Students from Diverse Cultural Backgrounds Relating to

Issues of Plagiarism. Lancaster University, 2003.

[Irving04] R. Irving. Plagiarism and Collusion Detection Using the Smith-

Waterman Algorithm. TR-2004-164, University of Glasgow, 2004.

[IS96] R. Indury, A.

Patterns. Theoretical Computer Science, vol. 154(2), 1996, p. 203-

224.

[JK03] R. Jackson, K. Kern. Deterring and Detecting Plagiarism.

Instruction Commons Guides, Iowa State University, 2003.

[JL99] M. Joy, M. Luck. Plagiarism in Programming Assignments. IEEE

Transactions on Education, vol. 42(2), 1999, p. 129-133.

[Jones01] E. Jones. Metrics Based Plagiarism Monitoring. The Journal of

Computing in Small Colleges, vol. 16(4), 2001, p. 253-261.

[jPOS07] jPOS website: www.jpos.org (accessed: 11-Sep-2007).

[KM03] D. Klein, C. Manning. Accurate Unlexicalized Parsing. Proc. of

the 41st Meeting of the Association for Computational Linguistics,

2003, p. 423-430.

63

[KR87] R. Karp, R. Rabin. Efficient Randomized Pattern-Matching

Algorithms, IBM Journal of Research and Development,

vol. 31(2), 1987, p. 249-260.

[KSB03] J. Sanders, S. Burkhardt. Linear Work Suffix Array

Construction. Journal of the ACM, vol. 53(6), 2006, p. 918-936.

[Lehmann98] E. Lehmann. Nonparametrics: Statistical Methods Based on

Ranks, Revised. Pearson Education, 1998, 480 p.

[Lenssen06] Ph. Lenssen. German BMW Banned From Google. Google

Blogoscoped, blogoscoped.com/archive/2006-02-04-n60.html

(accessed: 12-Sep-2007).

[Levenshtein66] V. Levenshtein. Binary Codes Capable of Correcting Deletions,

Insertions and Reversals. Soviet Physics Doklady, vol. 10, 1966,

p. 707.

[Manber94] U. Manber. Finding Similar Files in a Large File System. Proc. of

the USENIX Technical Conference, 1994, p. 1-10.

[Meizlish05] D. Meizlish. Promoting Academic Integrity in the Classroom.

CRLT Occasional Papers, University of Michigan, #20, 2005.

[McLaughlin06] A. McLaughlin. Google in China. The Official Google Blog,

googleblog.blogspot.com/2006/01/google-in-china.html (accessed:

12-Sep-2007).

[MFWJS05] M. Mozgovoy, K. Fredriksson, D. White, M. Joy, and E. Sutinen.

Fast Plagiarism Detection System. Lecture Notes in Computer

Science, vol. 3772, 2005, p. 267-270.

[MKK07] M. Mozgovoy, S. Karakovskiy, V. Klyuev. Fast and Reliable

Plagiarism Detection System. , 2007.

[MKS07] M. Mozgovoy, T. Kakkonen, E. Sutinen. Using Natural Language

Parsers in Plagiarism Detection. Proc. ,

64

2007.

[MM07] A. Morrow, J. McLean. The War on Plagiarism. Eyeopener,

Ryerson University, 17-Oct-2007.

[MM90] U. Manber, G. Myers. Suffix Arrays: a New Method for On-Line

String Searches. Proc. of the 1st Annual ACM-SIAM Symposium on

Discrete Algorithms, 1990, p. 319-327.

[MMCM06] M. de Marneffe, B. MacCartney, C. Manning. Generating Typed

Dependency Parses from Phrase Structure Parses. Proc. of 5th

International Conference on Language Resources and Evaluation,

2006.

[Moodle07] Moodle website: moodle.org (accessed: 21-Aug-2007).

[Mozgovoy06] M. Mozgovoy. Desktop Tools for Offline Plagiarism Detection in

Computer Programs. Informatics in Education, vol. 5(1), 2006,

p. 97-112.

[MTK06] M. Mozgovoy, V. Tusov, V. Klyuev. The Use of Machine

Semantic Analysis in Plagiarism Detection. Proc. of the 9th

International Conference on Humans and Computers, Japan,

2006, p. 72-77.

[Mydropbox07] MyDropBox website: www.mydropbox.com (accessed: 21-Aug-

2007).

[Nakov00] P. Nakov. Latent Semantic Analysis of Textual Data. Proc. of the

Conference on Computer Systems and Technologies, Bulgaria,

2000, p. 5031-5035.

[Ottenstein77] K. Ottenstein. An Algorithmic Approach to the Detection and

Prevention of Plagiarism. SIGCSE Bulletin, vol. 8(4), 1977, p. 30-

41.

65

[PMP02] L. Prechelt, G. Malpohl, M. Philippsen. Finding Plagiarisms

among a Set of Programs with JPlag. Journal of Universal

Computer Science, vol. 8(11), 2002, p. 1016-1038.

[SE06] B. Stein, S. M. zu Eissen. Near Similarity Search and Plagiarism

Analysis. Selected Papers from the 29th Annual Conference of the

German Classification Society, 2006, p. 430-437.

[ST06] L. Salmela, J. Tarhio. Sublinear Algorithms for Parameterized

Matching. Lecture Notes in Computer Science, vol. 4009, 2006,

p. 354-364.

[SWA03] S. Schleimer, D. Wilkerson, A. Aiken. Winnowing: Local

Algorithms for Document Fingerprinting. Proc. of the ACM

,

2003, p. 76-85.

[smppapi07] smppapi website: www.smppapi.sourceforge.net (accessed: 11-

Sep-2007).

[TM4J07] TM4J website: www.tm4j.org (accessed: 11-Sep-2007).

[Turabian96] K. Turabian. A Manual for Writers of Term Papers, Theses, and

Dissertations (6th Ed). The University of Chicago Press, 1996,

318 p.

[Tusov04] V. Tusov. Computer Semantics of the Russian Language (in

Russian). St. Petersburg University Press, 2004, 400 p.

[Turnitin07] Turnitin website: www.turnitin.com (accessed: 21-Aug-2007).

[TW04] L. Trivedi, S. Williams. Using Sources. Hamilton College Writing

Center, 2004.

[VD05] P. Vamplew, J. Dermoudy. An Anti-Plagiarism Editor for

Software Development Courses. Proc. of the 7th Australasian

66

Conference on Computing Education, vol. 42, 2005, p. 83-90.

[VW97] K. Verco, M. Wise. Plagiarism

Automated Systems for Detecting Suspected Plagiarism. The

Computer Journal, vol. 39(9), 1997, p. 741-750.

[Webct07] WebCT website: www.webct.com (accessed: 21-Aug-2007).

[Webster01] . Thunder Bay

Press, USA, 2001, 2230 p.

[Wiedemeier02] P. Wiedemeier. Preventing Plagiarism in Computer Literacy

Courses. Journal of Computing in Small Colleges, vol. 17(4),

p. 154-163.

[Wise92] M. Wise. Detection of Similarities in Student Programs: YAP

ACM SIGCSE Bulletin,

vol. 24(1), 1992, p. 268-271.

[Wise94] M. Wise. Running Rabin-Karp Matching and Greedy String

Tiling. Basser Department of Computer Science Technical Report,

Sydney University, 1994.

[Wise96] M. Wise. YAP3: Improved Detection of Similarities in Computer

Programs and Other Texts.

Symposium, 1996, p. 130-134.

[Zobel04] J. A case study in plagiarism

investigation. Proc. of the Australasian Computer Education

Conference, 2004, p. 357-365.

Publication [MFWJS05]
M. Mozgovoy, K. Fredriksson, D. White, M. Joy, and E. Sutinen. Fast Plagiarism

Detection System. Lecture Notes in Computer Science, vol. 3772, 2005, p. 267-270

-Verlag. Reprinted with permission.

Publication [Mozgovoy06]
M. Mozgovoy. Desktop Tools for Offline Plagiarism Detection in Computer Programs.

Informatics in Education, vol. 5(1), 2006, p. 97-112

ematics and Informatics, Vilnius. Reprinted with

permission.

Informatics in Education, 2006, Vol. 5, No. 1, 97–112 97
2006 Institute of Mathematics and Informatics, Vilnius

Desktop Tools for Ofine Plagiarism Detection in
Computer Programs

Maxim MOZGOVOY
Department of Computer Science, University of Joensuu
Länsikatu 15, 80100 Joensuu, Finland
e-mail: maxim.mozgovoy@cs.joensuu.

Received: December 2005

Abstract. Plagiarism in universities has always been a difcult problem to overcome. Various tools
have been developed over the past few years to help teachers detect plagiarism in students’ work. By
being able to categorize the multitude of plagiarism detection tools, it is possible to estimate their
capabilities, advantages and disadvantages. In this article I consider modern plagiarism software
solutions, paying attention mostly to desktop systems intended for plagiarism detection in program
code. I also estimate the speed and reliability of different plagiarism detection systems that are
currently available.
Key words: plagiarism detection, similarities detection, le comparison.

1. Introduction

According to investigations conducted at Duke University (Bliwise, 2001), the prevalance
of plagiarism is widespread. For example, about 40% of all students confessed to copy-
ing sentences without citing the original source, 11% reported almost verbatim copying
of material, 9% “utilized” another student’s computer program. Plagiarism is not only
found in student work; there are several reports (Brumel, 2002; Collberg and Kobourov,
2003) about instances of plagiarism and so-called self-plagiarism (see below) in articles
submitted by researchers for scientic conferences and journals.

The rapid development of computing and Internet technologies has made plagia-
rism much easier to carry out. In the past, people had to spend considerable time to
nd a relevant document, then copy its fragments by hand. With advances in comput-
ing technology it takes considerably less time to search for relevant documents and
literally seconds to cut and paste sections of an original document into one’s own.
Moreover, there are numerous “paper-mills” (e.g., http://www.exampleessays.com,
http://www.directessays.com, www.dissertationsandassignments.com),
where students can buy recycled or custom made papers.

