UNIVERSITY OF JOENSUU
COMPUTER SCIENCE AND STATISTICS
DISSERTATIONS 18

MAXIM MOzGovoyY

ENHANCING COMPUTER-AIDED PLAGIARISM
DETECTION

ACADEMIC DISSERTATION

To be presented, with the permission of the Faculty of Science of
the University of Joensuu, for public criticism in Louhela
Auditorium of the Science Park, Lansikatu 15, Joensuu, on
November 14, 2007, at 13 o'clock.

UNIVERSITY OF JOENSUU
2007

Supervisors. Professor Erkki Sutinen
Department of Computer Science and Statistics
University of Joensuu

Joensuu, Finland

Doctor Kimmo Fredriksson
Department of Computer Science
University of Kuopio

Kuopio, Finland

Reviewers: Professor Lauri Malmi
Laboratory of Software Techniques
Helsinki University of Technology
Helsinki, Finland

Professor J. Michael Spector
Learning Systems Institute
Florida State University
Tallahassee, Florida, USA

Opponent: Doctor Kinshuk
School of Computing and Information Systems
Athabasca University
Athabasca, Canada

ISBN 978-952-210-049-9 (paperback)

ISSN 1796-8100 (paperback)
ISBN 978-952-219-050-5 (PDF)
ISSN 1796-8119 (PDF)

Computing Reviews (1998) Classification: E.1, H.3.3, H.3.4, J.1, K.3.1

Y liopistopaino
Joensuu 2007

Enhancing Computer-Aided Plagiarism Detection

Maxim Mozgovoy

Department of Computer Science and Statistics
University of Joensuu

P.O.Box 111, FIN-80101 Joensuu FINLAND
mmozgo@cs.joensuul.fi

University of Joensuu, Computer Science and Statistics, Dissertations 18

Joensuu, 2007, 131 pages

Abstract

Plagiarism is a widespread phenomenon that frequently attracts attention of scholars.
Many works are dedicated to plagiarism, including pedagogical, juridical, ethical, and

technological aspects and issues.

Computer science does not deal with forming a right attitude to plagiarism nor with
developing plagiarism prevention instruments such as honor codes. Computers can be
used to detect instances of plagiarism in students’ works, helping the teacher to creste a
fair atmosphere at a classroom. Furthermore, studies indicate that the students are more

plagiarism-aware when they know about the usage of plagiarism-checking tools.

This thesis is dedicated to the problem of computer-aided plagiarism detection, i.e. to
the development and the use of software instruments that help to reveal plagiarism. The
creation of such tools raises specific algorithmic problems that deserve attention. The

results covered in this work, include:

. Building the taxonomy of existing plagiarism detection methods according to their
speed and reliability characteristics.

. Studying and improving string matching algorithms used in plagiarism detection.
Introducing “tokenizers” for the natural language texts, applying natural language

parsers for plagiarism detection in order to enhance the quality of the detectors.

Optimizing the speed performance of string matching based plagiarism detection
algorithms by applying a combined fast and reliable scoring scheme. Developing an
efficient parameterized matching procedure.

Developing a fast string matching based plagiarism detection algorithm.

Keywords: plagiarism detection, text similarity detection, string matching, natural

language processing, tokenization, parameterized matching.

Acknowledgements

| am very grateful to my supervisors Prof. Erkki Sutinen and Dr. Kimmo Fredriksson
for their constant support and inspiration. Numerous creative ideas by Prof. Sutinen and
the critical mind of Dr. Fredriksson made this work much better than it could be

according to my initia plans.

| wish to thank also Prof. Lauri Malmi and Prof. J. Michael Spector, the reviewers of

this thesis, for their valuable comments and suggestions.

The Department of Computer Science and Statistics organized excellent summer
schools, which were very important for my PhD studies. The main contributions to
these events belong to IMPDET community, so I wish to thank IMPDET’s Director of
Research Dr. Jarkko Suhonen. The Department aso provided necessary financial
support that made the participation in the conferences and the summer schools possible
for me. As aformer IMPIT student, | am extremely grateful to all people involved into

this program, especially to our coordinator Wilhelmiina Hamalainen.

Sincere thanks to all my co-authors. No research is possible without collaboration, and
some joint work was really pleasant for me. | hope this fruitful cooperation will be

continued in the future.

Maxim Mozgovoy, October 2007

Vi

List of Original Publications

[MFW.JS05]

[Mozgovoy06]

[FMO8]

[MTKO6]

[MKKO7]

[MKSO07]

M. Mozgovoy, K. Fredriksson, D. White, M. Joy, and E. Sutinen.
Fast Plagiarism Detection System. Lecture Notes in Computer
Science, vol. 3772, 2005, p. 267-270.

M. Mozgovoy. Desktop Tools for Offline Plagiarism Detection in
Computer Programs. Informatics in Education, vol. 5(1), 2006,
p. 97-112.

K. Fredriksson, M. Mozgovoy. Efficient Parameterized String
Matching. Information Processing Letters, vol. 100(3), 2006, p. 91-
9%6.

M. Mozgovoy, V. Tusov, V. Klyuev. The Use of Machine Semantic
Analysis in Plagiarism Detection. Proc. of the 9" International
Conference on Humans and Computers, Japan, 2006, p. 72-77.

M. Mozgovoy, S. Karakovskiy, V.Klyuev. Fast and Reliable
Plagiarism Detection System. Proc. of FIE'07 Cor ference, 2007.

M. Mozgovoy, T. Kakkonen, E. Sutinen. Using Natural Language
Parsers in Plagiarism Detection. Proc. ¢f SLaTE 07 Workshep,
2007.

Vii

viii

Contents

I [11 o o 1U o [0 o IR 1
1.1. Preventing Plagiarism: Technical, Cultural, and Legal Issues 1
1.1.1. Making Plagiarizing Hard to Perform ..o 2
1.1.2. Promoting Fair Play PrinCiples.........ccccccoiii, 2
1.1.3. Developing Honor Codes and Dishonesty Policies....................... 3
1.2. Detecting PlagiariSm ... 4
1.2.1. Investigating Plagiarism Cases Manually..............cccooeceiiiiiiinnnne 4
1.2.2. Using Computer Tools to Detect Plagiarismccccoeeicnnnnnee 5

2. Research Contribution............ccccciii, 9
2.1. Research QUESHIONScooiiiiiiiiiiiiiiiii e 9
2.2. Contribution of Individual Papersccccciiiiiiiiiiie 10
3. Definitions of Plagiarismcccccceieiiiiiiiiiiiieeee e 13
4. Hermetic Plagiarism Detection SyStemsccccceeevvviiiiiininnnnnnn. 17
4.1. Fingerprint-Based SYStemScueiiiiiiiiiiiiiiiieeee e 18
4.2. Content Comparison TEChNIQUES.........cceeviiiiiiiiiiiieiiiiieeeee 19
4.2.1. String Matching Based Content COmparisoncccevvveeeeeenn. 19
4.2.2. Parse Trees COMPAriSONcoooiiiiiiiiieaiie e 21

5. Input Preprocessing Algorithms..........cccccvvvviviiiiiec e, 23
5.1. Hiding PlagiariSm..........cc.uuuiiiiiiiiiiiiieee e 23
5.2. Overcoming Hiding Techniques by Preprocessing 24
5.3. Preprocessing Source Codeccccveiiiiiiiiiiiiiiiiiiiiiie e 26
TR 70t I 0 1 (=T 0112 1 o o 26
5.3.2. Parameterized MatChingccccouuummmiiiiiiiiiiiiiiiiieiieeee e 27
5.4. Preprocessing Natural Language TextScccoovviieeieeeiieennnneenn, 28
5.4.1. Using Word Sense Disambiguation Modules and Thesauri 28
5.4.2. USING PAISEIScooiiiiiiiii e 32

6. Speed and Reliability of Plagiarism Detectorscccceeuueees 37

6.1. Performance Attributes of Plagiarism Detectorscc...... 37
6.2. Fast Parameterized MatChingooociiiiiiiiiiiiee e 39
6.2.1. Preliminaries ... 39
6.2.2. Parameterized Bit-Parallel Matching................ccuveviiiiiiiiiiieennnnee.. 40
6.2.3. Parameterized Backward Trie Matchingcccccccvvvviviiiiennnnnn.. 42
6.2.4. Experimental RESUILSccccooumiiiiiiiiiiiiiiiie e 43
6.3. Reducing Asymptotic COmMPIexity..........ccccuuvemmirieiiiienenieeenie 44
6.3.1. FPDS AIQOrithMSooiii e 45
6.3.2. FPDS PerformancCe...........oooooiiiiiiiiii e 46
6.4. Combining Speed and ACCUIaCYcccuvumiiiirieiiieeeeeeeeeeeeee 50
7. CONCIUSIONS ..coiiiiiiiiiteeee ettt b 55
8. PEerSPeCliVES ..o 57
0. REBIENCES. ..ottt e 59
Publications

1. Introduction

Webster’s Encyclcpedic Unabridged Dictionary of the English Language defines
plagiarism as “the unauthorized use of the language and thoughts of another author and
the representation of them as one’s own” [WebsterO1]. Plagiarism in the universities
and colleges, usually expressed in copying another student’s homework or computer
program, is a permanent subject of attention of any responsible administration, being
directly related to the overall quality of education. That'swhy computer-aided plagiarism
detection is mainly used in educational institutes.

It would be incorrect to reduce all plagiarism-related issues to the process of catching
and punishing a person who showed academic dishonesty. Plagiarism studies deal also
with plagiarism prevention — a corpus of actions aimed at reducing both the

possibilities to plagiarize, and the will to plagiarize (see Fig. 1.1).

Make It hard to
perform =}
Manual
> investigation
Support “fair play™ | Preventing Detecting
) plagiarism plagiarism
Computer-aided
I detection
Use legal N..._.ﬁ
instruments B

Fig. 1.1. Preventing and detecting plagiarism

1.1.Preventing Plagiarism: Technical, Cultural, and
Legal Issues

There are three main kinds of plagiarism prevention measures:

. To make plagiarism technically hard to perform by preparing individual exercises,

concentrating on the classroom work, and by using software tools.

- To support “fair play” among students by forming their positive attitude to academic

honesty principles, and to explicitly formulate “fair” and “unfair” techniques.

. To publish legal documents such as honor codes and university regulations, stating

srict punishments for plagiarism.

1.1.1.Making Plagiarizing Hard to Perform
The most straightforward suggestion for a teacher is to create a unique assignment
for each student. In this case no solution can be reutilized. Obviously, while it may work

for small-sized groups, such a method is impractical for larger universities.

Hwang and Gibson [HG82] propose to provide a separate classroom quiz for every
assignment. The resulting grade in this scheme is the sum of the assignment grade and
the quiz grade. The students who have done the tasks on their own are expected to get
higher grades for the quiz; also a large difference between these two grades can be an

indication of plagiarism.

Wiedemeier [Wiedemeier02] suggests giving more freedom to the students in
specifying their tasks, at the same time keeping the same general requirements. For
example, in case of computer literacy courses the students can be asked to prepare MS
Word letters intended for different events (like birthday invitation or meeting

announcement), using fonts, styles and formatting tools specified by the teacher.

Some technical instruments can also help to prevent plagiarism. Vamplew and
Dermoudy [VDO05] even propose to enforce students to use a special Anti-Plagiarism
Editor (APE) that keeps track of al potentially unfair actions, such as massive
copy & paste operations.

1.1.2.Promoting Fair Play Principles
It may seem unobvious, but many cases of plagiarism have an unintentional nature,

or are caused by low academic culture and lack of attitude to honesty principles.

Teachers note that in many cases plagiarism occurs because students do not know
how to cite properly, or because they want to avoid redundant quotations [Brainard05].
Keeping this fact in mind, university administration can provide courses on basic
scientific writing style. There are several guidelines dedicated to proper writing and
citing [TWO04, Turabian96].

The educational and cultural background of the students also can considerably affect
their attitude to plagiarism. The study [AKVMVUO04] discusses the attempt to compare
opinions on plagiarism-related issues of Finnish and Russian students, studying in
Lappeenranta University of Technology in Finland. The survey showed that cheating is
much more widespread among Russians, mostly due to the peculiarities of educational
system in Russia that pays little attention to academic honesty. Sometimes students even
do not recognize that they are doing something wrong. Similar cases are reported
in [IHBWO3]. Thus, instruction may be needed to form the right attitude to plagiarism

among Newcomers.

It should be also emphasized that possible academic dishonesties are not limited to
plagiarism. These actions include practicing unauthorized collaboration, using cribs,
substituting other students on the exams, falsifying results [Bliwise0l1]. Therefore, it is
important to develop high ethical standards in university environment from other points

of view, too.

1.1.3.Developing Honor Codes and Dishonesty Policies

While some measures aimed at forming the right attitude to plagiarism among
students can be effective, studies show that the strongest factor affecting the level of
academic honesty in the university is a clear dishonesty policy, maintained by the
administration. Correspondingly, the students are much more likely to cheat if they feel
that no legal consequences will follow in cases of discovered dishonesty
incidents [HCMS02]. Moreover, consistent administrative sanctions form negative

attitudes to dishonesty among students and personnel, so the perceived value of fair play

increases [CCWSQ9]. Harris [Harris94] suggests to constantly remind students of the

existence of policiesin order to prevent plagiarism.

Having consistent policies, it also makes sense to inform the students that they have a
high probability of being caught on cheating in order to reduce plagiarism. Braumoeller
and Gaines [BGO1] claim that the number of plagiarism incidents has reduced after

notifying the students that their work is going to be checked with a software tool.

It should be noted also that many university honor codes expect students to watch for
potential dishonesties, which means reporting the cases of unacceptable actions to
administration [Meizlish05]. However, reporting plagiarism is often considered as
rating, especially among students who cheat [CJ05], so the effectiveness and ethical
justification of this measure can be doubted.

1.2. Detecting Plagiarism

Even in ingitutions practicing good dishonesty preventing methods, plagiarism still
can occur. Therefore, it is important to be able to detect unfair actions when they
happen. Moreover, as it was already mentioned, the use of plagiarism detection methods

isagood deterrent measure itself.

Many plagiarism types can be now discovered only by thorough human
investigation. Other types are detectable with the help of computer instruments.

1.2.1.Investigating Plagiarism Cases Manually

Let us return to the definition of plagiarism as to “use of the language and thoughts
of another author”. To make plagiarism in a certain work evident, it is necessary to find
the origin of separate unquoted sentences and thoughts. Sometimes it can be hard even

for askillful teacher, and completely impossible for the computer.

A student can copy an old and obscure work that is not easily accessible. A text can
be obtained by translating a work composed in a foreign language. Translation takes
time, but it is still incomparable to the time needed to perform the assignment in a

proper way. A plagiarizer can just hire somebody to complete the assignment.

In such cases a teacher has only one option: to use common sense. There are various
guides (e.g. [JKO3]) that list several clues helping to identify possible plagiarism. For

example:

. look for strange formatting elements such as unexpected line breaks or text blocks of

unusual font;

. examine citations: they can be old — a potential indication of copying an old work

with even older citations — or inconsistent;
. anayze writing style: it should be consistent with previous works by this student;

. examine content: it can be created by gluing paragraphs of different style and topic;

there can be inconsistencies in the text.

It is harder to discover whether the paper was authored by a paid external person.
One of such cases followed a true detective investigation by the university, and ended

with a court action and newspaper headlines [Zobel04].

1.2.2.Using Computer Tools to Detect Plagiarism

The cases of plagiarism, which are hard to reveal, are not very frequent. Usually,
students copy & paste an accessible source, possibly trying to hide plagiarism by
rearranging the text. The use of computer tools has been proved to be afast and reliable

method of detecting such instances of plagiarism.

A teacher should select the corresponding software solution depending on the type of
course taught. Normally, a plagiarism detection system is specially designed for
program code or natura language processing. The tool can also be aimed either a a
global search for Internet-accessible documents that are similar to the submitted ones, or
at a thorough analysis of a local collection of documents for possible internal
borrowings. These types of detectors are called open systems and hermetic systems

correspondingly.

A teacher, suspecting the possibility of copying the works from the Internet, can use

one of the open systems to discover the original document. Such detectors are special

variations of Internet searching engines. They maintain huge databases of books and
journals, and index Internet pages. The user has to upload a collection of documents,

and they will be checked for potential occurrences of plagiarism.

Since dealing with such large amounts of data needs significant computational
resources, only a few large-scale open systems exist. The relevant examples are
Turnitin [Turnitin07] and MyDropBox [Mydropbox07]. On the other hand, a system
can utilize a third-party searching engine for detection, and consolidate results. This is
the method by which EVE2 [Eve07] works. Open systems are usually commercial

services, and the payments are set on the monthly subscription basis.

In practical computer science courses, copying from the Internet is not as common as
utilizing a program of another student. This happens because it is hard to find a
computer program that does exactly what was asked, while most students in the group
usually get similar assignments. In such cases it makes sense to compare individual files

in the submission against each other.

Since comparing individual files of small-sized collections does not require high-
performance computational devices, there are much more hermetic systems available,
and most of them were developed in the universities. Probably, the most popular and
well-known hermetic systems are MOSS[SWAO3], JPlag[PMP02], and
YAP3 [Wise96]. Recently, an open-source project Plaggie [ASR06], based on the
similar approach to JPlag, was released.

From the algorithmic point of view, there is a serious difference between open and
hermetic systems. Open systems are similar to Internet searching engines. They have to
deal mostly with data storage problems, parallel and distributed computing, indexing
and performance issues, which are not directly related to file-file comparison
techniques. Arguably, the authors of open systems should have not so much freedom in
selecting a comparison algorithm. Such algorithms should be necessarily fast;

otherwise, the service will be impractical.

Being relatives of file-file comparison routines, such as UNIX sdiff command,
hermetic systems serve as a playground for researchers to test various similarity
detection techniques. There are plenty of projects, and quite many of them utilize novel
or ad hoc algorithms. Speed and space requirements are not so grict for local collection
analysis, so advanced techniques can be applied. For example, most present projects
implement special methods to fight the attemptsto hide plagiarism. A plagiarizer can try
to subgtitute words with their synonyms (in case of natural language text collections) or
rename variables (in case of computer programs). Modern plagiarism detection systems

can overcome these tricks by using special thesauri and tokenizers (see Section 5.4.1).

The existence of a variety of online course management systems, such as
Moodle [Moodle07] and WebCT [Webct07] raises the question of automatic plagiarism
detection for all students’ submissions being uploaded. Surprisingly, in most cases such
a feature is not offered. Currently, this functionality is provided by the BOSS course
management system [Boss07] and it seems natural to expect similar capabilities in other

course management or collaborative work environments in the future.

It should be also noted that a plagiarism detection tool can only provide the evidence
of similarity between pairs of documents. It cannot prove the existence of plagiarism.
Therefore, it is important for the human evaluator not to base the final judgment solely

on the similarity scores, generated by a software tool.

2. Research Contribution

As shown in the Introduction, the problem of plagiarism raises numerous research

questions in different scientific fields, so any single work has to be limited to a certain

subtopic. This thesis is primarily focused on hermetic systems for computer-aided

plagiarism detection.

2.1.Research Questions

Even a smaller subfield of hermetic software tools for plagiarism detection has much

to offer for researchers. There are issues related to speed, reliability, usability,

specialization for the documents of a specific nature, etc. Our studies are limited to the

following questions:

1.

Which kinds of plagiarism detection systems exist today? There are numerous
hermetic plagiarism detection systems. However, not all of them implement
completely novel methods and algorithms. Most sysems can fall into specific
categories of speed, method type, and expected reliability. These categories have to
be revealed.

Is “speed / reliability” trade-off inevitable in plagiarism detection? Most systems
are based on comparison schemes that can be either “fast” or “reliable”. Reliable
content comparison takes time, while a fast fingerprint-based approach can be less
time consuming. The problem is to discover, is it possible to design a system that
combines the positive sides of both methods, i.e. which is fast and reliable at the

same time.

. How can the quality of computer-aided plagiarism detection be improved?

Advanced plagiarism detection systems use auxiliary algorithms to fight against
possible attempts to hide plagiarism. The question is to examine these methods to
find how they can be developed further and modified to be applicable in adjacent

areas.

2.2.Contribution of Individual Papers

The paper [Mozgovoy06] analyzes existing plagiarism detection systems, focusing
on hermetic file collection analysis. Different approaches to plagiarism detection are
examined. As aresult, the work proposes a classification of hermetic systems according
to algorithms used, execution speed, and expected reliability. The problem of definitions
of plagiarism is also analyzed in this paper.

The paper [MFWJS05] introduces a novel plagiarism detection system, mostly
designed at the University of Joensuu. We tried to combine the reliability of content
comparison methods with speed, achieved by using indexed data structures. As a result,
we have developed a system that is both accurate and fast. These claims are supported
by experimental data. The algorithm was developed by Kimmo Fredriksson and me.
Later |1 improved it, and implemented the whole system. Mike Joy and Daniel White
kindly supplied us with the tokenization module taken from their detection system
Sherlock, and helped to embed it. Erkki Sutinen was supervising the project, and also

proposed some useful ideas.

Though the system introduced in [MFWJS05] can accurately compare submitted
files, it has inherent limitations in finding actually copied substrings of text. In other
words, the system is better to use for scoring documents, but not for close examination
of pairs of similar files. The paper [MKKO7] shows how such a fast filter can be
combined with slower but accurate file-file comparison module. The obtained system
grades all the files using a fast module, and then applies accurate content comparison
algorithm only for pairs of smilar files. Therefore, the resulting speed is ill fast, while
the quality of detection is noticeably higher. The combined system was primarily
designed by me. Sergey Karakovskiy was working on experimental part: all tables and
graphs are his contributions. Vitaly Klyuev helped with writing; he also supported the
work with valuable statistical calculations.

Any plagiarism detection system that deals with source code files has to be able to
fight against simple techniques of plagiarism hiding, such as variable renaming, adding

or removing comments, and altering text formatting. It can be done, for instance, by

10

utilizing a well-known method called parameterized matching (p-matching). In paper
[FMO06] we design a parameterized matching algorithm based on a widely used shift-or
string matching method. The resulting solution has lower computational complexity
than standard p-matching algorithm. This theoretical part was mostly performed by

Kimmo Fredriksson. | was working on implementation and experiments.

While plagiarism in source code can be hidden by means of variable renaming,
plagiarism in natural language is concealed with the help of synonyms. In paper
[MTKO6] we develop a possible technique to fight against such kinds of actions. The
system, described in [MTKO6], uses a specia type of thesaurus which converts
synonymous words to identical sequences of tokens. The basic idea of using such a
module in plagiarism detection was mine. Vitaly Tusov, who works in the field of
natural language processing, provided a good parser/thesaurus module. Vitaly Klyuev
helped in evaluating the system and in writing the paper.

Synonyms are not the only allies of a plagiarizer. Plagiarism can be effectively
hidden by swapping words and phrases, where possible. Many plagiarism detection
systems are tuned to detect matches longer than a certain threshold only. So by
swapping words, a plagiarizer can split a continuous “borrowing” into a list of isolated
chunks that are not marked by the detection program. This technique can be overcome
by using a natural language parser that converts sentences into special structures with
predefined order of words. Such parser application is considered in [MKSO07]. In this
research, | worked on both theoretical and experimental parts, Tuomo Kakkonen
adapted Stanford Parser for the document preprocessing algorithm, and Erkki Sutinen

was supervising the process.

Table 2.1 summarizes the contribution of the individual papers to the thesis. The

relations between the papers are shown in Fig. 2.1.

11

Table 2.1. Contribution of the individual papers.

Paper Research Questions Chapters

[MFWJS05] 2 6

[Mozgovoy06] 1 3,4

[FMO06] 3 6

[MTKO6] 3 5

[MKKOQ7] 2 6

[MKSO07] 3 5
sty i Sy et
[Mozgovoy06] LFna]

1.

Plagiarism detection

Ll

=

Input preprocessing

/

algorithms

—

b

- Apply a combined

- Develop a fast

scoring scheme
[MKKOT]

& detection algorithm
[MFWJS05]

- Apply a thesaurus for
the natural language

essays
[MTK06]

- Apply a parser for the
natural language
essays
[MKSO7]

Fig. 2.1. Relations between the individual papers

12

3. Definitions of Plagiarism

The most common definitions of plagiarism come from dictionaries — one example
is cited in the introductory section of this work. However, al of them are not
sufficiently formal to be directly implemented in a computer system. One may think that
omitting the exact definition does not make problems, since computer-detectable
plagiarism is something almost self-evident; at least, documentation of many systems
often just claim that plagiarism is detected without providing precise specification of the
system’s capabilities. On the highest level of abstraction it is almost true, but there are

additional details on the lower levels.

Obviously, a computer can detect plagiarism if and only if it treats a number of
documents as similar. So in this case the term “plagiarism” is used as a synonym to the
term “similarity”, while similarity is calculated by means of a certain file-file
comparison function. In the real world, there is, at least, one difference: some
documents are original compositions, while others contain unauthorized borrowings.
Usually we do not expect that a computer knows who is an author, and who is a
plagiarizer, so generally we accept this kind of behavior. Moreover, a computer usually
cannot distinguish true plagiarism from proper citing, and we also understand that.
Keeping these facts in mind, it can be even noted that the established term “plagiarism
detection system” is imprecise. It emphasizes the primary application of atool, but may

lead to misunderstanding, since areal capability of asystem is similarity check.

So it is clear that even the first simplification that is done literally by all plagiarism
detection systems— reducing plagiarism to similarity — isusually not stated explicitly,
though there is an obvious difference. Furthermore, by using any specific methods to
caculate document similarity, the system introduces more simplifications and

assumptions that can take us far away from the initial concept.

Nevertheless, any specific system implements a certain method, which calculates a
measure of plagiarism. Several authors try to identify these actions quite informally:

“our goal is to identify files that came from the same source or contain parts that came

13

from the same source” [Manber94]. Later in the same work Manber proposes an explicit
criterion for plagiarism: “we say that two files are similar if they contain a significant
number of common substrings that are not too short”. In fact, Manber expressed what
most content-comparison systems actually do. So the difference between common-sense
plagiarism, and “plagiarism, detectable via software solutions” becomes evident. For
example, documents that include proper quotations contain common substrings with the
source they cite, but they are not plagiarized. On the other hand, Prechelt et al. [PMP02]
note that high file-file similarity, revealed by performing straightforward content

comparison, is usually considered as a good indication of plagiarism by human experts.