Much can be done to prevent plagiarism before it occurs. Plagiarism prevention tech-
niques include smart design of assignments, supervised tests, work process tracing and
so on (Wiedemeier, 2002; Zobel and Hamilton, 2002). Some teachers even use special
plagiarism-preventing software tools, such as Anti-Plagiarism Editor (APE), which tracks

98 M. Mozgovoy

all potential cheats, such as the cutting and pasting of large text-blocks (Vamplew and
Dermoudy, 2005). The teacher can decrease the level of cheating just by notifying stu-
dents that their work will be checked for plagiarism with a software tool (Braumoeller
and Gaines, 2001). Sometimes the plagiarism can be of an unintentional nature. The stu-
dents are just not sufciently educated to use the sources properly. Fortunately, there are
good style guidelines (see, e.g., Trivedi and Williams, 2002), which can be utilized by the
teachers.

Although priority should be given to plagiarism prevention, detecting plagiarism after
it occurs is still a very important task. The last few years have brought about many so-
lutions for automatic plagiarism detection in essays and in program code. Some of them
are currently being widely used.

The world of plagiarism detection software is not uniform: different approaches exist,
each of which aims at detecting different kinds of plagiarism. In this review we will fo-
cus on “ofine” (or “hermetic”) systems designed for program code similarity analysis.
Instead of making an ordinary survey of software tools, we provide a taxonomy for the
most popular approaches and examine their strengths and weaknesses. This work is in-
tended to provide a short overview of the detection tools currently available and to point
out several important topics for future discussion.

2. Denitions of Plagiarism

One issue that is important for every plagiarism detection tool is how plagiarism is de-
ned. Unfortunately, there are no formal, operational denitions of plagiarism. Usually
people cite the denition given by Webster’s Encyclopedic Dictionary: “the unauthorized
use of the language and thoughts of another author and the representation of them as one’s
own” (Verco and Wise, 1997). Some denitions are more precise, but still informal. An
example is Manber’s denition of plagiarism, which is implied in the following quote:
“Our goal is to identify les that came from the same source or contain parts that came
from the same source” (Manber, 1994).

It seems quite clear that the concept of plagiarism itself is so blurred that one cannot
expect someone to invent any fully adequate denition that is suitable for direct imple-
mentation as a computer program. Much of the advice given to people who need to detect
plagiarism is based on common sense and/or deal with fuzzy, informal concepts (Clough,
2000). Concerning cheating techniques in general, it is necessary to take into account
issues like unauthorized collaboration between students, asking (or even paying) for help
from a skillful outsider, or self-plagiarism (i.e., recycling one’s own published text with-
out quoting). Furthermore, it is sensible to consider results obtained due to inuence or
“creative understanding” of other people’s works. Software tools cannot handle all such
situations because of the limits of current technology. Because of the difculties of creat-
ing an all-encompassing denition of plagiarism, when we refer to plagiarism in this rest
of this article we generally refer to plagiarism that is detectable via software solutions,
unless otherwise stated.

Desktop Tools for Ofine Plagiarism Detection in Computer Programs 99

Basically, every tool implements its own denition of plagiarism, which usually be-
comes clear from the progam’s documentation. The reliability of the software detector
greatly depends on the relationship of its denition of plagiarism to the amorphous def-
inition of plagiarism that is used by human detectors. For example, the study by the au-
thors of the software package JPlag shows that string matching-based le-le comparison
routines can reveal similarity, which is considered to be a good indication of plagiarism
by human detectors (Prechelt et al., 2002). Manber (1994) proposes an explicit criterion
for le similarity: “we say that two les are similar if they contain a signicant number
of common substrings that are not too short”.

3. “Online” Detection Systems

Online detection systems can check an article for fragments of text that can also be found
somewhere on the Net. No doubt, the Internet is the number one source for possible
borrowings in the case of ordinary students’ essays1; therefore, the importance of online
detection systems should not be underestimated. Although a thorough analysis of online
detection systems is beyond the scope of this article, there are several issues related to
online detection that are worth mentioning.

Online detection systems are close relatives of ordinary Internet search engines.
Online detection systems concentrate on the speed and width of detection, at the
cost of the quality of detection. For example, the developers of the Turnitin system
(www.turnitin.com) claim that their database consists of over 4.5 billion pages, which
is updated daily with 40 million pages. They also claim they maintain “a huge database
of books and journals, and a database of the millions of papers already submitted”.

It is not surprising that only a few different “online” plagiarism detection services
exist because many of such systems require enormous computational resources. Some of
them, like Turnitin, maintain their own databases, while others (e.g., EVE2 available at
www.canexus.com) utilize the power of existing search engines.

Although they are very important tools, online plagiarism detection services currently
cannot use the advanced, but time-consuming, document comparison routines used in
some ofine systems. Also, their authors have to deal mostly with technical issues that are
not related to plagiarism detection directly (like organizing large-scale document banks).
Furthermore, “online” systems are usually commercial, so their documentation primarily
contains advertisements and independent reviews are shallow in algorithmic details.

4. “Ofine” Detection Systems

Ofine detection systems adopt a “hermetic” model of the textual world. All “borrow-
ings” are assumed to be made from the documents inside a given collection. For exam-
ple, in the case of ofine detection systems, the entire textual area in which the ofine

1It is not so, e.g., in case of plagiarized program code.

100 M. Mozgovoy

detection system searches for sources of plagiarism might be a collection of documents
provided by a teacher. (In contrast, the textual area of online systems is the entirety of
text on the Internet.)

In some cases, the “hermetic” model turns out to be inappropriate. For example, if
students are asked to write an essay about the economic situation of a certain country in a
certain historical period, it is unlikely to nd cases of “hermetic” plagiarism since every-
body has their own topic; there is, basically, nothing to copy and paste. On the other hand,
laboratory work assignments in computer science tend to provoke “knowledge-sharing”
between students because each of the students’ assignments probably share a high de-
gree of similarity2. Also it is hard to nd a piece of code on the Net that will do exactly
what is called for. Knowledge-sharing is very common: it is the most frequent plagiarism
technique according to (Sheard et al., 2002). Several plagiarism detection systems are
specially designed to analyze computer programs rather than natural language.

It is worthwhile to re-emphasize that the term “online” in this article refers to systems
that search the Net to reveal plagiarism; “ofine” systems search collections of docu-
ments only. The form of user interaction with the system is not important for determining
if a system is an ofine system or an online sytem since an “ofine” system can be
implemented as a Web service (JPlag) or an “online” system can be an installable desktop
application (EVE2).

We argue that the majority of ofine plagiarism detection tools fall into one of three
categories: ngerprint-based, string matching-based, and tree-matching based systems. In
the rest of this article we give an overview of those categories. We end with a discussion
of issues related to speed and visualization, authorship identication, and the principles
of evaluation.

4.1. The Fingerprint-Based Approach and LSA

The ngerprint-based approach was rst used in attribute counting systems, which were
largely used for plagiarism detection in the past (Grier, 1981; Faidhi and Robinson, 1987).

The basic idea in the ngerprint-based approach is to create a kind of ngerprint
for every document in the collection. Each ngerprint may contain several numerical at-
tributes that somehow reect the structure of the document. For example, the system can
store the average number of words per line, the number of lines, the number of passages,
the number of unique words, and so on. If two ngerprints are close to each other (ac-
cording to a distance function), the documents themselves can also be considered as being
similar.

Over the last several years, a couple of different metrics have been tested. It is gener-
ally believed nowadays that ngerprint-based approaches are quite weak since even slight
textual modications can considerably affect the ngerprint of a document; newer sys-
tems, based on content comparison, almost forced out attribute counting systems (Verco
and Wise, 1997).

2Usually teachers just slightly modify one “skeleton” assignment to obtain different task variants.

Desktop Tools for Ofine Plagiarism Detection in Computer Programs 101

A good example of a ngerprint-based system is Accuse (Grier, 1981). The nger-
prints in Accuse include seven parameters: the number of unique operators, the number
of unique operands, the total number of operators, the total number of operands, the
number of code lines, the amount of variables declared (and used), and the total number
of control statements. The correlation scheme computes an “increment” for each attribute
pair:

A attribute count in the first file
A attribute count in the second file
increment = importance of attribute - (A - A)

Then these increments, summed up, yield the nal similarity ratio.
Several more-advanced approaches for creating ngerprints, showing reasonable lev-

els of reliability, are currently in use. The ngerprints in modern systems are usually made
up of the values obtained by applying a mathematical function (a sort of hash function)
to specially selected substrings in the collection of les (Hoad and Zobel, 2003). Fin-
gerprints based on le content are used, for example, in the well-known MOSS system3

(Schleimer et al., 2003).
Since le comparison in ngerprint-based systems is performed by means of com-

parison of small ngerprints, the speed of detection is usually high. If ngerprint size is
constant, the complexity of the work4 is , where is the number of documents in
the collection (Hoad and Zobel, 2003). (Additional – where is the average le
length – time is required to create ngerprints). To obtain similarity ratios for all possible
le pairs, the system should make comparisons in total.

It is possible for ngerprint-based systems to utilize a universal text retrieval method,
such as latent semantic analysis (LSA). LSA allows for the creation of a special nger-
print in the form of a numeric vector for every document, based on frequencies of words
found in the text. Unfortunately, LSA destroys the structure of the documents since it
treats every document as a bag of non-connected words. For specialized tasks, like pla-
giarism detection in program code, LSA has been reported to have a 50% or even higher
similarity between independent programs since the programs usually share the same vo-
cabulary (Nakov, 2000). However, comprehensive evaluation of LSA methods applied to
the plagiarism detection problem is still missing.

4.2. The Content Comparison Techniques

If ngerprint comparison is not enough, the detector can compare the contents of do-
cuments. While the core idea is simple, none of the techniques of content comparison
is completely reliable. Since different systems use different algorithms; currently it is
not possible to determine which technique is the best – each has its own advantages
and disadvantages. Furthermore, the task of plagiarism detection in program code turns

3I consider MOSS to be primarily ngerprint-based system, though it also utilizes string matching tech-
niques.

4I.e., the complexity of the comparison of the query document against the collection.

102 M. Mozgovoy

out to be a problem that requires specialized solutions. There are several tools specially
designed for software plagiarism detection.

Programming languages are formal and much simpler than any natural language. This
makes the problem of detection easier since the techniques of possible plagiarism are lim-
ited in programming languages. It is possible to classify those techniques and explicitly
program procedures that are insensitive to all of them. For natural languages this approach
is obviously much harder to perform.