Misunderstanding of the basic work principles of plagiarism detection systems leads
to drong criticism expressed by the disappointed wusers. For example,
Turnitin [TurnitinO7] is criticized for not distinguishing proper quotations from
plagiarized text, for treating self-quotations (when a student has published online some
parts of the work before) as plagiarism, for inconsistence (when some known quotes are
marked, while other ones are not), and so on [GeraldO6]. One of the reasons for such
attacks is the lack of a proper definition of “Turnitin plagiarism”. The users have to
consider this system as a black-box that has its own opinion of what is plagiarism.
Turnitin is also criticized for a variety of ethical reasons, such as promoting
presumption of guilt and possible violations of students’ intellectual property

rights [Carbone01, Glod06], but these issues are outside the scope of this work.

By accepting the close relationship between plagiarism detection and content
comparison, the authors of plagiarism detection systems can make use of existing string
matching algorithms, originally intended for other file-file comparison tasks. For
example, parameterized matching [Baker97] was designed to find duplicating code
blocks in large software systems (indicating more likely the need for refactoring, not the
presence of plagiarism). Analogously, UNIX diff tool that outputs the differences
between the two files is commonly used to create patches for transforming the first file

into the second one.

14

It is unlikely that a conventional plagiarism detection system will be able to
distinguish true plagiarism from file-file smilarity in the foreseeable future, so
generally we have to accept plagiarism-as-similarity concept, when dealing with

software tools. A human evaluator just should be aware of this issue, as stated above.

15

16

4. Hermetic Plagiarism Detection Systems

The existence of a variety of plagiarisn detection systems raises a question of
possible classification. Such ataxonomy can help teachers to select the most appropriate
software solutions for their needs. It can be usable for researchers, too, by revealing
core dgorithms of different tools. Researchers, who work with string matching, may
consider plagiarism detection as one of possible applications of their achievements. The
classification of plagiarism detection systems is discussed in [Mozgovoy06]. Here we

will consider only the most important classes, shown in Fig. 4.1.

Naturaly, there is no single criterion to perform classification. In the work of our
research group, we tried to improve existing solutions in terms of reliability and
performance. Therefore, we were primarily interested in evaluating current approaches
according to these parameters. Also, we were mostly aimed at processing students’
textual submissions, so the problem of plagiarism in non-plain-textual data remains out
of scope of this work. Being interested in advanced text preprocessing agorithms, we

focused mainly on string matching-based systems.

Plagiarism detection

systems

3 1 Content
Fingerprinting comparisan
J h 4 4
- - String matching Tree matching
| Accuse]

MO35]
l ————— ol

I YAP3 | I SIM |
JPlag |

N T e e ~ |

Fig. 4.1. Smplified classification of plagiarism detection systems

17

It should be mentioned that most hermetic systems are either universal, i.e. can
process text documents of any nature, or are specially fine-tuned to detect plagiarism in
source code files. Natural language processing technologies are usually left for open
systems. This fact can be explained, keeping in mind that the students are more likely to
copy computer programs from each other, while natural language essays are easier to
find in the Internet. A student can ask another person to solve a programming task, but it
is difficult to find a ready-made solution for a particular assignment in the Web.
Meanwhile, natural language compositions on a variety of common topics are widely

available online.

4.1.Fingerprint-Based Systems

The core idea of fingerprinting is to create fingerprints for al documents in the
collection. Formally, fingerprint is a short sequence of bytes that characterizes a longer
file. For example, fingerprints can be obtained by applying any hash function to afile.
In plagiarism detection systems fingerprints are usually more advanced than simple
hash codes. each fingerprint contains several numerical attributes that reflect the
structure of the document. Typical attributes include average number of words per line,
the number of unique words, and the number of passages. If two fingerprints are close
to each other (according a given criterion, usually provided as a distance function in

mathematical sense), the corresponding documents are treated as similar.

Formerly, fingerprints were used in attribute counting systems, which represent the
early era in computer-aided plagiarism detection (see Fig. 4.2). The very first project of
this kind [Ottenstein77] used Halstead’s metrics [Halstead77] to score file-file
similarity. In the following years, plenty of metrics have been tested, and more
advanced systems were built [Grier81, FR87]. Nowadays it is generally believed that
attribute counting is inferior to content comparison, since even small modifications can
greatly affect fingerprints. As a result, later systems usualy do not follow this
technique [VW97].

18

There are several recent projects that combine fingerprinting with elements of string
matching. Such an approach is used e.g. in the notable MOSS program [SWAOQ3]. Other
approaches to fingerprinting include the use of general-purpose text retrieval techniques
such as L SA [Nakov00] and vector space model [SEO06].

Attribute Content Advanced .

. . : = Tree matching
counting comparison fingerprinting BRASS
(Accuse) (YAP family) (MOSS) {)

| =
1980 1990 2000

Fig. 4.2. Thetimeline of hermetic plagiarism detection algorithms

4.2.Content Comparison Techniques

Content comparison techniques deserve a more in-depth study, being the
cornerstones of an overwhelming majority of present plagiarism detection systems.
There are different algorithms aimed at file-file comparison, varying in terms of speed,
memory requirements and expected reliability. Generally, most schemes follow already
cited Manber’s definition of Similarity: “we say that two files are similar if they contain

a significant number of common substrings that are not too short”.

4.2.1.String Matching Based Content Comparison
Usually, content comparison systems work according to the following algorithm:

FOR EACH collection file F

FOR EACH collection file G, F # G
Calculate similarity between F and G

The core function that calculates similarity varies from one system to another. String
matching based methods compare files by treating them as strings. This approach,
though, usually does not take into account the hierarchical structure of the computer
program, considering it as raw data. The situation for natural language documents is the

same.

19

The similarity score calculation is tool-dependent. For example, FPDS [MFWJS05]

determines similarity between files F and G using the following formula:

sim(F, G) = MatchedTokens(F, G) / TotalTokens (G)
Here MatchedTokens (F, G) denotes the number of tokens of the file F, which

are matched in the file G.

Early string matching based plagiarism detection systems like Y AP [Wise92] used
simple mechanisms, such as line-by-line comparison of two files under edit
distance [Levenshtein66]. Later, more advanced general string matching methods, such
as Smith-Waterman algorithm, were applied [Irving04].

One of the most popular file comparison methods is Running-Karp-Rabin Greedy-
String-Tiling (RKR-GST) algorithm, implemented in a variety of systems, including
Y AP3 [Wise96], JPlag [PMP02], and Plaggie [ASRO6].

The basic aim of this algorithm is to find a maximal tiling for a pair of given files,
i.e. the joint coverage of non-overlapping strings that includes as many tokens from
both files as possible (see Fig. 4.3). Moreover, the use of short tiles of length smaller
than a specified threshold is forbidden. The problem of constructing such coverage
appears to be NP-complete [Wise94], so practical implementations always rely on
heuristic assumptions. RKR-GST algorithm utilizes greedy heuristics, assuming that

longer matches are more valuable than shorter ones.

The RKR-GST algorithm can be outlined as follows. The routine begins by
analyzing the matches of length initial-search-length and greater. These
matches are obtained by calling the Karp-Rabin procedure [KR87]. Then the matches
are analyzed (beginning from the longest one). If the current match does not overlap
with the existing tiling, it is added to the coverage as a new tile. After all matches are
processed, a new search occurs with the smaller match length. When the match length
reaches the minimum-match-length threshold value, the algorithm finishes its

work.

20

[N - | N Y - |
File1 File2

O

Joint coverage

Fig. 4.3. Joint coverage of two files
Our own string matching based system FPDS [MFWJSO05] tries to get rid of
computationally inefficient file-file comparison by using a special index structure, based
on a suffix array, and by applying several ad hoc heuristics. This project is described in
Section 6.3.

4.2.2.Parse Trees Comparison

Clearly the actual file content better describes its structure than any kind of
fingerprints. However, raw content data is not structured, while most kinds of
documents do have an internal organization. Natural language texts are divided into
sections, subsections, paragraphs and sentences. Source code files contain classes,

functions, logic blocks and control structures.

While it is still not completely discovered how one can utilize such kind of
information effectively, there are systems that implement comparison techniques,
directly or indirectly based on the file structure.

The idea of using parse trees of computer programs was firstly implemented in the
Sim utility [GT99]. Sim relies on ordinary string matching methods, but instead of
comparing source files, it calculates file-file similarity between textual representations
of corresponding parse trees. Hence, a parser is used as a front-end for the string
matching algorithm. This approach was later applied in our own projects, too [MTKO06,
MKS07].

21

The pure tree comparison procedure was implemented in the Brass project [BNHO4].
Since tree comparison is more complex and therefore sower than string matching,
Brass uses akind of string comparison routine to filter only suspicious documents. Then

a special micro comparison algorithm is applied to provide more reliable results.

Though this approach seems to be the most advanced, little research in this area has
been carried out so far. For example, it is still unknown how such a complex analysis of
input files influences the final results — i.e, it is undiscovered whether parse trees
comparison is superior to usua string matching. Furthermore, any practical (in terms of
execution speed) tree comparison routine requires optimizations like greedy heuristics.

For now, it is not clear how these techniques affect reliability.

22

5. Input Preprocessing Algorithms

As stated before, most content comparison techniques follow Manber’s criterion of
plagiarism. In practice, though, there are situations when it turns out to be inapplicable,
i.e. when dissimilar input files (according to Manber’s definition) include clear
instances of plagiarism. For example, equivalent computer programs can greatly differ
in comments and in identifier naming conventions. However, such distorted similarity

can berevealed by utilizing specialized file preprocessing algorithms.

5.1.Hiding Plagiarism
Obviously, a naive type of copy & paste plagiarism can be easily detected with most
methods of content comparison. However, there are tricks that can be used to hide

plagiarism, or, speaking more precisely, to make it harder to note.

For natural language texts such actions can include rewording and paraphrasing. The
use of different words does not eiminate the existence of plagiarism, since the use of
“thoughts of another author” [WebsterO1] should be treated as an illegal action as well.
At the cog of hard effort, a plagiarizer can successfully make the case extremely
difficult to reveal. One notable example from the author’s past experience is a small
group of international students, studying in English, who applied the following method:
take an article, trandate to their native language, and pass it next to the fellow student to
translate it back into English. Obviously, the resulting text can gregly differ from the
original one, especially if the source text was composed by a native English speaker.
Though being labor-consuming, this type of plagiarism hiding seems to be effective

enough: ateacher can reveal it only by means of indirect hints.

For computer programs, the situation is rather different. On one hand, computer
programs are more structured; therefore there is not so much possibility to paraphrase
them. Moreover, such paraphrasing requires clear understanding of the underlying

algorithm, which is not usually expected from aplagiarizer. On the other hand, there are

23

very simple methods like variable renaming, which are easy to perform without any

understanding of a computer program.

Possible actions of plagiarism hiding in computer programs are listed in
works [JL99] and [Jones01]:

1. Changing comments (rewording, adding, changing comment syntax and omitting);
2. Changing white space and layout;

3. Renaming identifiers;

4. Reordering code blocks;

5. Reordering statements within code blocks,

6. Changing the order of operands/operatorsin expressions,

7. Changing data types;

8. Adding redundant statements or variables;

9. Replacing control structures with equivalent structures (while-loop by do-while loop;

nested if statements by a switch-case block and so on);
10. Replacing the functional call by the body of the function.

This list entails a broader definition of plagiarism, suitable for computer programs: a
plagiarized program is a program that can be obtained from the original one by means

of one or more of the actions listed above [Mozgovoy06].

In any case, it is clear that direct implementation of Manber’s criterion is useless

when the plagiarizer performs some “post-processing” actions after copy & paste.

5.2.0vercoming Hiding Techniques by Preprocessing
Most current plagiarism detection solutions somehow transform input files before

actual comparison to fight against the aforementioned tricks. Usually this process

includes tokenization and/or parsing. In this section we will talk in more detail about

different kinds of preprocessing algorithms, applicable in a variety of plagiarism

24

detection projects, regardless of their comparison scheme. The type of preprocessing

and the algorithms used do depend on the nature of the input documents (see Fig. 5.1).

It should be mentioned that not all the plagiarism hiding techniques are equally easy
to reveal. In the above list, the simplest tricks to fight are 1 and 2: the preprocessing
function only hasto eiminate al the comments and redundant white spaces to make the
instances of plagiarism clear. The techniques 3, 7, and 9 can be overcome by means of
tokenization, described in the next section. The remaining tricks are resolved with an
advanced string matching algorithm, such as RKR-GST that can detect matches even if
they are reordered.

It should be noted that input preprocessing algorithms and heuristic string matching
procedures can lead to false matching and/or mismatching blocks of text. False
matching occurs when a preprocessor converts two different text strings into equal
character sequences. Sometimes such conversion makes sense, but in other cases it can
be incorrect. Mismatching problem arises when two equal strings are not matched
during comparison. It can happen if the file-file comparison routine utilizes a certain

heuristics like greedy matching, so the equal blocks of text can remain unprocessed.

PREFROCESSING

A v

Pragram code Matural language
texts

h 4 y 4 4
‘ Tokenization \ ‘ P-matching \ ‘ WSD & Thesauri \ ‘ Parsers \

Fig. 5.1. Instruments for text preprocessing

25

5.3.Preprocessing Source Code

Let us first consider the problem of plagiarism detection in computer programs. It is
important to mention that most of plagiarism-hiding techniques deal with lexical
changes of the document, not involving any semantic information. Keeping in mind this
fact, we can develop a tool that preprocesses input documents, eliminating lexical

differences.

5.3.1.Tokenization

Probably, the simplest tool that can be applied in such a case is a tokenizer. A
tokenizer is a program that takes a computer program as an input, and outputs the
corresponding sequence of tokens, (i.e. of minimal meaningful units of a language),
representing variables, function calls, statements, and control structures. Usualy,

tokenizer also removes all comments.

For example, a Java fragment

package student;
import wrabble.*;
public class Board implements IBoard

{
MyTileWord tileword;
private Tile tiles[][]:

can be preprocessed into the following sequence, where line breaks and white spaces are
kept for better readability:

<PACKAGE><IDENTIFIER>
<IMPORT><IDENTIFIER>.*
<MODIFIER><CLASS><IDENTIFIER><MODIFIER><IDENTIFIER>

{
<IDENTIFIER><IDENTIFIER>

<MODIFIER><IDENTIFIER><IDENTIFIER>[][]
<MODIFIER><IDENTIFIER><IDENTIFIER>[][]

Technically, a tokenizer is a simplified programming language translator that
transforms a program into the corresponding tokenized representation. Such a tool can
be quite easily obtained by utilizing numerous freely available parser generators with
ready-made grammars. For instance, our system [MFWJS05] relies on JavaCC parser
generator [Enseling00].

26

As seen from the example, the preprocessor substitutes every variable identifier with
token <IDENTIFIER>, and every numeric value with token <VALUE>. Therefore, if a

program contains a line

a=D>b + 45;
it will be replaced by a sequence

<IDENTIFIER> = <IDENTIFIER> + <VALUE>

So renaming variables is useless now, since every line of the form “identifier =
identifier + value;” is translated into the same tokenized string. Our tokenizer also
substitutes all kinds of loop structures by <LOOP> token. Hence, changing loop

statement type will not help to hide plagiarism as well.

Usually, a tokenizer preprocesses any single file in O(n) time, where n is a length of
afile. Aswill be shown, plagiarism detection has a higher complexity, so tokenization
should not be a major factor for the overall complexity of the algorithm.

5.3.2. Parameterized Matching

The obvious drawback of tokenization roots in the superficial analysis of input files.
Simply speaking, by reducing all variablesto <IDENTIFIER>, all valuesto <VALUE>,
and all loops to <LOOP>, we lose significant information about possible differences of
the files. Therefore, the system is more likely to detect similarities, introduced by the

tokenizer.

To preserve differences in variable names, a parameterized match (p-match)
algorithm can be utilized. Since this method is a topic of our special interest (see
[FMO06]), it will be described in more detail later in Section 6.2. Here we will consider

only its purpose.

A parameterized match algorithm will treat two given code fragments as identical if
one of them is obtained from the other one by a series of regular subgtitutions of

identifiers. It is assumed that the algorithm knows which elements are identifiers, and

27

which are not. For example, parameterized match routine considers the following code

fragments as equal:
int y = 10; int ¢ = 10;
int x = 5; int n = 5;
x = myfun(x, vy); n = callfun(n, c);
x += 5; n += 5;

Without going into details for now, it should be noted that this algorithm can be used
together with tokenization to get benefits of both methods.

5.4. Preprocessing Natural Language Texts

Since natura language documents do not have a strict formal structure like computer
programs, it is much harder to implement any reasonable preprocessing algorithm.
Actually, many plagiarism detection systems analyze input documents “as is”, without

any preprocessing.

Fortunately, there are no such straightforward methods for plagiarism hiding like
variable renaming for natural language texts. Any attempt to conceal plagiarism requires
some mental work. Therefore, it is unlikely that all obvious “borrowings” are S0
carefully disguised that the system will be unable to find, at least, some of them. There
are exceptions like careful double translation of the source documents, but the

abundance of this technique is doubtful.

Nevertheless, plagiarism hiding occurs in natural language texts, too. So any sensible

methods of preprocessing such documents can be beneficial.

5.4.1.Using Word Sense Disambiguation Modules and Thesauri
One of the common techniques of hiding plagiarism is to substitute words with their

synonyms. It can sometimes confuse even humans, while computers are completely

unable to fight with such tricks if natural language processing algorithms are not

applied.

Such word substitution can be considered as a rough equivalent of variable renaming.

And if we can write a “tokenizer” that replaces all synonymous words with the same

28

token, the trick will not help a plagiarizer. Fortunately, there are electronic thesauri
available (such as WordNet [Fellbaum98]) that can be used for this purpose. Since
words can have different meanings in different contexts (like “minor key” and “door
key”), and, therefore, different sets of synonyms, the actual meaning of the word in a
given context should be firstly discovered by means of a word sense disambiguation
(WSD) method [EKO03].

The problem of applying this idea is a topic of our work [MTKO6]. For natural
language processing, we have used semantic analyzer for the Russan
language [Tusov04], but similar solutions, suitable for other natural languages, can be

utilized as well.

A semantic analyzer [Tusov04] isacomplex natural language processing system. We
use its module that classifies the words of the input text according to the built-in tree of
concept classes, currently containing about 1600 e ements. A small extraction of the tree

isshown in Fig. 5.2.

For example, a class <PHY SICAL-OBJECT> has a subclass <ALIVE>, having, in
its turn, a subclass <ANIMAL> that includes classes <ANIMAL-WILD> and
<ANIMAL-DOMESTIC>. The current version of the tree reflects the general
knowledge about the human environment. It can be reasonable to perform some tuning

of the tree for the specific tasks.

The use of such atree of concept classes can be considered as applying a thesaurus,
paired with a WSD module. By processing input documents with a semantic analyzer,
we get lists of word classes instead of original words. Next, these files can be graded by

using any conventional plagiarism detection system.

The detection quality of this approach was evaluated by analyzing a collection of 350
documents taken from the NEWSru. com news server. Most downloaded files are short
news messages, falling into one of the following categories: In Russia, In the World,

Economics, Religion, Criminal, Sport, and Culture. The size of the articles varies from

29

450 bytes to 19 KB with the median size of about 2 KB. The typical article consists of
8-12 small paragraphs that are made of strict narrative sentences and quotations.

scmething

—noun
—general-concepts
—eavent
|-situation

—physical-cbject
—alive
animal-wild
animal-domestic

—money

banknote
ayments

Fig. 5.2. A fragment of concept classestree
The rationale for selecting newsreels is a high probability of having two or more
documents related to the same event or quoting each other. Therefore, the chances of
finding, at least, several pairs of similar files are high, too. Direct plagiarism is not

expected in this case.

It should be noted that evaluation is a hard issue to deal with in plagiarism detection.
For large data sets, thorough human evaluation is almost impossible. We can make use
of other detection systems, assuming that the commonly marked subset of files reliably
enough indicates truly similar documents. This jury-based approach was used in
[MFWJS05], and will be described in more detail in Section 6.3.2. Unfortunately, we
had no access to other systems that use natural language processing, so the only option
was to use a smaller collection and manual evaluation. The following results are
provided in [MTKOG].

To evaluate the preprocessor, we ran FPDS [MFWJS05] on original and
preprocessed collections of documents. Without preprocessing, the system found 20

30

relevant pairs of similar documents with at least 4% degree of similarity. Typical

examples include:

A pair of documents about the solar eclipse on 20™ of March, 2006. The first tells
about the countries where this phenomenon was observed; the second is dedicated

purely to the observation of the eclipse in Russia.

A pair of documents on the weather conditions in Europe. The first is about floods in
the EU (Spring 2006); the second contains some weather predictions for the EU,
including subsequent floods.

A pair of documents on rumors about Russian military assistance to the Iragi
government in March of 2003. The first outlines the position of Moscow; the second

sates the reaction of Washington.

After tokenization the similarity degrees of the same file pairs increased, in most

cases, by a factor of 1.5, and remained the same in few cases. Meanwhile, four

additional false pairs were detected, but with very low similarity ratios that did not
exceed 4-5%.

The consequences of tokenization are especially noticeable in several typical

situations. They include:

Changes to grammar cases in Russian. The phrases in one of resorts and of one of
resorts are not matched due to the changes of the endings of the words. After

tokenization they become almost identical .

The use of digtinct words of the same classes in the same contexts in different
documents. The phrases the residence in Greece and the residence in Athens do not
match, but do match after the tokenization (Greece and Athens are trandated to the

same class <PLACE>).

The latter case is related to mismatches as well. For example, the phrases Vladimir

Putin claimed and George Bush claimed are treated as the same sequence
<NAME><NAME><SPEAK> &fter the tokenization. It may be argued, though, that the

31

system of classes, currently implemented in semantic analyzer, was not specially
designed for plagiarism/similarity detection procedures. A more advanced hierarchy

may include a careful taxonomy that minimizes such collisions.

It should be noted that in the simplest case our preprocessing can be considered as a
variation of stemming technique that iswidely used in information retrieval. This can be

very helpful when dealing with languages with developed morphology (like Russian).

5.4.2.Using Parsers

As noted, replacing words with their synonyms can be treated as a rough equivalent
of variable renaming technique to hide plagiarism. We can try to overcome it using
WSD modules and thesauri. Unfortunately, the plagiarizer can also add structural
changes to the document, for example, by modifying the word order where possible. For
example, the phrase “light bright sun” can be reworded as “bright light sun” without

losing its meaning.

Formally, since most modern plagiarism detection systems are aimed at finding joint
coverage of apair of analyzed files, such arewording should not hide plagiarism. The
system can find all three words (“bright”, “light”, and “sun”) independently. In practice,
current systems usually limit the shortest substring to detect. Plaggie [ASR06] and
FPDS [MFWJS05] include such “shortest string length to match” fine-tunable constants
explicitly. The reason for this decision is a large number of false short matches. If we
match every single word of the text, the resulting grade will be a measure of closeness
of the authors’ vocabularies, not of plagiarism. This holds both for natural language and
for program code: any computer program consists of the same statements, and most
programmers use the same variable names in similar situations (for example, i and j for
loop counters). The actual value of “shortest string length to match” constant is defined
manually. The problem of its automatic selection is a reasonable research topic;

however, it has not been investigated properly so far.

32

Sadly, the use of “shortest string length to match” constant leads to “split match”
problem [MKS07]. For instance, if the system is programmed to ignore all matches

shorter than two words, it will be unable to detect plagiarism in “light bright sun” case.

Overcoming this issue is a topic of our work [MKS07]. The key idea is an
observation that a natural language parser can transform the input sentences into
sequences, reflecting the internal structure of the phrases, while not preserving precise
order of words. For instance, a parser can recognize homogeneous parts of the sentence,
and sort them in alphabetical order. Consider a phrase: “I ate the pizza, the pasta, and
the donuts”. The plagiarizer can reword it as “I ate the pasta, the donuts, and the pizza”,

but the detector is insensible to such changes.

For our experiments, we used Stanford Parser, based on an unlexicalized model
[KMO3]. Like most parsers, it produces an output in the form of dependency trees (see
Fig. 5.3). We have designed and implemented a post-processing tool that transforms the
dependency trees into a format where the word order has no effect. The format
represents the words in the sentence sorted according to their grammatical relations
(GR) that designate the type of the dependency between the words. Stanford Parser
supports most types of GRs, recognized by linguists (see Table 5.1). The complete list
of grammatical relations is provided in [MMCMO6]. The words inside each GR group
are sorted in alphabetical order. The example of the original Stanford Parser output and
of the transformed format (for the phrase “I ate the pizza, the pasta and the donuts™) is
showninFig. 5.4.

SUBJECT L VERE OBJECT
ARTICLE L ate ARTICLE
Lthe Lthe
NOUN NOTUH
Lronkey L banana

Fig. 5.3. Dependency tree of the phrase the monkey ate the banana

33

Table 5.1. Examples of grammatical relations

Abbreviation Full name
DET Determiner
DOBJ Direct object
NN Noun compound modifier
NUM Numeric modifier
NSUBJ Nominal subject

It should be mentioned that the use of such a parser-based preprocessor for
plagiarism detections system introduces a noticeable drawback. Since the initial
structure of the sentences is not preserved, the plagiarism detection system that analyses
preprocessed files only is unable to highlight matches in the original documents. There
are two obvious ways to overcome this problem: either the system should be
programmed to highlight the whole plagiarized sentences instead of word chains, or the
parser should generate some metadata about the parsed files, helping to restore the links
between words in original and parsed files. The latter gives more flexibility, but requires

serious modifications of the parser, so we do not consider this scenario.

nsubij {ate-2, I-1)
deti{pizza—-4, the-3)

dobj {ate-2, pizza—-4)

det (pasta-7, the-&)

conj (pizza—-4, pasta-7)
cc{pizza-4, and-8)

det {donuts-10, the—-%)
conj {(pizza—-4, donuts-10)

[ate, ccland], conj[donuts, pasta,
pizzal, det[the, the, thel,
dobj[pizzal, nsub]j[I]]

Fig. 5.4. Stanford Parser (top) and post-processor (bottom) outputs

The evaluation of the idea was performed according to the same scheme as used in
[MTKO6]. We graded the files collection using FPDS [MFWJS05], then ran the same

process for the collection of preprocessed files. The results were analyzed manually.

A collection of 128 messages was obtained from the website of BBC NEWS
(news.bbc. co.uk). Each message was assigned one of the following categories:
Business, Europe, Science/Nature, or Technology. The median size of each message
(after removing all formatting) is about 2 KB. We have also prepared severa files with
intentional plagiarism, performed using copy & paste with subsequent change of word
and phrase order. It should be mentioned that news is hard to plagiarize with such a
method, since the reels are laconic, and do not contain enough adjectives or phrases to
swap. However, in free-form essays we used there are more possibilities for such swap-

powered plagiarism.