There have been attempts to list the possible techniques that a plagiarizer can do to
hide plagiarism (Joy and Luck, 1999; Jones, 2001). Some of these techniques are:

1. Changing comments (rewording, adding, changing comment syntax and omitting).
2. Changing white space and layout.
3. Renaming identiers.
4. Reordering code blocks.
5. Reordering statements within code blocks.
6. Changing the order of operands/operators in expressions.
7. Changing data types.
8. Adding redundant statements or variables.
9. Replacing control structures with equivalent structures (while-loop by do-while

loop; nested if statements by a switch-case block and so on).
10. Replacing the functional call by the body of the function.

It is presumed that a plagiarizer does not have to understand the algorithmic meaning
of the program. In fact, any of the techniques listed above can be performed automatically
by a compiler-level tool that can recognize the semantic meaning of individual statements
without recognizing the functionality of the whole program.

However, not all such changes are equally advanced (Joy and Luck, 1999). Some of
them, like changing formatting or identier names (lexical changes), do not even require
the knowledge of the programming language used. Other ones (e.g., structural changes)
can be done only if the plagiarizer is familiar with language semantics.

We can use the list of plagiarizer’s techniques to also dene plagiarism: a plagiarized
program is a program that can be obtained from the original one by means of one or
more of the actions listed above.

Next we discuss the algorithmic solutions that have been implemented in various sys-
tems.

4.3. Tokenization

Tokenization (Joy and Luck, 1999; Prechelt et al., 2002; Mozgovoy et al., 2005) is a
very popular technique used by most source code plagiarism detection systems. Its main
purpose is to render useless all kinds of renaming tricks. Tokenization algorithms basi-
cally substitute various elements of program code with single tokens. For example, any
identier can be replaced by the token <IDT>, and every numerical value by the token
<VALUE>. Now, if a program contains a line

a = b + 45;

Desktop Tools for Ofine Plagiarism Detection in Computer Programs 103

it will be replaced by the string
<IDT> = <IDT> + <VALUE>;
So trying to rename the variables will not help since every line of the form “identier

identier value;” is translated into the same tokenized sequence.
There are methods of tokenization (or similar procedures) that perform more advanced

substitutions. For example, Baker’s parameterized match algorithm5 (Baker, 1995) will
treat two given code fragments as identical if one of them is obtained from the other one
by a series of regular substitutions of identiers.

Tokenization techniques can also utilize semantic information about the control struc-
tures of the programming language being used. For instance, any loops can be substituted
by the <BEGIN_LOOP> <END_LOOP> structure.

There are two main drawbacks related to tokenization:
1. Any tokenizer is language-dependent. So a separate routine is needed for every

programming language6. Fortunately, there are free parsers available for all popular
languages nowadays.

2. The detector, dealing with tokenized les, becomes more “paranoiac”. Tokeniza-
tion increases the degree of similarity between any two given programs.

Tokenization is usually the rst action performed by detectors. After the tokenization
of input les, a system-specic comparison routine is invoked.

4.4. String Matching-Based Algorithms

The scheme of the usual le content comparison system is shown in the following pseu-
docode:

FOR EACH collection file F
FOR EACH collection file G, F G

Calculate similarity between F and G

The core function, which calculates similarity, may vary highly from one system to
another. The most widespread technique is to utilize a string matching procedure, treating
input les (tokenized les in case of software plagiarism) as strings. This gives a true
content-comparison system; though the semantic issues of a le (such as the meaning of
loops and functional calls) still remain unanalyzed.

Early systems like YAP (Wise, 1992) used simple mechanisms, like the UNIX sdiff
tool, that perform line-by-line comparison of two les under Levenshtein distance. Dur-
ing the the last few years, signicantly more advanced string matching methods have
been implemented in plagiarism detectors.

4.4.1. The Running-Karp-Rabin Greedy-String-Tiling (RKS-GST) Algorithm
The RKS-GST algorithm was used, e.g., in Michael Wise’s YAP3 tool (Wise, 1996). The
basic aim of the RKS-GST algorithm is to nd a “best tiling” for two given input les, i.e.,

5Which is not a tokenizer, but its purpose is similar in our context.
6JPlag, for example, explicitly allows to select the correct parser to apply to les of the given collection.

104 M. Mozgovoy

the joint coverage of non-overlapping strings that includes as many tokens from both les
as possible. The existence of a polynomial algorithm that provides an exact solution is still
an open problem (Wise, 1996) so it is necessary to make several heuristic assumptions
to develop a practically applicable procedure. The fact that longer tiles are more valuable
than shorter ones leads to greedy heuristics, which are actually implemented in the RKS-
GST algorithm.

The RKS-GST algorithm can be described (very supercially) as follows. The rou-
tine begins by analyzing the matches of length initial-search-length and greater. These
matches are obtained by calling the Karp-Rabin procedure (Karp and Rabin, 1987). Then
the matches are analyzed (beginning from the longest one). If the current match does not
overlap with the existing tiling, it is added to the coverage as a new tile. After all matches
are processed, a new search occurs with the smaller match length. When the match length
reaches the minimum-match-length threshold value, the algorithm nishes its work.

The RKS-GST algorithm was shown to have complexity in the worst case
(where n is the sum of the lengths of the input strings), while the expected running time
(obtained empirically) is almost linear – just (Wise, 1994). So the overall com-
plexity of the RKS-GST-based system, which produces similarity ratios for all le pairs,
should be .

This method was used later in a well-known system – JPlag (Prechelt et al., 2002).
The tiling approach is now considered to be quite advanced and reliable; most widely-
used systems implement algorithms that can be treated as tiling variations. However, the
actual performance (in terms of speed and reliability) highly depends on the assumptions
that are used.

A version of the greedy string tiling has also been implemented in Sherlock project
(Joy and Luck, 1999).

4.4.2. Parameterized Matching Algorithms
The parameterized matching algorithms approach is mainly associated with Brenda
Baker’s DUP tool (Baker, 1995). As was already mentioned, parameterized matching
allows the system to nd identical sections of code as well as sections with systematic
substitutions of identiers. In practice, the matching is done by replacing identiers with
their offsets: the rst occurrence is substituted by zero, while the next occurrences are
replaced by the number of tokens since their last use (Clough, 2000). This technique
can be considered as an ordinary text matching routine combined with an advanced (less
“paranoiac”) tokenizer.

DUP’s running time is estimated to be linear in input length7 (Baker, 1995), but
quadratic in the worst case.

4.5. Parse Trees Comparison Routines

Going one step further, it is reasonable to analyze parse trees8 of the programs instead of
their listings. Probably, this idea rst was utilized in Sim utility (Gitchell and Tran, 1999).

7For all-against-all detection it is in our terms.
8Parse tree (built by the parser) represents the syntactic structure of the program.

Desktop Tools for Ofine Plagiarism Detection in Computer Programs 105

Sim still uses an ordinary string matching routine to compare programs, but instead of
analyzing code blocks, it compares corresponding parse trees, which are converted to
strings. So Sim is a hybrid approach that lies somewhere between ordinary string match-
ing and tree comparison. The complexity of the algorithm used is O(s , where is the
maximum size of the parse trees (Gitchell and Tran, 1999). Since the size of the parse tree
of the le is proportional to the le length, the overall complexity of process for obtaining
all necessary similarities is estimated as .

The pure tree comparison procedure was implemented in the Brass project (Belk-
houche et al., 2004). Since tree comparison is more complex and therefore slower than
string matching, Brass uses a kind of string comparison routine to lter only “suspicious”
documents. Then a special “micro comparison” algorithm is applied to provide more
reliable results.

Though this approach seems to be the most advanced, little research in this area has
been made so far. For example, it is still unknown if it is worthwhile to perform such a
complex analysis of input les – i.e., it is unknown whether it is necessary to compare
parse trees to reveal instances of plagiarism or if usual string matching algorithms are
reliable enough. Furthermore, any fast enough tree comparison routine requires some
optimizations like greedy heuristics. For now, it is not clear how these techniques affect
reliability.

The complexity of the Brass algorithm has not yet been analyzed, but it is reasonable
to suppose it is not faster than YAP3/JPlag systems.

4.6. Speed and Visualization Issues

Developing a user-friendly interface for plagiarism detection is a separate issue. Cur-
rently several systems, such as MOSS, JPlag and Sherlock, provide impressive interface
solutions, which can serve as decent templates for other projects.

There are no universal recommendations, but it is clear that every system should be
able to:

1) show a list of all similar le pairs with the corresponding degrees of similarity; and
2) give a detailed report about any selected pair: plagiarized blocks should be high-

lighted, and it also should be clear which blocks were considered as similar.
PRAISE (Lancaster and Culwin, 2004) and Sherlock detectors provide quick visual-

ization of results in the form of a graph where each vertex represents a single document,
and each edge shows the degree of similarity between two documents. (If the value of
similarity is lower than a certain threshold, no edge is created). This mechanism is very
useful, especially for small collections; therefore I can advise authors to implement some-
thing similar in their detectors. Note that a good visualization module will not only help
to nd a plagiarism case, but also to prove it quickly in a conict situation (i.e., to show
the evidence of plagiarism in any particular case).

Speed issues have also been in the scope of interest during recent years. By following
the general scheme of pairwise le comparison, it is necessary to perform le-le
comparisons for a collection, consisting of les (which is usually considered to be

106 M. Mozgovoy

a considerable amount of work). That is why the problem of inventing fast comparison
routines always has been crucial9. The usual approach is to develop a fast comparison
procedure, which can be used as a lter for “interesting” pairs. Such lter procedures can
be applied to the les themselves (Belkhouche et al., 2004) or to their ngerprints (which
are much faster, but generally less reliable) (Manber, 1994).

Our recent project (Mozgovoy et al., 2005) tries to bring about a signicant increase
in detection speed by means of algorithmic solutions. We combine all collection les into
a single structure (which is a small modication of the well-known sufx array (Manber
and Myers, 1990)), and then compare separate documents against this collection at once.

Finally we obtain a total complexity of , including the time to build
the sufx array index structure, where is the total number of les, is the average
le length and is a nely-tunable constant, . Actually, represents
the minimal length of matches, which our algorithm tries to nd. A too small value
will give many false matches, while a too large value can lead to skipping important
substrings. Normally we select some “typical” value for the length of the string that a
plagiarizer can copy & paste (e.g., 10–20 tokens).