As areault, FPDS found 11 pairs of messages containing vast quotations from each
other, and 3 pairs of messages informing about the same event while scoring initial (not
preprocessed) collection. The similarity ratios of later pairs were 5%-33%. There were
no other similar pairs, according to manual evaluation. The similarity scores of
plagiarized free-form essays lay in the range 10%-30%. The inclusion of parser
increased similarity ratios for overlapping news messages by 7%-13%. This observation
indicates that the combined system has an overal tendency to assign higher similarity
grades to the same file pairs. Consequently, two more file pairs of similarity 5% and 7%
appeared in the resulting log, but they were not considered as similar by human graders.
In practice, it is possible to get rid of incorrectly matched pairs by raising a similarity
threshold for final file pair list. For the plagiarized free-form essays the similarity ratios
have increased significantly — to 50%-80%. The results were also noticeably affected
by the value of “shortest string length to match™ constant. The smaller the constant, the
less effective is the use of the parser. Large constant values cause higher probability to

not identify swap-powered plagiarism, detectable by means of parser.

The use of the parser can also have two positive side effects. First, plagiarism

detection over preprocessed files can be performed with larger “shortest string length to

35

match” value, which entails faster work of the algorithm (see [MFWJS05]). Second, the
difference between similarity scores of original and preprocessed collections can itself
serve as a good indication of word swaps, and therefore, of plagiarism. However, this

supposition is not yet researched.

Another good idea for future research is to utilize tree matching approach [BNHO04]
for natural language texts. Since parsers do provide tree-like representation of sentences

of the documents, it can be sensible to compare these trees directly.

36

6. Speed and Reliability of Plagiarism Detectors
The existence of variety of plagiarism detection technologies necessarily entails a
question about their performance — both in terms of time and space requirements, and
in terms of detection quality. Observations show that usually speed is achieved at the
cost of reducing detection quality and vice versa. The central part of this chapter is
dedicated to the problem of designing plagiarism detection schemes that can be fast and

reliable at the same time.

The quality of detection, i.e. the reliability of the system, can be estimated either by
human evaluation, or by comparing the output with the results, provided by other

plagiarism detection systems. We use both approaches to evaluate our solutions.

6.1. Performance Attributes of Plagiarism Detectors
Common sense suggests a simple principle: the more time is invested to file
comparison, the more reliable results can be obtained; in some cases, it is possible to
save some time by using more memory space. These guesses are generally supported by
work [Mozgovoy06] that studies speed and reliability of various plagiarism detection

projects. Its main conclusions can be expressed in several theses (see also Fig. 6.1):

. Classic fingerprinting methods, such as attribute counting, are the fastest, but
unreliable [VW97]. If the fingerprint size is congtant, the system requires O(nN) time
to create fingerprints, and O(N?) time to grade the collection. All-against-all
comparison is assumed. Here n is the average file size, and N is a number of

documents in the collection.

. RKR-GST-based content comparison methods have worst case complexity of O(n®)
for one file-file comparison procedure. However, experimentally discovered average
complexity is just O(n**?) [Wise94]. So, the resulting complexity of all-against-all
comparison can be estimated as O(N°n™*

[Wise96], this approach is still used in recent systems like Plaggie [ASRO06], being

). First implemented in YAP3 project

considered as highly reliable.

37

« Most preprocessors, such astokenizers, run in linear time— O(nN) to preprocess the
whole collection of N files, and do not make a dominating contribution into

asymptotic complexity of any content comparison-based system.

« Advanced tree matching-based projects can require even quadratic (in respect to file
length) time for one file-file comparison, so for complete collection scoring the time
needed can be estimated as O(N°n?) [GT99).

Spead &

Fingerprinting
O{N" + nM}

RKR-GST
DiN2n1 1z:|

Tree matching

MR

.
L

Reliability

Fig. 6.1. Speed and reliability of different plagiarism detection schemes

Our work [MFWJS05] shows that the core ideas of content comparison-based
systems can be paired with specially organized data structures and reasonably applied
heuristics in order to get better speed performance. Time is an important factor when
large collections are processed. Since the same techniques can be applied to any sort of
file-file similarity calculation, not limited to plagiarism detection, the possibility to get a
set of documents of considerable size becomes obvious. The importance of scalability is
underlined, e.q. in[BTZ07].

38

6.2. Fast Parameterized Matching
Let us first consider the problem of improving performance of standard
implementations of parameterized match algorithm. Only main results will be given

here, see [FMO06] for more details.

Parameterized matching (see also section 5.3.2) is a special type of string comparison
routine that treats two strings as equal if one can be obtained from the other one by a
series of regular substitutions of identifiers. It is assumed that a set of admissible
identifiers is given, so the program can distinguish identifier tokens from non-identifier
tokens. The core idea of parameterized matching can be implemented as a separate
preprocessor that erases all information about actual variable names in the input text,
while preserving their relational structure. This makes possible to use p-matching-based
preprocessor as an advanced tokenizer for plagiarism detection and similarity checking

systems, aimed at software source code analysis.

6.2.1.Preliminaries

Formally spesking, parameterized matching deals with strings over two non-
intersecting alphabets: the alphabet of fixed symbols (X, |£| = ¢), and the alphabet of
parameter symbols (A, |A| = L). These alphabets correspond to non-identifier and to
identifier tokens of the programming language. The strings over the alphabet X~ UA are
called parameterized strings. The problem isto find a match of pattern string P[0... m —
1] in atext string T[0...n — 1]. A match isfound at position j if and only if for al i € {0,
..., m=1} holdsthat M;(P[i]) = T[j + i], where:

. M(¥): £ UA— X UII is one-to-one mapping, and IT is an arbitrary set;
- Mj(X)=x fordlxeX.

Such a matching can be reduced to ordinary string comparison by utilizing prev()
encoding [Baker97]. This algorithm takes a parameterized string, and substitutes all
parameter symbols s in it with non-negative integers, equal to the number of symbols

since the last occurrence of s in the input string. The first occurrence of the parameter

39

symbol is represented by zero. So, prev() encoding is one of possible practical
implementations of M;(x) mapping. Consider, for example, a pattern P =
aaZY ZabXYZaX over aphabets * = {a b} and A = {X, Y, Z}. Then prev(P) =
aaD02ab055a4. Note that prev() function remains the same for any position j.

The only problem here is how to maintain prev(T[j...j + m— 1]) and all dependent
values efficiently as j increases. The solution is constructed by utilizing the following
proposition, proved in [Baker97]:

Let S" = prev(S). Then for S" = prev(Sjj..j + m —1]),for any j, ¥i: Ji] € 4 it holds
that S'[i] = S[j + i] iff S[i] < i. Otherwise S'[i] = 0.

In addition to the classical definition of p-matching problem, a task of multiple-
pattern search can be considered as well. The rationale is simple: when searching
severa patterns, a special multi-patterned version of matching algorithm can be
significantly faster than a series of consequent calls of the single-patterned routine

version.

To the present day, only a few string matching algorithms were generalized to
support parameterized matching [AFM94, Baker95, 1S96, ST06]. Our work shows how
to generalize well-known Shift-Or [BYG92] and Backward DAWG Matching
[CCGILPRY4] methods for parameterized strings. Both these algorithms are designed to
search a given pattern string P inside a given text string T. For simplicity, we assume

that the input alphabets are of constant size.

6.2.2.Parameterized Bit-Parallel Matching

The standard Shift-Or is implemented as a finite automaton [BY G92], which is
constructed according to the following scheme (see Fig. 6.2). There are m + 1 states in
total, marked as O, ..., m. The state O is the initial state, while the state m is the final

state. The transitions of the automaton are;

. fromitoi + 1, for character P[i], i =0, ..., m—1,

. from0toO, foreveryc e X.

‘ P[O] P[m-1]

Fig. 6.2. Shift-Or algorithm automaton

The transitions of the automaton are implemented by means of the table B, having
one bit-mask entry for each ¢ € X. The transitions correspond to the single bits of B, and
the states are stored in the bit vector D:
. B[] hasi" bit unset < P[i] =¢, fori=0,...,m—-1
. dateiisactive © D hasi® bit unset

Initially, all bits of D are set. For each input symbol c, the vector is updated as
follows:

D= (D << 1) | Blel

To generalize Shift-Or [BY G92] algorithm, we have to make sure that:
. pattern P is encoded using prev() function;
o prev(T[j...j + m—1]) is maintained in O(1) time per text position;

« bit-mask array B (see [BYG92]) must be built so that all parameterized pattern
prefixes can be searched in parallel.

These issues are solved using some nontrivial preprocessing (see [FMO06]), finally

resulting in Algorithm 6.1 (w is machine word size in bits).

Algorithm 6.1. Parameterized_Shift-Or(T, n, P, m)

P’ = Encode (P, m)

for i =0 too+m-1do B[i] = (1 << m) -1

for 1 = 0 to A = 1 do prv[oc + i] = -

for 1 = 0 tom — 1 do B[P’ [1i]] = B[P’ [1i]] & ~(1 << i)

for i =1 tom -1 do Blo + i] = Blo + i] & (B[o]l | (~0 << 1))
D= ~0

mn = 1 << (m — 1)
for i = 0 ton -1 do

41

c = T[i]
if ¢ € A then

c =1 - prv[T[i]] + ©
if ¢e>oc+m-1thenc =o0
prv[T[i]] = i

D= (D << 1) | Blc]

if (D & mm) # mm then report match

The algorithm runs in O(n- ceiling(m/w)) worst case time. For longer patterns (m > w)

it is possible to search first w symbols of pattern using our algorithm, then check the
whole pattern with the help of a conventional routine only if w-symbol prefix is found.

Thistechnique results in O(n) average time.

Shift-Or algorithm can be improved to run in O(n-logs(m)/m) average time, which is
optimal [FGO5]. The same technique can be applied for our version of parameterized
Shift-Or [FM06]. However, for multiple patterns our method is inferior to Aho-Corasick
based approach [AC75, 1S96].

6.2.3.Parameterized Backward Trie Matching

Another finite automata-based Backward DAWG Matching [CCGJILPR94] algorithm
also can be generalized for parameterized strings. We are scanning the text window
T[i...i + m— 1] backwards. The text window is (backwards) prev-encoded as we go,
and the read substring of T is matched against the trie of prev-encoded suffixes of a
reverse patern P'. The algorithm remembers the longest matched suffix to continue
search if the window size is not enough. If the length of that suffix was |, the next
window to be searched is T[i + m—1...i + m— 1+ m—I]. The process is repeated until

the whole text is scanned (see Algorithm 6.2).

Algorithm 6.2. Parameterized_BDM(T, n, P, m)

root = Create_Trie_From_Prev_Encoded_Suffixes_Of(PU
for 1 = 0 to A — 1 do prv[oc + i] = -
i=0
while 1 < n — m do
3 = m; shift = m; u = root

while u # null do
c=T[i+ 7 - 1]
if ¢ € A then
c=m -3 - prv[T[i + 7 - 1]1] + ©
if ¢e>o0c+m-1thenc =o0

42

prv[T[i + j - 111 =m - j
j -1
child(u, c)

if u # null and is suffix(u) then

if 7 > 0 then shift = j else report match

for k =1+ j toi+m-1do

if T[k] € N then prv[T[k]] = -
i =1+ shift

J
u

Under various reasonable assumptions [FM06] the average running time of the
algorithm is estimated as O(n-logs(m)/m) too. In case of r patterns it becomes
O(n'logs(r-m)/m).

6.2.4.Experimental Results

For experiments, we created a long tokenized string of concatenated Java source
files, taken from various open source projects, including jPOS [jPOS07],
smppapi [smppapi07], and TM4J [TM4]]. This string was used as atext to be searched.
Then it was encoded using JavaCC-based parser into a sequence of 1259799 tokens,
including 51 reserved Javawords and 10213 unique identifiers. A set of 100 patterns for
each length of 1... 32 symbols was randomly extracted from the input text.

Fig. 6.3 shows the average number of tokens searched per second for each agorithm.
Besides the above described algorithms, we have evaluated modified versions of Shift-
Or and Backward Trie Matching methods. Shift-Or procedure was optimized as
proposed in [FGO5]. The underlying data structure of Backward Trie Matching
algorithm was substituted with a suffix array. In Fig. 6.3, PSO denotes the basic
parameterized Shift-Or algorithm, PFSO is the optimized Shift-Or version, PBTM isthe
parameterized Backward Trie Matching algorithm, and PBAM s the suffix array-based
version of PBTM.

We aso experimented with the multi-pattern version of PBAM (searching 100
patterns simultaneously). The plot clearly indicates that the amortized (average) speed
per pattern is better than for any of the single pattern matching agorithms.

As a reault, we conclude that the proposed methods of Shift-Or and BDM
generalization are easy to implement and work well in practice [FMO06].

I I F,SU I— | | |
PFS0O
PBTM -
PBAM & -
PBAM (r=100)
1000 | PBAM (r=100, amortized) ---& - T-w
° E edicied e (F100) -« oo
; L E}
m [a
— {B--
2 E E
E]
*]] -
10 k. -
1] I | | | I I
4 8 12 16 20 24 -)

m

Fig. 6.3. The search speed of different p-matching algorithms

6.3.Reducing Asymptotic Complexity

As shown in Section 6.1, a high-quality content comparison-based method requires
O(sz(n)) time to grade the whole input collection. Here N is the total number of filesin
the collection, n is an average file size, and f(n) is time required to grade one file pair.

Typically, the asymptotic complexity of f(n) isat least linear.