Any plagiarism detection routine based on pairwise le comparisons will have a com-
plexity of at least, where is the complexity of comparing two les of
length .

5. Authorship Identication

The problem of authorship identication and stylometry is widely-known. Authorship
identication methods include many different techniques: Shallow parsing, Markov mo-
dels, Qsum algorithm, entropy and content analysis, etc. (Cook, 2003).

It seems clear that these methods can be used to reveal possible instances of plagiarism
indirectly. It can be an indication of plagiarism if no essay chunks can be found either on
the Net or inside other students’ submissions, but authorship analysis shows that two
different parts of this essay belong to two different authors. Although the authorship
identication problem has already been researched for years, only a few studies have been
made in plagiarism detection. Recent investigations report only limited success with this
approach (Hersee, 2000; Bonsall, 2004). It turns out that authorship analysis methods can
produce reliable results for large text blocks only; possible deviations between different
paragraphs of the same text are too high in many cases. This makes known authorship
identication methods unreliable for plagiarism detection, but this direction needs more
research.

9This may be not the case for “ofine” plagiarism detection on small data sets, but important for nding
similarities in the source code of a large software project.

Desktop Tools for Ofine Plagiarism Detection in Computer Programs 107

6. Principles of Evaluation

It seems obvious that any plagiarism detection system should rst of all be able to detect
plagiarism; all other issues can raise interest only if the detector itself is reliable. Unfortu-
nately, most projects still lack proper evaluation. Such testing can be difcult for “online”
systems that have to maintain huge data collections; also, as we said before, the issues
of speed and coverage can have greater importance than quality. But even papers on “of-
ine” detection systems usually have very simple evaluation procedures, which show the
positive sides of new algorithms (Belkhouche et al., 2004; Gitchell and Tran, 1999; Joy
and Luck, 1999).

Geoffrey Whale (Whale, 1990) tried to adapt well-known metrics – recall and preci-
sion, which are used in information retrieval -, for the evaluation of plagiarism detection
systems. Whale’s approach was used to evaluate several known systems (Verco and Wise,
1997). Though these metrics are valuable for describing the reliability of the system, they
are difcult to measure. Basically, it should be known beforehand which les from the
collection contain instances of plagiarism; however, only human experts can provide re-
liable sample results. Nonetheless, manual evaluation suffers from other problems:

1. Even human markers in many cases have different opinions about particular sub-
missions;

2. it is not feasible to manually check real-world collections that contain hundreds of
submissions.

Recent work by Hoad and Zobel (Hoad and Zobel, 2003) shows that the highest false
match (HFM, the highest percentage given to an incorrect result) and separation (the
difference between the lowest correct result and the HFM) can serve as better metrics for
plagiarism detection systems than recall and precision.

The authors mention the difference between text retrieval and plagiarism detection.
In text retrieval the measure of similarity between a user query and any document in
the collection is a “score” without any upper bounds. Theoretically, there should be no
“ideal” queries, which give a maximal possible score for an arbitrary document. In pla-
giarism detection the situation is different: The exact copy of the original document is
the ideal match, so the upper limit of the similarity function for every given le is known
beforehand.

A good system should try to minimize the HFM and maximize separation, though
these values are not independent, so only the ratio HFM/separation is really important. A
high separation value can compensate for high HFM and vice versa – low separation is
satisfactory if the HFM is not high.

In the recent paper (Mozgovoy et al., 2005) my co-authors and I tried to compare
different plagiarism detection systems using the “conformism test”. The conformism test
determines how many submissions, considered as plagiarized by some certain system,
are found in a common “plagiarized les subset”, dened by several other systems (“the
jury”) by processing the same test collection.

Though different systems often differ in which le pairs originated from the same
source, they usually agree about the presence or absence of plagiarism in a certain le.

108 M. Mozgovoy

Fig. 1. Comparison of different plagiarism detection systems.

Our views on the current plagiarism detection systems are summarized in Fig. 1.
The asymptotic complexities of different systems are mostly taken from the corre-

sponding articles10. Quality measures are based primarily on our own thoughts about
underlying approaches; we have neither strict proofs, nor reliable sources to substantiate
them.

7. Conclusions

Since the problem of plagiarism is always relevant, the software solutions that help teach-
ers to detect plagiarism cases are being continually developed. Simple attribute counting
tools evolved into complex systems that use advanced string- and tree-matching mecha-
nisms in combination with impressive visualization modules. The structured, restricted
nature of programming languages makes plagiarism detection in software projects harder
for the people, but simpler for the computers. Therefore, a serious progress was achieved
in this direction. Probably, some systems already reached the limitations of the corre-
sponding category. For example, it is hard to believe that someone can develop a string
matching-based le-le comparing system that would be signicantly better than JPlag.
On the other hand, the progress can be made in a new (like tree matching) or little-studied
(authorship attribution) direction.

10Brass complexity is not given in (Belkhouche et al., 2004), so we can only estimate a reasonable order.

Desktop Tools for Ofine Plagiarism Detection in Computer Programs 109

It is also clear that plagiarism detection software cannot substitute a well-planned
teaching process, aimed (in particular) at plagiarism prevention. The appropriate design
of the assignments and the proper organization of the educational process can signi-
cantly reduce cheating.

8. Still Open Questions

Despite the existence of numerous systems intended for plagiarism detection, there are
still many open questions and topics for future research:

1. How advanced should the technology used for plagiarism detection be? It is clear
now, that the metrics-based approach is insufcient, but the best alternative be-
tween string matching and tree matching is still unknown.

2. How should the proper user interface be designed? Which features should be im-
plemented in every plagiarism detector?

3. How can enormous complexity growth be avoided? Is it possible to create a fast
and reliable system? At least, is it possible to use a hybrid approach: a fast lter
plus a reliable le-le comparator?

4. Can authorship identication techniques be adapted for the task of plagiarism de-
tection?

5. Is it possible to invent a simple and reliable procedure for the evaluation of new
systems? How can we measure the degree of reliability? Which deviations from
human experts’ opinions are crucial and which are not?

Acknowledgements

I am grateful to Kimmo Fredriksson for guiding me in this research and to Justus Ran-
dolph for reviewing the paper.

References

Baker, B.S. (1995). On nding duplication and near-duplication in large software systems. In Proc. of Second
IEEE Working Conf. on Reverse Eng., pp. 86–95.

Braumoeller, B., and B. Gaines (2001). Actions do speak louder than words: deterring plagiarism with the use
of plagiarism-detection software. PS: Political Science and Politics, 34(4), 835–839.

Bliwise, R. (2001). A matter of honor. Duke Magazine, May-June, 2–7.
Belkhouche, B., A. Nix and J. Hassell (2004). Plagiarism detection in software designs. In Proc. of the 42nd

Annual Southeast Regional Conference, pp. 207–211.
Bonsall, B. (2004). The Automatic Detection of Plagiarism. University of Shefeld.

http://www.dcs.shef.ac.uk/intranet/teaching/projects/archive/ug2004/pdf
/u7bb.pdf

Brumel, G. (2002). Physicist found guilty of misconduct. Nature, Sept., 419–421.
Collberg, C., and S. Kobourov (2003). Self-Plagiarism in Computer Science. Technical Report TR03-03, Uni-

versity of Arizona.

110 M. Mozgovoy

Clough, P. (2000). Plagiarism in Natural and Programming Languages: an Overview of Current Tools and
Technologies. Internal Report CS-00-05, University of Shefeld.

Faidhi, J.A.W., and S.K. Robinson (1987). An empirical approach for detecting program similarity within a
university programming environment. Computers & Education, 11(1), 11–19.

Grier, S. (1981). A tool that detects plagiarism in pascal programs. ACM SIGCSE Bulletin, 13(1), 15–20.
Gitchell, D., and N. Tran (1999). Sim: a utility for detecting similarity in computer programs. In Proc. of the

30th SIGCSE Technical Symposium on Computer Science Education, New Orleans, Louisiana, pp. 266–270.
Hersee, M. (2000). Automatic Detection of Plagiarism: An Approach Using the Qsum Method. University of

Shefeld.
http://www.dcs.shef.ac.uk/intranet/teaching/projects/archive/ug2001/pdf
/u8msh.pdf

Hoad, T.C., and J. Zobel (2003). Methods for identifying versioned and plagiarised documents. Journal of the
American Society for Information Science and Technology, 54(3), 203–215.

Joy, M., and M. Luck (1999). Plagiarism in programming assignments. IEEE Transactions on Education, 42(2),
129–133.

Jones, E.L. (2001). Metrics based plagiarism monitoring. The Journal of Computing in Small Colleges, 16(4),
253–261.

Karp, R.M., and R.M. Rabin (1987). Efcient randomized pattern-matching algorithms. IBM Journal of Re-
search and Development, 31(2), 249–260.

Lancaster, T., and F. Culwin (2004). Using freely available tools to produce a partially automated plagiarism
detection process. In Proc. of the 21st ASCILITE Conference, Perth, Australia, pp. 520–529.

Manber, U. (1994). Finding similar les in a large le system. In Proc. of USENIX, San Francisco, California,
pp. 1–10.

Cook, M. (2003). Experimenting to Produce a Software Tool for Authorship Attribution. University of Shefeld.
http://www.dcs.shef.ac.uk/intranet/teaching/projects/archive/ug2003/pdf
/u0mc2.pdf

Mozgovoy, M., K. Fredriksson, D. White, M. Joy and E. Sutinen (2005). Fast plagiarism detection system. In
SPIRE’05, November 2–4, Buenos Aires, Argentina, pp. 267–270.

Manber, U., and G. Myers (1990). Sufx arrays: a new method for on-line string searches. In SODA ’90: Proc.
of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 319–327.

Nakov, P. (2000). Latent semantic analysis of textual data. In Proc. of the Conference on Computer Systems and
Technologies, Soa, Bulgaria, pp. 5031–5035.

Prechelt, L., G. Malpohl and M. Philippsen (2002). Finding plagiarisms among a set of programs with JPlag.
Journal of Universal Computer Science, 8(11), 1016–1038.

Sheard, J., M. Dick, S. Markham, I. Macdonald and M. Walsh (2002). Cheating and plagiarism: perceptions
and practices of rst year IT students. In Proc. of ITiCSE’02, June 24–26, Aarhus, Denmark, pp. 183–187.

Schleimer, S., D.S. Wilkerson and A. Aiken (2003). Winnowing: local algorithms for document ngerprinting.
In SIGMOD, San Diego, pp. 76–85.

Trivedi, L., and S. Williams (2002). Using Sources. Hamilton College.
http://www.hamilton.edu/academics/resource/wc/usingsources.html

Verco, K.L., and M.J. Wise (1997). Plagiarism à la mode: a comparison of automated systems for detecting
suspected plagiarism. The Computer Journal, 39(9), 741–750.

The New Webster’s Encyclopedic Dictionary of the English Language. Random House Value Publishing, Inc.
Whale, G. (1990). Identication of program similarity in large populations. The Computer Journal, 33(2), 140–

146.
Wiedemeier, P.D. (2002). Preventing plagiarism in computer literacy courses. The Journal of Computing in

Small Colleges, 17(4), 154–163.
Wise, M.J. (1992). Detection of similarities in student programs: YAP’ing may be preferable to plague’ing.

ACM SIGSCE Bulletin, 24(1), 268–271.
Wise, M.J. (1994). Running Rabin-Karp Matching and Greedy String Tiling. Basser Department of Computer

Science Technical Report, Sydney University.
Wise, M.J. (1996). YAP3: improved detection of similarities in computer program and other texts. In Proc. of

SIGCSE ’96 Technical Symposium, Philadelphia, USA, pp. 130–134.
Zobel, J., and M. Hamilton (2002). Managing student plagiarism in large academic departments. Australian

Universities Review, 45(2), 23–30.

Publication [FM06]
K. Fredriksson, M. Mozgovoy. Efficient Parameterized String Matching. Information

Processing Letters, vol. 100(3), 2006, p. 91-96

Elsevier. Reprinted with permission.

Publication [MTK06]
M. Mozgovoy, V. Tusov, V. Klyuev. The Use of Machine Semantic Analysis in

Plagiarism Detection. Proc. of the 9th International Conference on Humans and

Computers, Japan, 2006, p. 72-77

The Use of Machine Semantic Analysis in Plagiarism Detection

Maxim Mozgovoy*

University of Joensuu,
Finland

mmozgo@cs.joensuu.fi

Vitaly Tusov
St. Petersburg State University,

Russia
tusovvitalij@mail.ru

Vitaly Klyuev
University of Aizu,

 Japan
vkluev@u-aizu.ac.jp

Abstract
Plagiarism detection systems are known for years in
the university community. However, most of the
existing detectors for the natural language texts use
rather simple comparison methods that make the
instances of plagiarism easy to hide. The software,
designed for plagiarism detection in computer
programs, utilizes far more advanced techniques. We
propose a method, which adds functionalities similar
to tokenization and tree matching, to the natural
language texts-oriented detectors. This method
requires noticeable work to be applied in practice,
but also makes use of the existing software for
parsing and word sense disambiguation.

Keywords
machine semantic analysis, plagiarism detection,
string matching, plagiarism, computational
linguistics.

1. Introduction
Plagiarism in universities remains in the scope of

interest of researchers for years. Scientific
investigations cover various aspects of plagiarism: its
origins, pedagogical and ethical issues, plagiarism
prevention and detection, people’s attitude, legal
affairs and honor codes, etc. From the point of view
of practical computer science, one of the most
interesting directions is plagiarism detection.

Numerous systems were developed in recent years
to detect plagiarism in natural language texts as well
as in computer programs. Here we propose a possible
technique that can help to improve existing natural
language-oriented plagiarism detection software.
This technique can be roughly treated as an analogue

* The corresponding author.

of a well-known tokenization procedure in program
code-oriented plagiarism detection systems.
Furthermore, we discuss a way of utilizing language
parsers to deal with the rephrasing of the sentences.

Our current studies are based on semantic
analyzer for the Russian language [1], but other
similar solutions can be used as well. The detection
system, which is described here, is just a part of our
research on natural language processing. We are also
trying to use semantic analysis for information
retrieval tasks and for machine translation.

2. Related Works
Most existing plagiarism detectors are specially

designed to process either program source code or
natural language texts. In the first case the system
usually treats a submitted collection of documents as
hermetic and performs a pairwise comparison
between single submissions only. Such projects
utilize advanced techniques to detect partial matches
(RKS-GST [2], matching in the repository [3]), and
regular changes of the code structure
(tokenization [4], p-matching [5]). The systems,
designed to find similarities in the natural language
texts, mainly search the Internet for the possible
matches. Generally, they do not use sophisticated
comparison methods, aiming mostly at processing
speed and wide coverage (e.g. the developers of
Turnitin [6] system claim they maintain “a huge
database of books and journals, and a database of the
millions of papers already submitted”).

“Hermetic” systems for plagiarism detection in the
natural language texts exist as well, though they are
little-known. We can mention, e.g. CopyCatch
Gold [7], YAP3 [8], and WCopyfind [9]. As a rule,
the detection software can find only partial exact
matches: rephrasing and rewording can conceal the
evidence of plagiarism. CopyCatch Gold reduces the
effect of rewording by taking into account only

hapax legomena words (those that appear only once
in the text) during the comparison, but this technique
is not very reliable.

3. Tokenization
Tokenization [4] is a well-known method that

makes useless all kinds of renaming tricks in
plagiarism in computer programs (such as variable
renaming and changing the type of loop structure).
Tokenization algorithms substitute the elements of
program code with single tokens. For example, any
identifier can be replaced by the token <IDT>, and
every numerical value by the token <VALUE>. Now,
if a program contains a line a = b + 45; this line will
be replaced by the string
<IDT>=<IDT>+<VALUE>; So trying to rename the
variables will not help since every line of the form
“identifier = identifier + value;” is translated to the
same tokenized sequence (the aforementioned
example is taken from [10]).

Tokenization can be treated as substitution of
single elements of some class by the name of the
class itself. E.g. 5, 11.5 and -32 are elements of the
class <VALUE>. In the natural language texts we
can use the same approach. For instance, the words
device and gadget are interchangeable in many
contexts. If we substitute these words by the name of
their class <MECHANISM>, such rewording will be
useless for the plagiarizer.

4. Word Classes
The above described technique can be quite easily

implemented by having a dictionary that matches
every word of a natural language with the
corresponding class. Our current version of the
system (for Russian) includes more than 1600 classes
that form a hierarchy. The small extraction from this
tree is shown in Fig. 1.

For example, a class <PHYSICAL-OBJECT> has
a subclass <ALIVE>, having, in its turn, a subclass
<ANIMAL> that includes classes <ANIMAL-
WILD> and <ANIMAL-DOMESTIC>.
Undoubtedly, the problem of classification is very
nontrivial, and no “best classification” can be
invented. We created only one possible hierarchy
that (according to our studies) satisfactorily reflects
general knowledge about human environment. A

variation of a specially created hierarchy might be
helpful in order to process documents, dedicated to
some narrow fields. For example, it is usually
reasonable to consider gadget and device as direct
successors of the class <MECHANISM>, but for the
technical texts a more detailed classification of
mechanisms will produce better results.

The use of subclasses can help to tune the
tokenizer. For example, we might want to find more
plagiarisms by widening the generalizations, e.g. it is
possible to substitute the word fox with the more
general class <ANIMAL> instead of <ANIMAL-
WILD>.

something
noun

general-concepts
event

situation
 …

 …
physical-object

alive
animal-wild
animal-domestic

 …
money

banknote
payments

 …
 …

 …
…

The obvious difficulty concerns polysemantic
words and homonyms. For instance, the system
should select the correct class for the word table
from the two alternatives — <FURNITURE> and
<DRAWING/TABLE>. We may suggest to use any
tool for word sense disambiguation (WSD),
referenced in [11]. Our software relies on the results,
provided by the semantic analyzer that performs
WSD as well.

5. Fast Plagiarism Detection Algorithm
To obtain working software, we took a system [3],

and substituted the tokenization module with the
natural language version. The corresponding author
is a member of the team that created the
aforementioned system.

The system is intended for hermetic, many-to-
many comparison of all files of the submitted
collection of documents that contain Java listings.
Most hermetic detection programs perform naïve
pairwise file-to-file comparison, which results in
O(f(n)N2) complexity, where N is the number of files
in the collection and f(n) is the time to make the
comparison between one pair of files of length n. Our
software tries to decrease the algorithmic complexity
while preserving almost the same quality of
detection.

The system firstly creates a suffix array from the
tokenized collection of files. A suffix array is a
lexicographically sorted array of all suffixes of a
given string. It allows us to quickly find a file (or
files), containing any given substring. A binary
search is utilized to achieve this.

To find all collection files that are similar to a
given query file, the system executes Alg. 1. It tries
to find the substrings of the tokenized query file,
Q[1..q], in the suffix array, where q is the number of
tokens. Matching substrings are recorded and each
match contributes to the similarity score. The
algorithm takes contiguous non-overlapping token
substrings of length from the query file and
searches all the matching substrings from the index.
These matches are recorded into a ‘repository’. This
phase also includes a sanity check as overlapping
matches are not allowed.

p = 1 // the first token of Q
WHILE p q + 1
 find Q[p...p + 1] from the suffix array
 IF Q[p...p + 1] was found
 UpdateRepository
 p = p +
 ELSE
 p = p + 1
FOR EVERY file Fi in the collection
 Similarity(Q, Fi) = MatchedTokens(F i)/q

In Alg. 2, the system encounters two types of
collisions. The first one appears when more than one
match is found in the same file. If several matches
that are found correspond to the same indexed file,
these matches are extended to tokens, , such
that only one of the original matches survives for
each indexed file. Therefore, for each file in the
index, the algorithm finds all matching substrings

that are longer than other matching substrings and
whose lengths are at least tokens.

Let S be the set of matches of Q[p...p+ 1]
IF some elems of S are found in the same file
 leave only the longest one
FOR every string M from the remaining list S
 IF M doesn’t intersect with repository elems
 insert M to the repository
 ELSE IF M is longer than conflicting elems
 remove all conflicting repository elements
 insert M to the repository

The second type of collision is the reverse of the
first problem: we should forbid the situation when
two different places in the input file correspond to
the same place in some collection file. To resolve
collisions we use ‘longest wins’ heuristics. We sum
the lengths of all the previous matches that intersect
with the current one, and if the current match is
longer, we use it to replace the intersecting previous
matches.