In this section we will consider Fast Plagiarism Detection System (FPDS), proposed
in [MFWJS05]. It is a content comparison program that utilizes additional data
structures and special heuristics in order to achieve better asymptotic complexity. Our
system works with tokenized Java files, but any similarly preprocessed data can be
analyzed as well. Sublinear complexity makes our system scalable, unlike most existing
solutions. Another scalable approach is described in [BTZ07].

6.3.1.FPDS Algorithms

FPDS is based on a specia suffix array-like data structure. A suffix array is a
lexicographically sorted array of all suffixes of a given string [MM90]. Our index
structure is a bit more complex: it stores all input collection files (as strings of tokens) in
the suffix array, while each array entry also contains the file identifier of the
corresponding suffix. The use of such index structure requires additional O(nN) space,
where n is an average file size, and N is a number of files in the collection. The
congtruction of the aray takes O(nN-log(nN)) time using a specialized
algorithm [MM90]. It can be improved to O(nN), see [KSBO03]. Our index structure
allowsi it to rapidly find a file (or files) containing any given substring. This is achieved
with a binary search, and requires O(m + log(nN)) time on average, where m is the

length of the substring.

A query file Q is compared against an existing collection using Algorithm 6.3. It tries
to find the substrings of Q in the suffix array (see Fig. 6.4). Matching substrings are

recorded, and each match contributes to the similarity score.

Algorithm 6.3. Scoring Single File
p =1 // the first token of Q

WHILE p <= |Q| — v + 1
IF Q[p...p + v — 9] is found in the suffix array
UpdateRepository
p=pty
ELSE
p=p+1
END IF
END WHILE
FOR EACH file F; in the collection
Similarity(Q, F;) = MatchedTokens(F;) / g

Matching every token of the input file leads to a plenty of false matches, so we use a
parameter vy, standing for “shortest string length to match™ in tokens. The matches are
stored in the repository, see Algorithm 6.4. The similarity between the file being tested
and any file in the collection is just a number of tokens matched in the collection file

divided by the total number of tokens in the test file, so it is a value between 0 and 1.

File i
v
\ 1
—
\—//-

Fig. 6.4. Matching afile againgt repository

The procedure of repository update resolves two types of collisions when two or
more matches are found, but only one of them should be stored in order to preserve
consistent scoring scheme. The first collision type appears when more than one match is
found in the same collection file, since every match should be taken into account only
once. The second collision type is just a reverse problem: the situation when two
different chunks of the query file correspond to the same chunk in a specific collection

file. We use “longest match wins” heuristics to resolve collisions.

Algorithm 6.4. Updating the Repository

let S be the set of matches of Q[p...p + v — 1]
IF some of the strings in S are found in the same file
leave only the longest one
FOR EACH string M of the remaining list S
IF M does not intersect with any repository element
insert M into the repository
ELSE IF M is longer than any conflicting repository elements
remove all conflicting repository elements
insert M into the repository
END IF
END FOR

6.3.2.FPDS Performance

Line 3 of Algorithm 6.3 takes O(y + log nN) average time, where as before, n is an
average file size, vy is a fine-tunable constant, and N is the size of the collection. If the
substring was found, we call Algorithm 6.4. This can happen at most O(n/y) times, so
line 5 of Algorithm 6.3 takes at most O(n/y)- Complexity(Algorithm 6.4). If we make the

46

simplifying assumption that two randomly picked tokens match each other with fixed
probability p, then on average we obtain np’ matches for substrings of length y. The
total complexity of Algorithm 6.4 is on average O((n/y - nNp')?). To keep the total
average complexity of Algorithm 6.3 to O(n(y + log nN), it is enough that y =
Q(log nN). Since the score of each file can be computed in O(N) time, the total average
complexity of Algorithm 6.4 can be made O(n(y + log nN) + N). Using suffix trees
instead of suffix arrays, the O(y + log nN) factors can be reduced to O(1), so the

resulting complexity isO(n + N).

Furthermore, the scoring has to be performed N times to obtain scores for all
collection files, so the time becomes O(NN + N?) with suffix tree, and O(nN-log(nN) +

N?) with suffix array.

These estimations were experimentally tested using a collection of Java files of a
medium size of 14KB, gathered from actual students’ laboratory works. The time
required to grade one file is shown in Fig6.5; the all-against-all scoring time is
represented in Fig. 6.6. Larger y values make the algorithm run faster with a constant
factor.

It is quite easy to estimate asymptotic complexity of the system and to test it
experimentally, but the more significant feature of any detector is itsreliability, which is

much harder to evaluate.

It is not feasible to perform thorough human evaluation of the output due to the large
size of input collection. However, we can examine the reports that are produced by
different plagiarism detection systems on the same dataset. While these reports can vary
highly, the simple sets of files that contain plagiarisms usually correlate quite well,
according to the output of each particular syssem [MFWJS05].

47

average time (secs)

total time (secs)

0.2

0.18 -
0.16 |
0.14
0.12 -

01+

0.08 T
0.06

0.04 e

0.02

0
50

100

150
files

200

Fig. 6.5. Timerequired to grade asingle file

50

51 15
40 0

35
30
25
20
15
10

150
files

200

Fig. 6.6. Time required to grade a collection

To evaluate FPDS, we have used a jury approach. The idea is to get lists of
suspicious files in the collection from various systems, and then to organize a simple
voting. If a particular document is considered as suspicious, i.e. having enough
instances of plagiarism by the majority of systems, we expect our program to mark it as
suspicious as well. The systems can be fine-tuned to show more or less files, so we tried

to obtain equal-size outputs.

For FPDS evaluation we used MOSS [SWAOQ3], JPlag [PMPO02], and Sherlock
[JL99] systems as the jury. The reports of different systems are shown in Fig. 6.7. The
diagram represents the score of every file of an example 50-files collection, proposed by

each system, including FPDS.

1.0 I — » . . - ﬂ! I -1 B+ + MOSE {n)
™] aig il ® JPlag (n)
0.5 * 3 e T + . £ 0ur System (n)
C il 12 & Sherloek in}
0.8 e
r & A Fa L [
I =
or L% le - %
0.6 -
’ L3 . = L] .
0.5 1t 2 e 2 B o
A i s [] A i A J L
0.4 | EE | f1~—-2 - 1
) L | R * T *
03 alm|” L] | AAA A s n
& 2
1 2 A : ? Tde i AN A
0.2 - . 2 pined
. nd | SAL hi y A
& 6,
0.1 * Y R
0.0 4 DO 00— 0 B0 & e O— (00804
0 3 10 15 20 25 30 35 40 45 50

Fig. 6.7. Reportsof the jury
At aglance, the votes seem to vary greatly from one system to another. However, the
situation becomes clearer after conformist test. To perform it, we have compared the
opinion of each particular system with the joint voting of three remaining programs (the
jury). The file is considered to be marked by the jury if at least two of three jury systems
considered it as suspicious. The results of the test for the collection of 155 Javafilesare

summarized in Fig. 6.8.

49

The table clearly shows that our system (FPDS) is even more conformist than other

systems, agreeing with the jury in 115 cases of 155.

| [MOSS[IPlag]Our System[Sherlock]
Apreed | 111 | 109 115 99
Disagreed| 44 | 46 40 56

Fig. 6.8. Theresults of conformist test

6.4.Combining Speed and Accuracy

While FPDS proved to be a fast and reliable plagiarism detector, it still suffers from
the problems of another kind. It is not enough for a modern plagiarism detection system
to print alist of similar file pairs. The system should provide a convenient user interface
for analyzing matched pairs. Following Sherlock, FPDS implements a handy

similarities graph visualization window (see Fig. 6.9).

001 jiy ‘M'Jm-';“;; - =

141 java

142 java

158 java

rigirnal jana

1] | ¥
| e || - || cwse | =@ 1%

91 java - D44.java (D.12)

Fig. 6.9. Smilarities graph window
This tool allows the user to see matched file pairs at any given similarity threshold.
By clicking on some graph edge, the user opens a window with two text boxes filled
with the contents of the corresponding files. For the further convenience of the manual

evaluation, a good system should highlight found matches.

50

Here comes the problem of FPDS. Its algorithm is inherently not designed to build
continuous coverage of file pairs (in contrast to, e.g., RKR-GST). The equal textual
chunks, detected with FPDS, can be disorderedly scattered through the files. While
these matches still serve as reliable indication of plagiarism, they are not suitable for
visualization. Furthermore, the heuristics used in FPDS can lead to occasional ignoring
of the matches, which makes visualization even worse. It also can be argued that direct
file-file comparison can give more precise similarity score instead of a rough estimation
made by FPDS.

One of possible solutions is to use a combined approach. In the first step FPDS
serves as a filter that quickly determines a set of suspicious files. In the second step a

precise file-file comparison routine is invoked.

Thisideais studied in our work [MKKO7]. As afile-file comparison routine we have
used RKR-GST-based Plaggie system [ASR06]. On large collections, Plaggie works
considerably slower (see Fig. 6.10).

140
—#— Plaggie : : :

120 - —a—FPD (y = 103[bromooemnnee s bomomemoeee e S
—k— FPD {y = 20) : : :

100 d | FPD = 30)

S — — e —

Time, sec

B0

40

20 +

100 200 300 400 500
Collection size

Fig. 6.10. Running time of FPDS and Plaggie
It should be noted that such combined method makes sense only if:

51

. the resulting system has to be significantly faster than Plaggie — otherwise we can

just use Plaggie;

. FPDS and Plaggie should agree in most cases; in other words, generally FPDS
should not exclude files, which are considered as plagiarized by Plaggie, from the
input set.

Collection 1 (100 files)

Files marked
Sim | Plaggie | FPDS20 | FPDS30 | Mlaggie ~ FPDS20 | Plaggie ~ FPDS30
STl 23 iz 19 1&(78.3%) 16 (69.6%)
8T2 14 21 11 13(92.9%) 10 (71.4%)

Collection 2 (200 files)

Files marked
Sim | Plaggie | FPDS20 | FPDS30 | Paggie ~ FPDS20 | Plappie ~ FPDS30
5T1 72 a7] 62(86.1%) 56 (77.8%)
sT2| 51 62 46 46 (90.2%) 41 (80.4%)
Collection 3 (300 files)
Files marked
Sim | Plagge | FPDS20 | FPDS30 | Maggie ~ FPDS20 | Plaggie » FPDS30
5T1| 92 119 89 T8(34.8%) 69 (75.0%)
8T2| 63 82 60 56(88.9%) 50 (79 4%)
Collection 4 (400 files)
Files marked
Sim | Plagge | FPDS20 | FPDS30 | Paggie ~ FPDS20 | Plagpie ~ FPDS30
ST1| 118 149 115 104 (88.1%) 93 (78.8%)
8T2 20 104 T8 T1(88.8%) 64 (80.0%)
Collection 5 (500 files)
Files marked
Sim | Plaggie | FPDS20 | FPDS30 | Plaggie ~ FPDS20 | Plaggie ~ FPDS30
ST1| 138 184 141 118 (85.5%) 108 (78.3%)
5T2| @2 124 | 80(87.0%) T1{77.2%)

Fig. 6.11. Agreement in Plaggie and FPDS results
We have tested these assumptions using five sample collections of 100, 200, 300,
400, and 500 distinct Java files taken from Apache Tomcat project source code. We do
not expect plagiarism in Tomcat, but some code duplication in a large software project
is likely to occur. The median file size is 6.15KB; the size of the largest (500-file)

52

collection is 4.58MB. The table in Fig. 6.11 illustrates an agreement between Plaggie
and FPDS, for y =20, and y = 30.

140

120 {- _ SN ——— S S ——
—a— Plaggie : : :

—a— (FPDZ20, Plaggie), ST2 : H H
100 4+ —— (FPD30, Plaggie), ST1[i mrmmmmmmeee prosre ffomearm e
—a— (FPD30, Plaggie), ST2 : : :

80 +

Time, sec

B0

40

20+

100 200 300 400 500
Collection size

Fig. 6.12. Running time of Plaggie and Combined system

This conclusion is supported by statistical analysis. In order to prove an association
between the two variables, we have applied the nonparametric test of Spearman’s rank
correlation [Lehmann98] to the data presented in Fig. 6.11. According to the procedure,
the null hypothesisis: there is no correlation between two variables; the rank correlation
coefficient for the entire population is equal to zero. The alternative hypothesis claims
that there is a correlation between two variables and the aforementioned rank correlation
coefficient is not egqual to zero. The obtained results show that there is a significant
correlation between the data we obtained using Plaggie and FPDS (n = 10, o = 0.01, rs
=0.997, critical value z= 0.794). Here rs isthe sample statistic; n isthe number of pairs
of sample data (see columns 2 and 3 of the input table); « is the significance level, and z
is a critical interval. Because the sample statistic exceeds the critical value, we made a
conclusion about significant correlation. The same strong correlation is found between
the data generated by Plaggie and common fractions of files marked by both systems
(columns 2 and 5 of the input table). From this outcome, we can expect the same
behavior of two systems when they analyze Java source code, and we conclude that

FPDS is quite an accurate filter for Plaggie.

53

Since the probability distribution of plagiarized files in the collection is hard to
estimate, the speed of the combined system was tested experimentally (see Fig. 6.12).
The graphs clearly show that the combined system runs significantly faster.

As the main result, we can expect that the proposed system will filter files very
rapidly and quite accurately with the help of FPDS-based algorithm. The number of
files sent for a detailed investigation to the Plaggie part is small enough. Then the RKR-
GST-based Plaggie can provide a detailed similarity report, which is more reliable and

much better suitable for further human evaluation.

7. Conclusions

The algorithms of plagiarism detection are constantly developed. We have seen how
similarity checking evolved from simple attribute counting systems to the complex
procedures of tree matching over tokenized input files. Several novel techniques for

plagiarism detection are demonstrated in this work.

This thesis shows how modern plagiarisn detection systems can fight with
rewording, paraphrasing, variable renaming and other similar methods of plagiarism
hiding. It explains how a plagiarism detection system can be fast and reliable at the
same time, how it can score files and present the final results to the user. The work also
reveals the frontiers of current plagiarism detection techniques, suggesting possible

directions for future research.
The proposed research questions are answered as follows:

1. The classification scheme, developed in [Mozgovoy06], shows the state of the art in
hermetic plagiarism detection algorithms. It is clear, which types of algorithms are
used today, what are their advantages, drawbacks, time requirements, and quality.

The scheme also helps the developers to position their systems better.

2. The paper [MFWJS05] shows how to build a hermetic plagiarism detection system
that can have speed characteristics of fingerprint-based algorithms and reliability of
content comparison. This is done by using suffix tree-based data structures with
heuristic string matching. The work [MKS07] proposes a tandem of the algorithm,
explained in [MFWJS05], with a conventional content comparison system. This
approach allows getting more precise similarity scores and is better suitable for the

human analysis of the results.

3. It is hard to overestimate the importance of text preprocessing in plagiarism
detection. Simple textual transformations can revea carefully camouflaged
plagiarism. The papers [MTKO06] and [MKKO7] demonstrate how text processing can
be used for plagiarism detection in natural language essays. The paper [FMO06]

55

proposes several algorithms of efficient parameterized matching — a preprocessing

technique, helpful for plagiarism detection in software source code.

56

8. Perspectives
The last 25 years of plagiarism detection systems development have achieved

impressive results. Started from simple attribute counting systems that are more like

proofs-of-concept than tools that can be recommended for everyday use, software

plagiarism detectors evolved into complex content comparison analyzers and successful

commercial web services.

However, there are till unsolved problems and possible applications that will be

subjects of future research:

Broader use. Taking into account the growing popularity of online submission
systems, we can expect the broader use of automatic plagiarism detection. An essay,
submitted to a course instructor or a paper, uploaded to a conference website, can be
automatically checked for instances of plagiarism, just like e-mail messages are

commonly checked for viruses by the mail server.

Social impact. Being just file comparison services, Internet searching engines
developed into a social phenomenon. The results they provide can have a noticeable
impact on business [Lenssen06] or interfere with local laws [McLaughlinOg].
Likewise, computer-calculated plagiarism detection scores should be used with care.
Currently, the number of social collisions is relatively small in this field [Glod06,
MMO7] but we can expect their growth.

Better detection quality. Current systems are still unable distinguish plagiarism
from proper quotations. They are also unable to detect borrowings, transated from
the other languages. Finally, they cannot decide which of the similar documents was
the original source. Rewording and paraphrasing are efficient plagiarism hiding

measures, since natural language parsers are till rarely used.

57

58

9. References

[ACT75]

[AFM94]

[AKVMVUO4]

[ASRO6]

[Bakers]

[Baker97]

[BGO1]

[Bliwise01]

A.Aho, M. Corasick. Efficient String Matching: an Aid to
Bibliographic Search. Communications of the ACM, vol. 18(6),
1975, p. 333-340.

A. Amir, M. Farach, S. Muthukrishnan. Alphabet Dependence in
Parameterized Matching. Information Processng Letters,
vol. 49(3), 1994, p. 111-115.

S. Alaoutinen, N. Kontro-Vesivalo, D. Medvedev, J. Voracek,
A. Uteshev. Academic Honesty in Cross-Border Education —
Opinions of Involved Students. Proc. of FIE'04 Conference,
vol. 3, 2004, p. S3E/20-S3E/25.

A. Ahtiainen, S. Surakka, M. Rahikainen. Plaggie: GNU-Licensed
Source Code Plagiarisn Detection Engine for Java Exercises.
Proc. of the 6 Baltic Sea Conference on Computing Education
Research, 2006, p. 141-142.

B. Baker. Parameterized Pattern Matching by Boyer-Moore-type
Algorithms. Proc. of ACM-SODA, 1995, p. 541-550.

B. Baker. Parameterized Duplication in Strings: Algorithms and an
Application to Software Maintenance. SIAM Journal on
Computing, vol. 26(5), 1997, p. 1343-1362.

B. Braumoeller, B. Gaines. Actions Do Speak Louder than Words:
Deterring Plagiarism with the Use of Plagiarism-Detection
Software. PS. Political Science and Politics, vol. 34(4), 2001,
p. 835-839.

R. Bliwise. A Matter of Honor. Duke Magazine, vol. 87(4), 2001,
p. 2-7.

59

[BNHO4]

[Boss07]

[Brainard05]

[BTZ07]

[BY GO2]

[Carbone01]

[CCGJLPRY4]

[CCWS99]

[CI03]

[EKO03]

[Enseling00]

B. Belkhouche, A. Nix, J. Hassell.
Software Designs. Proc. of the 42" Annual Southeast Regional
Conference, 2004, p. 207-211.

Plagiarism Detection in

BOSS website: www.dcs.warwick.ac.uk/boss (accessed: 21-Aug-
2007).

S. Brainard. Avoiding Plagiarism Guide. Milne Library, SUNY
Geneseo, USA, 2005.

S. Burrows, S. M. M. Tahaghoghi, J. Zobel. Efficient Plagiarism
Detection for Large Code Repositories. Software — Practice &
Experience, vol. 37(2), 2007, p. 151-175.

R. Baeza-Yates, G. Gonnet. A New Approach to Text Searching.
Communications of the ACM, vol. 35(10), 1992, p. 74-82.

N. Carbone. Turnitin.com, a Pedagogic Placebo for Plagiarism.
Bedford/St. Martin’s TechNotes, 2001.

M. Crochemore, S. Jarominek,
T. Lecrog, W. Plandowski, W. Rytter. Speeding Up Two String
Matching Algorithms. Algorithmica, vol. 12(4), 1994, p. 247-267.

A.Czumagj, L. Gasieniec,

J. Cochran, M. Chamlin, P.Wood, and C. Sellers. Shame,
Embarrassment and Formal Sanction Threats. Extending the
Deterrence/Rational Choice Model to Academic Dishonesty.
Sociological Inquiry, vol. 69(1), 1999, p. 91-105.

J. Colwell, F. Jenks. Student Ethics in Online Courses. Proc. of
FIE 05 Cor ference, 2005, p. T2D/17-T2D/19.

Ph. Edmonds, A. Kilgarriff (Eds) Journa of Natural Language
Engineering (Special Issue Based On Senseval-2), vol. 9(1), 2003.

O. Enseling. Build Your Own Languages with JavaCC.

60

[EveQ7]

[Fellbaum9sg]

[FGOS]

[FMO8]

[FRS7]

[Geraldos]

[Glodo6]

[Grier81]

[GT99]

[Halstead77]

[Harriso4]

[HCMS02]

JavaWorld, Dec. 2000.

EVE2 website: www.canexus.com (accessed: 21-Aug-2007).
C. Fellbaum. WordNet: An Electronic Lexical Database. The MIT
Press, 1998, 423 p.

K. Fredriksson, Sz. Grabowski. Practical and Optimal String
Matching. Lecture Notes in Computer Science, vol. 3772, 2005,
p. 374-385.

K. Fredriksson, M. Mozgovoy. Efficient Parameterized String
Matching. Information Processing Letters, vol. 100(3), 2006,
p. 91-96.

J. Faidhi, S. Robinson. An Empirical Approach for Detecting
Program Similarity within a University Programming

Environment. Computers & Education, vol. 11(1), 1987, p. 11-19.

S. Gerald. Confessions of a User. Composition Southeast Weblog,
2006.

M. Glod. Students Rebel Against Database Designed to Thwart
Plagiarists. Washington Post, September 22, 2006.

S. Grier. A Tool that Detects Plagiarism in Pascal Programs. ACM
S GCSE Bulletin, vol. 13(1), 1981, p. 15-20.

D. Gitchell, N. Tran. Sim: a Utility for Detecting Similarity in
Computer Programs. Proc. of the 30" SIGCSE Technical
Symposium on Computer Science Education, 1999, p. 266-270.

M. Halstead. Elements of Software Science. Elsevier, 1977, 142 p.

J. Harris. Plagiarism in Computer Science Courses. Ethics in the
Computer Age, 1994, p. 122-134.

T.Harding, D. Carpenter, S.Montgomery, N. Steneck. A

61

[HG82]

[IHBWO3]

[I'rving04]

[1S96]

[JKO3]

[JL99]

[JonesD1]

[iPOSO7]

[KMO3]

Comparison of the Role of Academic Dishonesty Policies of
Several colleges on the Cheating Behavior of Engineering and Pre-
Engineering Students. Proc. of FIE'02 Conference, vol. 3, 2002,
p. S1H/15-S1H/20.

C. Hwang, D. Gibson. Using an Effective Grading Method for
Preventing Plagiarism on Programming Assignments. Proc. of the
13" SGCSE Technical Symposium, 1982, p. 50-59.

L. Introna, N. Hayes, L. Blair, and E. Wood. Cultura Attitudes
Towards Plagiarism: Developing a Better Understanding of the
Needs of Students from Diverse Cultural Backgrounds Relating to

Issues of Plagiarism. Lancaster University, 2003.

R. Irving. Plagiarism and Collusion Detection Using the Smith-
Waterman Algorithm. TR-2004-164, University of Glasgow, 2004.

R. Indury, A. Schaffer. Multiple Matching of Parameterized
Patterns. Theoretical Computer Science, vol. 154(2), 1996, p. 203-
224,

R. Jackson, K. Kern. Deterring and Detecting Plagiarism.
Instruction Commons Guides, lowa State University, 2003.

M. Joy, M. Luck. Plagiarism in Programming Assignments. |EEE
Transactions on Education, vol. 42(2), 1999, p. 129-133.

E. Jones. Metrics Based Plagiarism Monitoring. The Journal of
Computing in Small Colleges, vol. 16(4), 2001, p. 253-261.

JPOS website: www.jpos.org (accessed: 11-Sep-2007).

D. Klein, C. Manning. Accurate Unlexicalized Parsing. Proc. of
the 41% Meeting of the Association for Computational Linguistics,
2003, p. 423-430.

62

[KR87]

[KSBO3]

[Lehmann9sg]

[Lenssen06]

[Levenshtein66]

[Manber94]

[Meizlish05]

[McLaughlin06]

[MFW.JS05]

[MKKO7]

[MKSO07]

R. Karp, R.Rabin. Efficient Randomized Pattern-Matching
Algorithms, IBM Journal of Research and Development,
vol. 31(2), 1987, p. 249-260.

J. Karkkainen, P. Sanders, S. Burkhardt. Linear Work Suffix Array
Construction. Journal of the ACM, vol. 53(6), 2006, p. 918-936.

E. Lehmann. Nonparametrics: Statistical Methods Based on
Ranks, Revised. Pearson Education, 1998, 480 p.

Ph. Lenssen. German BMW Banned From Google. Google
Blogoscoped, blogoscoped.com/archive/2006-02-04-n60. html
(accessed: 12-Sep-2007).

V. Levenshtein. Binary Codes Capable of Correcting Deletions,
Insertions and Reversals. Soviet Physics Doklady, vol. 10, 1966,
p. 707.

U. Manber. Finding Similar Files in a Large File System. Proc. of
the USENIX Technical Conference, 1994, p. 1-10.

D. Meizlish. Promoting Academic Integrity in the Classroom.
CRLT Occasional Papers, University of Michigan, #20, 2005.

A. McLaughlin. Google in China. The Official Google Blog,
googleblog.blogspot.com/2006/01/google-in-china.html (accessed:
12-Sep-2007).

M. Mozgovoy, K. Fredriksson, D. White, M. Joy, and E. Sutinen.
Fast Plagiarism Detection System. Lecture Notes in Computer
Science, vol. 3772, 2005, p. 267-270.

M. Mozgovoy, S. Karakovskiy, V.Klyuev. Fast and Reliable
Plagiarism Detection System. Proc. ¢f FIE 07 Cor ference, 2007.

M. Mozgovoy, T. Kakkonen, E. Sutinen. Using Natural Language
Parsers in Plagiarism Detection. Proc. ¢f SLalE 07 Workshcp,

63

[MMO7]

[MMOO]

[MMCMO6]

[Moodled7]

[Mozgovoy06]

[MTKO6]

[Mydropbox07]

[Nakov00]

[Ottenstein77]

2007.

A.Morrow, J. McLean. The War on Plagiarism. Eyeopener,

Ryerson University, 17-Oct-2007.

U. Manber, G. Myers. Suffix Arrays: a New Method for On-Line
String Searches. Proc. of the 1% Annual ACM-SIAM Symposium on
Discrete Algorithms, 1990, p. 319-327.

M. de Marneffe, B. MacCartney, C. Manning. Generating Typed
Dependency Parses from Phrase Structure Parses. Proc. of 5"
International Conference on Language Resources and Evaluation,
2006.

Moodle website: moodle.org (accessed: 21-Aug-2007).

M. Mozgovoy. Desktop Tools for Offline Plagiarism Detection in
Computer Programs. Informatics in Education, vol. 5(1), 2006,
p. 97-112.