The complexity of Algorithm 1 is highly
dependent on the value of the parameter. Line 3 of
Algorithm 1 takes O(+ log n) average time, where
is n the total number of tokens in the collection
(assuming atomic token comparisons). If we make
the simplifying assumption that two randomly picked
tokens match each other (independently) with fixed
probability p, then on average we obtain np matches
for substrings of length . If Q was found, we call
Algorithm 2. Its total complexity is, on average, at
most O((q/ · np)2). To keep the total average
complexity of Algorithm 1 to at most O(q(+ log n)),
it is enough that = (log1/p n). This results in O(q
log n) total average time. Since we require that =

(log n), and may adjust to tune the quality of the
detection results, we state the time bound as O(q).
Finally, the scores for each file can be computed in
O(N) time. To summarize, the total average
complexity of Algorithm 1 can be made O(q(+ log
n) + N) = O(q + N). The O(+ log n) factors can be
easily reduced to O(1) (worst case) using suffix trees
with suffix links, instead of suffix arrays. This would
result in O(q + N) total time.

This analysis does not include tokenization, but it
is a linear process (both for Java files and for the
natural language texts), and the number of tokens
depends linearly on the file length.

6. Tree Matching
Any sentence of the given text can be

automatically represented in the form of the tree,
which reflects the structure of the sentence. The
principles of organization of such parse trees still
serve as the subject of wide discussions. Most
automatic English parsers use Chomsky-styled Penn
Treebank grammars [12], based on the traditional
linguistic approach to the syntax analysis. For
example, the phrase the monkey ate the banana will
be parsed by such software as shown in Fig. 2.

SENTENCE
 SUBJECT VERB OBJECT

ARTICLE ate ARTICLE
the the

NOUN NOUN
monkey banana

Our semantic analyzer also builds a parse tree for
any given sentence, but it is not based on Chomsky
grammars (they are not well-suitable for the Russian
language, because the order of the parts of a sentence
in Russian is not fixed). The semantic analyzer treats
the sentence as a control structure, having a
functional nature. More specifically, it considers the
sentence as a superposition of words-functions that
depend on words-arguments.

The parse tree for the same phrase the monkey ate
the banana in this model will look like this:

ate
 the_monkey the_banana

Here the word ate is considered as a computable
function of two arguments: the_monkey and
the_banana.

Having ready-made parse trees (of any kind), we
can invoke a tree matching procedure. This technique
is described in [13] for the case of plagiarism
detection in program code.

Initially the algorithm builds a flowchart-styled
parse tree for each file to be analyzed. Then for each
pair of files, the algorithm performs a rough “abstract
comparison”, when only types of the parse tree
elements (like ASSIGNMENT, LOOP,

BRANCHING) are taken into account. This is done
recursively for the each level of tree nodes.

If the similarity percentage becomes lower than
some threshold at some step, the trees are
immediately treated as not similar.

If the abstract comparison indicates enough
similarity, a special low-level “micro comparison”
procedure is invoked. At this point each node
represents an individual statement. Thus, each tree
node turns into a separate subtree that has to be
compared with the corresponding subtree taken from
another file.

Note that the “abstract comparison” is a step when
tokenized sequences are compared, so for our
purposes (plagiarism detection over tokenized texts)
we can skip the next “micro comparison” procedure.
This technique seems to be the most advanced way of
comparing structured documents, but our results in
this direction are still very preliminary for any kind
of evaluation.

On the other hand, it is already clear that the tree
matching can help to reveal rewording. If we treat the
children of every tree node as an unordered
collection of nodes, e.g. the phrases the monkey ate
the banana and the banana was eaten by the monkey
will be very close after the tokenization.

7. Evaluation
The evaluation part is a very problematic issue for

any kind of plagiarism detection system. It is
especially hard for the software that searches the
Internet for the possible occurrences of plagiarism,
but even papers on “hermetic” systems usually just
show the positive sides of the proposed
approach [4, 13]. However, we can examine the
reports that are produced by different plagiarism
detection software when used on the same dataset.

The original system [3] was evaluated by using
such “jury” method. The programs utilized for the
analysis include MOSS [14], JPlag [2] and
Sherlock [4]. Every system printed a report about the
same real collection, consisting of 220 undergraduate
students’ Java programs (varying in size from 2 KB
to 50 KB; the median length is 15 KB). Although the
‘opinions’ of all the tested systems are different for
many of the files, most files are either detected or

rejected by the majority of systems. This simple
approach (to consider only detection or rejection)
allows us to organize a ‘voting’ experiment. Let S i be
the number of ‘jury’ systems (MOSS, JPlag and
Sherlock), which marked file i as suspicious. If Si
2, we should expect our system to mark this file as
well. If Si < 2, the file should, in general, remain
unmarked. For the test set consisting of 155 files
marked by at least one program, our system agreed
with the ‘jury’ in 115 cases (and, correspondingly,
disagreed in 40 cases). This result is more conformist
than the results obtained when the same experiment
was run on the other 3 tested systems. Each system
was tested while the other three acted as jury.

For the evaluation of the new system we used a
collection of 350 documents taken from the
NEWSru.com news server. Each document had an
informative title and was assigned to one of the
following categories: In Russia, In the World,
Economics, Religion, Criminal, Sport, and Culture.
The size of the articles varies from 450 bytes to
19 KB with the median size of about 2 KB. The
typical article consists of 8-12 small paragraphs that
are made of strict narrative sentences and quotations.

This selection was based on the assumption that
the newsreels often publish different documents on
the same topic (though we do not expect direct
plagiarism in this case), so the possibility to find
similar files is quite high. Since we do not know
about any other plagiarism detection systems that use
natural language processing techniques, the results
were analyzed manually.

The system found 20 relevant pairs of similar
documents (with at least 4% degree of similarity).
The typical examples include:
- A pair of documents about the solar eclipse on

20th of March. The first tells about the countries
where this phenomenon is observed; the second is
dedicated purely to the observation of the eclipse
in Russia.

- A pair of documents on the weather conditions in
Europe. The first is about floods in the EU; the
second contains some weather predictions for the
EU (including subsequent floods).

- A pair of documents on rumors about Russian
military assistance to the Iraqi government in
March of 2003. The first outlines the position of

Moscow; the second states the reaction of
Washington.

After tokenization the similarity degrees of the same
file pairs increased (in most cases) by a factor of 1.5
or (in few cases) remained the same. Meanwhile,
four additional false pairs were detected (but with
very low similarity ratios that did not exceed 4-5%).

There are typical situations encountered in the
experiment that noticeably affected the detection
process after tokenization. They include:
- Changes to grammar cases in Russian. The

phrases in one of resorts and of one of resorts are
not matched at due to the changes of the endings
of the words. After tokenization they become
almost identical.

- The use of distinct words of the same classes in
the same contexts in different documents. The
phrases the residence in Greece and the residence
in Athens do not match, but do match after the
tokenization (Greece and Athens are translated to
the same class <PLACE>).

The latter case is related to many mismatches as well.
For example, the phrases Vladimir Putin claimed and
George Bush claimed are treated as the same
sequence <NAME><NAME><SPEAK> after the
tokenization. It may be argued, though, that the
system of classes we used was not specially designed
for plagiarism/similarity detection procedures. A
more advanced hierarchy may include a careful
taxonomy that minimizes such collisions.

It should be noted that in the simplest case the
tokenization can be considered as a variation of
stemming technique that is widely used in
information retrieval. Although, for some languages
(including Russian) stemming procedures are not
simple, since they have to deal with many non-trivial
grammatical issues.

The use of tokenization results in the immediate
increase of the number of matches. Tokenization of
level 0 (stemming), level 1 (with the terminal classes
in the hierarchy) and level 2 (with the direct
ancestors of the terminal classes) makes sense, but
the use of tokenization of higher levels results in
many false matches, since the classes become too
general. For example, tokenization of level 3
substitutes the word cat with the class name
<ALIVE>. The same class corresponds to all alive
objects, such as worm, chairman or wife.

The system also did not detect several file pairs
that could be treated as similar under certain
conditions. For example, some documents can have
only a few common substrings, but most human
readers consider them as similar. The manual
analysis shows that the number of such pairs in our
collection is less than five, and the corresponding
files are not originated from the same source, i.e.
they do not contain instances of plagiarism.

8. Conclusion
Plagiarism detection for text in natural languages

is a challenge. Most natural language processing
tools, such as parsers and taggers remain unused by
the authors of plagiarism detection systems. Also
these tools are language dependent and designed for
English.

Our approach gives a possible solution to make a
language independent system to determine plagiarism
in collections of the texts. The key idea behind it is
the use of hierarchies of concepts and the functional
style of representing the sentences. To implement the
system, we adopted algorithm [3], applied the
tokenization technique and the tree matching
procedure. We utilized the concept hierarchy for the
Russian language. Our tests showed the promising
results which include intelligent tokenization and
high speed processing of the text data (O(q + N) is
required to test a query file of size q against a
collection of N files). The tree matching procedure is
still very experimental, but we believe that it can
significantly improve the quality of plagiarism
detection. Our solution is scalable (see [3]), so it is
suitable for large essays banks.

References

[1] V.A. Tusov, Computer Semantics of the Russian
Language (in Russian), S.-Petersburg University
Press, S.-Petersburg, 2004.
[2] L. Prechelt, G. Malpohl, and M. Philippsen,
JPlag: Finding Plagiarisms among a Set of

Programs, Technical report, Fakultät für Informatik,
Universität Karlsruhe, Germany, 2000.
[3] M. Mozgovoy, K. Fredriksson, D. White, M. Joy,
and E. Sutinen, “Fast Plagiarism Detection System”,
Lecture Notes in Computer Science, vol. 3772, 2005,
pp. 267-270.
[4] M.S. Joy, M. Luck, “Plagiarism in Programming
Assignments”, IEEE Transactions on Education,
vol. 42(2), 1999, pp. 129-133.
[5] B.S. Baker, “Parameterized Duplication in
Strings: Algorithms and an Application to Software
Maintenance”, SIAM Journal on Computing,
vol. 26(5), 1997, pp. 1343-1362.
[6] Turnitin: www.turnitin.com
[7] CopyCatch Gold: www.copycatchgold.com
[8] M.J. Wise, “YAP3: Improved Detection of
Similarities in Computer Program and Other Texts”,
Proceedings of SIGCSE ’96, 1996, pp. 130-134.
[9] WCopyfind: plagiarism.phys.virginia.edu
[10] M. Mozgovoy, “Desktop Tools for Offline
Plagiarism Detection in Computer Programs”,
Informatics in Education, vol. 5(1), 2006, pp. 97-
112.
[11] Ph. Edmonds, A. Kilgarriff (Eds.), Journal of
Natural Language Engineering (Special Issue Based
On Senseval-2), vol. 9(1), 2003.
[12] M.P. Marcus, B. Santorini,
M.A. Marcinkiewicz, “Bulding a large annotated
corpus of English: the Penn Treebank”,
Computational Linguistics, vol. 19, 1993, pp. 313-
330.
[13] B. Belkhouche, A. Nix, J. Hassell, “Plagiarism
Detection in Software Designs”, Proceedings of the
42nd Annual Southeast Regional Conference, 2004,
pp. 207-211.
[14] S. Schleimer, D. S. Wilkerson, A. Aiken,
“Winnowing: Local Algorithms for Document
Fingerprinting”, Proceedings of the 2003 ACM
SIGMOD International Conference on Management
of Data, 2003, pp. 76-85.

Publication [MKK07]
M. Mozgovoy, S. Karakovskiy, V. Klyuev. Fast and Reliable Plagiarism Detection
System. .

7 IEEE. Reprinted with permission.

Publication [MKS07]
M. Mozgovoy, T. Kakkonen, E. Sutinen. Using Natural Language Parsers in Plagiarism
Detection. , 2007

ISCA. Reprinted with permission.

Using Natural Language Parsers in Plagiarism Detection

Maxim Mozgovoy
mmozgo@cs.joensuu.fi

Tuomo Kakkonen
tkakkone@cs.joensuu.fi

Erkki Sutinen
sutinen@cs.joensuu.fi

University of Joensuu
Finland

Abstract
The problem of plagiarism detection system design is a subject of
numerous works of the last decades. Various advanced file-file
comparison techniques were developed. However, most existing
systems, aimed at natural language texts, do not perform any
significant preprocessing of the input documents. So in many
cases it is possible to hide the presence of plagiarism by utilizing
some simple techniques. In this work we show how a natural
language parser can be used to fight against basic plagiarism
hiding methods.

Index terms: plagiarism detection, natural language parsing,
string matching, natural language processing.

1. Introduction
Plagiarism in universities is an important problem, remaining

as a topic for scientific works for years. The studies of plagiarism
include the understanding of phenomenon itself, developing
methods of plagiarism prevention and techniques of plagiarism
detection. The later problem turns out to be a technical task in
many cases, since plagiarism detection can be effectively done
with the help of computer tools.

A plagiarizer, though, can make some efforts to hide
plagiarism. For example, in program code files it is possible to
rename variables and to change control structures, modifying the
initial lexical structure of the program. Several techniques,
including tokenization [1] and parameterized matching [2] were
developed to fight with such changes. However, similar methods
are harder to apply for natural language texts, so usually it turns
out to be easier to hide plagiarism in this case.

In this work we show that NLP tools can be used as a rough
equivalent of tokenization for natural language texts, overcoming
simple plagiarism hiding techniques. Our previous work [3] was
dedicated to the problem of rewording sentences. The current
work shows how to fight with “split match” problem.

2. “Split Match” Problem
Arguably, the most popular detection scheme in modern

plagiarism detection systems is file-file content comparison by
means of general string matching algorithms. Generally, the
systems try to find the best joint coverage of the two files, and
treat the size of this coverage as their similarity ratio. For
example, running Karp-Rabin greedy string tiling (RKR-
GST) [4] is used in YAP3 [5], JPlag [6], and Plaggie [7] systems.
Similar approach is utilized in Sherlock [1] and FPDS [8].

The task of finding optimal joint coverage appears to be NP-
complete [5], so heuristic assumptions are used in practical
algorithms. For example, nearly all systems use a variation of
greedy matching. Another widely used heuristics suggests
limiting the minimal length of substrings to be matched. The
need of this constraint is caused by the peculiarities of plagiarism
detection problem. By including short substrings into the joint
coverage, the program provides a lot of false matches that do not
indicate plagiarism. Typical copy & paste plagiarism results in
duplicating sequences of words, while the presence of the same
single words can be an indicator of vocabulary similarity only,
not of plagiarism.

Systems like Plaggie [7] and FPDS [8] include such “shortest
string length to match” fine-tunable parameters explicitly. Our
experiments show that the reasonable size of this parameter is
about 10-20 (tokens) in case of program code, and about 4-6
(words) in case of natural language texts.

Unfortunately, the use of this heuristics can cause plagiarism
mismatching if a plagiarizer swaps words (this is easy to do in
natural language texts, especially in languages such as German,
Finnish and Russian that allow freer word order than English).
For example, suppose that the original document contains a
phrase “light bright sun”. A plagiarizer rewords it to “bright light
sun”. If a system is tuned to match substrings of length 2 (words)
and longer only, the plagiarized phrase will not be matched.
Keeping in mind the fact that the usual value of “shortest string
length to match” constant can be 5-6 words, the intentional word
swapping can noticeably affect the detection results.

3. Text Parsing as a Solution
Like computer programs, natural language sentences have

syntactic and semantic structure. There are software tools
available that can be used to build parse trees for individual
sentences. Most automatic English parsers use Chomsky-styled
Penn Treebank grammars [9], based on the traditional linguistic
approach to the syntax analysis, producing phrase structure-styled
analyses. For example, the phrase the monkey ate the banana will
be represented as

SENTENCE
 SUBJECT VERB OBJECT

ARTICLE ate ARTICLE
the the

NOUN NOUN
monkey banana

Natural language parsers can recognize noun phrases,
homogeneous parts of the sentence, etc. It is clear that word
swapping can occur, in particular, in sentences with conjunctions,

(c) SLaTE 2007

such as “and”, “or”, “but”, etc. For example, the phrase “I ate the
pizza, the pasta and the donuts” can be reworded as “I ate the
pasta, the donuts and the pizza”. Instead of comparing sentences
as word strings, we can first analyze them by a parser that
recognizes the syntactic structure. These syntactically tagged
structures normalize differences between sentences with the same
proposition expressed with different word order, thus revealing
potential plagiarism.

In contrast to most other parsers based on probabilistic
context-free grammars (PCFGs), Stanford Parser is based on an
unlexicalized model [10]. We used version 1.5.1 (30 May 2006)
of the system in our experiments. This parser uses a Cocke-
Younger-Kasami (CYK) [11, 12] search algorithm and can
output both dependency and phrase structure analyses [13]. Klein
and Manning [10] reported labeled precision and recall figures of
86.9 and 85.7 respectively for this parser. The authors claim that
the parser is able to analyze all the sentences in section 23 of the
Penn Treebank [9] in a machine with 1GB of memory.

We ran the experiments on the English PCFG grammar and
used the dependency output consisting of 48 dependency types.
An post-processor tool was implemented in Java that transforms
the outputs of Stanford Parser from dependency trees into a
format in which the word order has no effect. The format
represents the words in the sentence sorted according to their
grammatical relations (GR) that designate the type of the
dependency between the words. The words inside each GR group
are sorted in alphabetical order. Figure 1 gives an example of the
original Stanford Parser output and transformed format.

Figure 1. Stanford Parser (on the top) and out post-processor (on
the bottom) outputs for the sentence: “I ate the pizza, the pasta
and the donuts.”

4. Technical Issues
The files generated by natural language parser, are ordinary

text documents, and can be used as an input for most general-
purpose plagiarism detection system. We have used system [8],
earlier developed at our university.

The detection is performed in two phases. First, the parser
processes input collection file by file, and generates a collection
of parsed files. Second, plagiarism detection system checks the
parsed files for similarity. Such flexible scheme allows us to
experiment with different parsers, tokenizers, and preprocessors,
but in current case has one noticeable drawback. The problem is
that the parser destroys the initial word order in every sentence of
the input text. Therefore, the plagiarism detection system cannot
precisely highlight similar blocks of text in original file pairs.

There are two obvious ways to overcome this problem: either the
system should be programmed to highlight the whole plagiarized
sentences instead of word chains, or the parser should generate
some metadata about the parsed files, helping to restore the links
between words in original and parsed files. The later is
preferable, but requires serious modifications of the parser.

5. Evaluation
Reliable evaluation of a plagiarism detection system is a hard

task to perform. Many works use quite informal justifications of
the approach used [1, 14]. One of the possible scientific methods
includes the use of different plagiarism detection systems as
“jury” to evaluate the examined system. Though the separate
“opinions” of other systems cannot work as reliable indicators of
quality of the system being evaluated, the collaborative “voting”
determines the subset of plagiarized files more reliably. This
method was used to evaluate the system [8].

Unfortunately, this approach is hard to follow with natural
language texts, since the only system we know that utilizes
natural language parsing is our recent project [3], that is based on
the same system [8], paired with a parser of the Russian
language. Therefore, the results were analyzed manually.

Our positive experience with [3] encouraged to use short
news messages as an input collection. Such a selection is based
on the fact that quite often different agencies provide information
about the same event. Furthermore, agencies often cite one
another, increasing the number of possible duplications
(sometimes reworded). We do not expect plagiarism in this case.

For the evaluation of the system, a collection of 128 messages
was obtained from the website of BBC NEWS
(http://news.bbc.co.uk). Each message falls into one of the
following categories: Business, Europe, Science/Nature, and
Technology. The median size of each message (after removing all
formatting) is about 2 KB.

We have also prepared several files with intentional
plagiarism, performed using copy & paste with subsequent
change of word and phrase order. It should be mentioned that
news is hard to plagiarize with such a method, since the reels are
laconic, and do not contain enough adjectives or phrases to swap.
However, in free-form essays we used there are more possibilities
for such “swap-powered” plagiarism.

The system [8] without parser found 11 pairs of messages
containing vast quotations from each other, and 3 pairs of
messages informing about the same event. The similarity ratios of
later pairs are 5%-33%. The similarity ratios of plagiarized free-
form essays were estimated as 10%-30%. The inclusion of parser
increases similarity ratios for overlapping news messages by 7%-
13%. This observation indicates that the new system has an
overall tendency to assign higher similarity grades to the same
file pairs. As a result, two more file pairs of similarity 5% and 7%
appeared in the resulting log, but they were not considered as
similar by human graders. In practice, it is possible to get rid of
incorrectly matched pairs by raising a similarity threshold for
final file pair list. For the plagiarized free-form essays the
similarity ratios have increased significantly — to 50%-80%. The
results are also noticeably affected by the value of “shortest string
length to match” constant. The smaller is constant, the less effect
has the use of the parser. Large constant values cause higher

nsubj(ate-2, I-1)
det(pizza-4, the-3)
dobj(ate-2, pizza-4)
det(pasta-7, the-6)
conj(pizza-4, pasta-7)
cc(pizza-4, and-8)
det(donuts-10, the-9)
conj(pizza-4, donuts-10)

[ate, cc[and], conj[donuts, pasta,
pizza], det[the, the, the],
dobj[pizza], nsubj[I]]

(c) SLaTE 2007

probability to mismatch “swap-powered” plagiarism, detectable
by means of parser.

6. Discussion
Our experiments show that the use of natural language parser

to find swapped words and phrases can be effective for
intentional plagiarism, but usually impractical for casually similar
documents. If two files use the same source or cite each other, the
probability of finding intentional swaps is low. On the contrary,
plagiarizers have strict motivation to hide copy & paste
plagiarism, so swaps are much more likely to occur.

Since the existence of swaps is a good indication of
plagiarism, one of the possibilities for future research can be
comparison of file pair similarity without and with parsing. The
high difference in numbers can indicate the presence of
intentional word swaps, and, therefore, of plagiarism.

The use of smaller “shortest string length to match” constant
can effectively fight against swaps as well, but it also
significantly increases the possibility of false matches.
Furthermore, larger values of this constant make detection
algorithm work faster [8].

References
[1] M.S. Joy, M. Luck, “Plagiarism in Programming
Assignments”, IEEE Transactions on Education , vol. 42(2),
1999, pp. 129-133.

[2] B.S. Baker, “Parameterized Duplication in Strings:
Algorithms and an Application to Software Maintenance”, SIAM
Journal on Computing , vol. 26(5), 1997, pp. 1343-1362.
[3] M. Mozgovoy, V. Tusov, V. Klyuev, “The Use of Machine
Semantic Analysis in Plagiarism Detection”, Proceedings of the
9th International Conference on Humans and Computers , Japan,
2006, p. 72-77.

[4] M.J. Wise, “Running Karp-Rabin Matching and Greedy
String Tiling”, Technical Report #463, Basser Department of
Computer Science, University of Sydney, 1993.

[5] M.J. Wise, “YAP3: Improved Detection of Similarities in
Computer Program and Other Texts”, Proceedings of
SIGCSE ’96, 1996, pp. 130-134.

[6] L. Prechelt, G. Malpohl, and M. Philippsen, “JPlag: Finding
Plagiarisms among a Set of Programs”, Technical report,
Fakultät für Informatik, Universität Karlsruhe, Germany, 2000.
[7] A. Ahtiainen, S. Surakka, M. Rahikainen, “Plaggie: GNU-
Licensed Source Code Plagiarism Detection Engine for Java
Exercises”, Proceedings of the 6th Baltic Sea Conference on
Computing Education Research , 2006, pp. 141-142.

[8] M. Mozgovoy, K. Fredriksson, D. White, M. Joy, and
E. Sutinen, “Fast Plagiarism Detection System”, Lecture Notes in
Computer Science, vol. 3772, 2005, pp. 267-270.
[9] M.P. Marcus, B. Santorini, M.A. Marcinkiewicz, “Bulding a
Large Annotated Corpus of English: the Penn Treebank”,
Computational Linguistics , vol. 19, 1993, pp. 313-330.

[10] D. Klein, C. Manning, “Accurate Unlexicalized Parsing“,
Proceedings of the 41st Meeting of the Association for
Computational Linguistics , 2003, pp. 423-430.
[11] T. Kasami, “An Efficient Recognition and Syntax-analysis
Algorithm for Context-free Languages”, Scientific Report
AFCRL-65-758, Air Force Cambridge Research Lab, Bedford,
Massachusetts, USA, 1965.

[12] D. Younger, “Recognition and Parsing of Context-free
Languages in Time n3”, Information and Control, vol. 10(2),
1967, pp. 189–208.
[13] M-C. de Marneffe, B. MacCartney, C. Manning,
“Generating Typed Dependency Parses from Phrase Structure
Parses”, Proceedings of the 5th International Conference on
Language Resources and Evaluation , 2006.

[14] B. Belkhouche, A. Nix, J. Hassell, “Plagiarism Detection in
Software Designs”, Proceedings of the 42nd Annual Southeast
Regional Conference, 2004, pp. 207-211.

(c) SLaTE 2007

Errata
[Mozgovoy06] Missing reference: (Vamplew and Dermoudy, 2005) P. Vamplew,

J. Dermoudy. An Anti-Plagiarism Editor for Software Development

Courses. Proc. of the 7th Australasian Conference on Computing

Education, vol. 42, 2005, p. 83-90.

[Mozgovoy06]

[Mozgovoy06] .

[Mozgovoy06]

[Mozgovoy06] Sec. 4.2. Note that the plagiarism hiding techniques can be used for

code optimization. However, if a certain program is an optimized

[FM06] m m

Dissertations at the Department of Computer
Science and Statistics
Rask, Raimo. Automating Estimation of Software Size during the Requirements
Specification Phase
Structured Methods.
of Joensuu. Publications in Sciences, 28. 128 pp. Joensuu, 1992.

Ahonen, Jarmo. Modeling Physical Domains for Knowledge Based Systems. Joensuun

Sciences, 33. 127 pp. Joensuu, 1995.

Kopponen, Marja. CAI in CS. University of Joensuu, Computer Science, Dissertations
1. 97 pp. Joensuu, 1997.

Forsell, Martti. Implementation of Instruction-Level and Thread-Level Parallelism in
Computers. University of Joensuu, Computer Science, Dissertations 2. 121 pp. Joensuu,
1997.

Juvaste, Simo. Modeling Parallel Shared Memory Computations. University of
Joensuu, Computer Science, Dissertations 3. 190 pp. Joensuu, 1998.

Ageenko, Eugene. Context-based Compression of Binary Images. University of
Joensuu, Computer Science, Dissertations 4. 111 pp. Joensuu, 2000.

Tukiainen, Markku. Developing a New Model of Spreadsheet Calculations: A Goals
and Plans Approach. University of Joensuu, Computer Science, Dissertations 5. 151 pp.
Joensuu, 2001.

Eriksson-Bique, Stephen. An Algebraic Theory of Multidimensional Arrays.
University of Joensuu, Computer Science, Dissertations 6. 278 pp. Joensuu, 2002.

Kolesnikov, Alexander. Efficient Algorithms for Vectorization and Polygonal
Approximation. University of Joensuu, Computer Science, Dissertations 7. 204 pp.
Joensuu, 2003.

Kopylov, Pavel. Processing and Compression of Raster Map Images. University of
Joensuu, Computer Science, Dissertations 8. 132 pp. Joensuu, 2004.

Virmajoki, Olli. Pairwise Nearest Neighbor Method Revisited. University of Joensuu,
Computer Science, Dissertations 9. 164 pp. Joensuu, 2004.

Suhonen, Jarkko. A Formative Development Method for Digital Learning
Environments in Sparse Learning Communities, University of Joensuu, Computer
Science, Dissertations 10. 154 pp. Joensuu, 2005.

Xu, Mantao. K-means Based Clustering and Context Quantization, University of
Joensuu, Computer Science, Dissertations 11. 162 pp. Joensuu, 2005.

Kinnunen, Tomi. Optimizing Spectral Feature Based Text-Independent Speaker
Recognition. University of Joensuu, Computer Science, Dissertations 12. 156 pp.
Joensuu, 2005.

. Methods for Fast and Reliable Clustering. University of Joensuu,
Computer Science, Dissertations 13. 108 pp. Joensuu, 2006.

Tedre, Matti. The Development of Computer Science: A Sociocultural Perspective.
University of Joensuu, Computer Science, Dissertations 14. 502 pp. Joensuu, 2006.

Akimov, Alexander. Compression of Digital Maps. University of Joensuu, Computer
Science, Dissertations 15. 116 pp. Joensuu, 2006.

Vesisenaho, Mikko. Developing University-level Introductory ICT Education in
Tanzania: A Context Approach. University of Joensuu, Computer Science, Dissertations
16. 199 pp. Joensuu 2007.

Huang, Haibin. Lossless Audio Coding for MPEG-4. University of Joensuu, Computer
Science, Dissertations 17. 86 pp. Joensuu 2007.

Mozgovoy, Maxim. Enhancing Computer-Aided Plagiarism Detection. University of
Joensuu, Computer Science, Dissertations 18. 131 pp. Joensuu, 2007.

Julkaisija Joensuun yliopisto
- ja tilastotieteen laitos

Publisher University of Joensuu
Department of Computer Science and Statistics

Vaihdot Joensuun yliopiston kirjasto / Vaihdot
PL 107, 80101 Joensuu
Puh. 013-251 2677, fax 013-251 2691
e-mail: vaihdot@joensuu.fi

Exchanges Joensuu University Library / Exchanges
P.O. Box 107, FI-80101 Joensuu, FINLAND
Tel. +358-13-251 2677, fax +358-13-251 2691
e-mail: vaihdot@joensuu.fi

Myynti Joensuun yliopiston kirjasto / Julkaisujen myynti
PL 107, 80101 Joensuu
Puh. 013-251 4509, fax 013-251 2691
e-mail: joepub@joensuu.fi

Sales Joensuu University Library / Sales of Publications
P.O. Box 107, FI-80101 Joensuu, FINLAND
Tel. +358-13-251 4509, fax +358-13-251 2691
e-mail: joepub@joensuu.fi