M. Mozgovoy, V.Tusov, V.Klyuev. The Use of Machine
Semantic Analysis in Plagiarism Detection. Proc. of the 9"
International Conference on Humans and Computers, Japan,
2006, p. 72-77.

MyDropBox website: www.mydropbox.com (accessed: 21-Aug-
2007).

P. Nakov. Latent Semantic Analysis of Textual Data. Proc. of the
Conference on Computer Systems and Technologies, Bulgaria,
2000, p. 5031-5035.

K. Ottenstein. An Algorithmic Approach to the Detection and
Prevention of Plagiarism. SGCSE Bulletin, vol. 8(4), 1977, p. 30-
41.

[PMPO2]

[SE06]

[STO6]

[SWAO3]

[smppapi07]

[TM4J07]

[Turabian96]

[Tusov04]

[Turnitin07]

[TW04]

[VDO5]

L. Prechelt, G. Malpohl, M. Philippsen. Finding Plagiarisms
among a Set of Programs with JPlag. Journal of Universal
Computer Science, vol. 8(11), 2002, p. 1016-1038.

B. Stein, S. M. zu Eissen. Near Similarity Search and Plagiarism
Analysis. Selected Papers from the 29" Annual Conference of the
German Classification Society, 2006, p. 430-437.

L. Samela, J. Tarhio. Sublinear Algorithms for Parameterized
Matching. Lecture Notes in Computer Science, vol. 4009, 2006,
p. 354-364.

S. Schleimer, D. Wilkerson, A. Aiken. Winnowing: Local
Algorithms for Document Fingerprinting. Proc. of the ACM
SIGMOD 03 International Cor ference on Management f Data,
2003, p. 76-85.

smppapi website: www.smppapi.sourceforge.net (accessed: 11-
Sep-2007).
TM4J website: www.tmdj.org (accessed: 11-Sep-2007).

K. Turabian. A Manual for Writers of Term Pepers, Theses, and
Dissertations (6" Ed). The University of Chicago Press, 1996,
318 p.

V. Tusov. Computer Semantics of the Russian Language (in
Russian). St. Petersburg University Press, 2004, 400 p.

Turnitin website: www.turnitin.com (accessed: 21-Aug-2007).

L. Trivedi, S. Williams. Using Sources. Hamilton College Writing
Center, 2004.

P. Vamplew, J. Dermoudy. An Anti-Plagiarism Editor for

Software Development Courses. Proc. of the 7th Australasian

65

[VWO7]

[Webct07]

[Webster01]

[Wiedemeier02]

[Wise92]

[Wise94]

[Wise96]

[Zobel04]

Conference on Computing Education, vol. 42, 2005, p. 83-90.

K.Verco, M. Wise. Plagiarism a la Mode: a Comparison of
Automated Systems for Detecting Suspected Plagiarism. The
Computer Journal, vol. 39(9), 1997, p. 741-750.

WebCT website: www.webct.com (accessed: 21-Aug-2007).

Webster’s Encyclopedic Unabridged Dictionary. Thunder Bay
Press, USA, 2001, 2230 p.

P. Wiedemeier. Preventing Plagiarism in Computer Literacy
Courses. Journal of Computing in Small Colleges, vol. 17(4),
p. 154-163.

M. Wise. Detection of Similarities in Student Programs: Y AP’ing
may be Preferable to Plague’ing. ACM SGCSE Bulletin,
vol. 24(1), 1992, p. 268-271.

M. Wise. Running Rabin-Karp Matching and Greedy String
Tiling. Basser Department of Computer Science Technical Report,
Sydney University, 1994.

M. Wise. Y AP3: Improved Detection of Similarities in Computer
Programs and Other Texts. Proc. ¢f SIGCSE’'96 Technical
Symposium, 1996, p. 130-134.

J. Zobel. “Uni Cheats Racket”™: A case study in plagiarism
investigation. Proc. of the Australasan Computer Education
Conference, 2004, p. 357-365.

66

Publication [MFWJS05]
M. Mozgovoy, K. Fredriksson, D. White, M. Joy, and E. Sutinen. Fast Plagiarism
Detection System. Lecture Notesin Computer Science, vol. 3772, 2005, p. 267-270

Copyright © 2005 Springer-Verlag. Reprinted with permission.

Fast Plagiarism Detection System

Maxim Mozgovoy!, Kimmo Fredriksson'*, Daniel White?, Mike Joy?, and
Erkki Sutinen'

! Department of Computer Science, University of Joensuu, PO Box 111, FIN-80101
Joensuu, Finland
{Maxim.Mozgovoy, Kimmo.Fredriksson, Erkki.Sutinen}@cs.joensuu.fi
? Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
{D.R.White, M.S.Joy}@warwick.ac.uk

Introduction. The large class sizes typical for an undergraduate programming
course mean that it is nearly impossible for a human marker to accurately detect
plagiarism, particularly if some attempt has been made to hide the copying.
While it would be desirable to be able to detect all possible code transformations
we believe that there is a minimum level of acceptable performance for the
application of detecting student plagiarism. It would he useful if the detector
operated at a level that meant for a piece of work to fool the algorithm would
require that the student spent a large amount of time on the assignment and
had a good enough understanding to do the work without plagiarising.

Previous Work. Modern plagiarism detectors, such as Sherlock [3], JPlag [5]
and MOSS [6] use a tokenization technique to improve detection. These detec-
tors work by pre-processing code to remove white-space and comments hefore
converting the file into a tokenized string. The main advantage of such an ap-
proach is that it negates all lexical changes and a good token set can also reduce
the efficacy of many structural changes. For example, a typical tokenization
scheme might involve replacing all identifiers with the <IDT> token, all numbers
by <VALUE> and any loops by generic <BEGIN_LOOP>...<END_LOOP> tokens. Our
algorithm also makes use of tokenised versions of the input files and we use suffix
arrays [4] as our index data structure to enable efficient comparisons.

While all the above-mentioned systems use different algorithms to each other,
the core idea is the same: a many-to-many comparison of all files submitted for
an assignment should produce a list sorted by some similarity score that can
then be used to determine which pairs are most likely to contain plagiarism.
A naive implementation of this comparison, such as that used by Sherlock or
JPlag, results in O(f(n)N?) complexity where N is the size (number of files)
of the collection, and f(n) is the time to make the comparison between one
pair of files of length n. Without loss of detection quality, our method achieves
O(N(n+ N)) average time by using indexing techniques based on suffix arrays.
If the index structure becomes too large, it can he moved from primary memory
to secondary data storage without significant loss of efficiency [2].

The approach we describe can be also used to find similar code fragments in a
large software system. In this case the importance of fast algorithm is especially

* Supported by the Academy of Finland, grant 202281.

Algorithm 1 Compare a File Against an Existing Collection

p =1 // the first token of Q
WHILE p<g—7v+1
find Q[p...p + v — 1] from the suffix array
IF Qlp...p + v — 1] was found
UpdateRepository
p=pt7
ELSE
p=p+1
FOR EVERY file F; in the collection
0 Similarity(Q, F;) = MatchedTokens(F;)/q

H©=-IO0 U & W

high due to large file collection size. The Dup tool [1] uses parametrized suffix
trees to solve this task, but the algorithms are relatively complex compared to
our approach.

Algorithms and Complexity. Our proposed system is based on an index structure
built over the entire file collection. Before the index is huilt, all the files in the
collection are tokenized. This is a simple parsing problem, and can be solved in
linear time. For each of the N files in the collection, The output of the tokenizer
for a file F; is a string of n; tokens. The total number of tokens is denoted by
n=> n.

We use suffix array as an index structure. A suffix array is a lexicographically
sorted array of all suffixes of a given string [4]. The suffix array for the whole
document collection is of size O(n). We consider the total memory requirements
to be acceptable for modern hardware. A suffix array allows us to rapidly find
a file (or files), containing any given substring. This is achieved with a binary
search, and requires O(m + logs) time on average, where m is the length of
the substring (it is also possible to make this the worst case complexity, see [4]).
The array can be constructed in time O(nlogn), assuming atomic comparison
of two tokens.

Algorithm 1 is intended for finding all files within the collection’s index that
are similar to a given query file. It tries to find the substrings of the tokenised
query file, Q[1..¢g], in the suffix array, where ¢ is the number of tokens. Matching
substrings are recorded and each match contributes to the similarity score. The
algorithm takes contiguous non-overlapping token substrings of length ~ from
the query file and searches all the matching substrings from the index. These
matches are recorded into a ‘repository’. This phase also includes a sanity check
as overlapping matches are not allowed.

The similarity hetween the file @ heing tested and any file F; in the collection
is just a number of tokens matched in the collection file divided by the total
number of tokens in the test file (so it is a value between 0 and 1), i.e.

Similarity(Q, F;) = MatchedTokens(F;)/q,

In Algorithm 2, we encounter two types of collisions. The first one appears
when more than one match is found in the same file. If several matches that
are found correspond to the same indexed file, these matches are extended to

Algorithm 2 Update the Repository

1 Let S be the set of matches of Q[p...p +v — 1]

2 IF some of the strings in S are found in the same file /* collision of type 1 */
3 leave only the longest one

4 FOR every string M from the remaining list S

5 IF M doesn’t intersect with any repository element

[§}

7

8

9

insert M to the repository

ELSE IF M is longer than any conflicting rep. element /* collision of type 2 */
remove all conflicting repository elements
insert M to the repository

I tokens, I' > =, such that only one of the original matches survives for each
indexed file. Therefore, for each file in the index, the algorithm finds all matching
substrings that are longer than other matching substrings and whose lengths are
at least + tokens. The second one is the reverse of the first problem: we should
not allow the situation when two different places in the input file correspond to
the same place in some collection file. To resolve the difficulty we use ‘longest
wins’ heuristics. We sum the lengths of all the previous matches that intersect
with the current one, and if the current match is longer, we use it to replace the
intersecting previous matches.

The complexity of Algorithm 1 is highly dependent on the value of the ~
parameter. Line 3 of Algorithm 1 takes O(y+logn) average time, where n is the
total number of tokens in the collection (assuming atomic token comparisons). If
we make the simplifying assumption that two randomly picked tokens match each
other (independently) with fixed probability p, then on average we obtain np”
matches for substrings of length . If (was found, we call Algorithm 2. Tts total
complexity is, on average, at most O((g/v - np?)?). To keep the total average
complexity of Algorithm 1 to at most O(q(y + logn)), it is enough that v =
2(log, , n). This results in O(glogn) total average time. Since we require that
v = 2(logn), and may adjust v to tune the quality of the detection results, we
state the time bound as O(qy). Finally, the scores for each file can be computed
in O(N) time. To summarize, the total average complexity of Algorithm 1 can
be made O(g(y + logn) + N) = O(gy + N). The O(v + logn) factors can be
easily reduced to O(1) (worst case) using suffix trees [7] with suflix links, instead
of suffix arrays. This would result in O(g + N) total time.

Note that we have excluded the tokenization of @ and that we have consid-
ered the number of tokens rather than the number of characters. However, the
tokenization is a simple linear time process, and the number of tokens depends
linearly on the file length.

To compare every file against each other, we can just run Algorithm 1 for
every file in our collection. After that, every file pair gets two scores: one when
file a is compared to file b and one when the reverse comparison happens, as the
comparison is not symmetric. We can use the average of these scores as a final
score for this pair.

Summing up the cost of this procedure for all the N files in the collection, we
obtain a total complexity of O(ny + N?), including the time to build the suffix
array index structure. With suffix trees this can be made O(n + N?)

Evaluation of the System. Tt is not feasible in the nearest future to compare
our system’s results with a human expert’s opinion on real-world datasets as
a human would not have the time to conduct a thorough comparison of every
possible file pair. However, we can examine the reports that are produced hy
different plagiarism detection software when used on the same dataset. The
systems used for the analysis include MOSS [6], JPlag [5] and Sherlock [3].
Every system printed a report about the same real collection, consisting of 220
undergraduate student’s Java programs.

The simple approach (to consider only detection or rejection) allows us to
grganize a ‘voting’ experiment. Let S; be the number of ‘jury’ systems (MOSS,
JPlag and Sherlock), which marked file ¢ as suspicious. If S; > 2, we should
expect our system to mark this file as well. If S; < 2, the file should, in general,
remain unmarked.

For the test set consisting of 155 files marked by at least one program, our
system agreed with the ‘jury’ in 115 cases (and, correspondingly, disagreed in 40
cases). This result is more conformist than the results obtained when the same
experiment was run on the other 3 tested systems. Each system was tested while
the other three acted as jury.

Conclusions. We have developed a new fast algorithm for plagiarism detection.
Our method is hased on indexing the code database with a suffix array, which
allows rapid retrieval of blocks of code that are similar to the query file. This
idea makes rapid pairwise file comparison possible. Evaluation shows that this
algorithm’s quality is not worse than the quality of existing widely used methods,
while its speed performance is much higher. For the all-against-all problem our
method achieves O(yn) (with suffix arrays) or O(n) (with suffix trees) average
time for the comparison phase. Traditional methods, such as JPlag, need at least
O((n/N)2N?) = O(n?) average time for the same task. In addition, computing
the similarity matrix takes O(N?) additional time, and this cannot be improved,
as it is also the size of the output.

References

1. B. S. Baker. Parameterized Duplication in Strings: Algorithms and an Application
to Software Maintenance. SIAM Journal on Computing, 26(5):1343-1362, 1997.

2. D. Clark and J. Ian Munro. Efficient suffix trees on secondary storage. Proceedings
cf the seventh annual ACM-SIAM symposium on Discrete algorithms, 1996.

3. M. S. Joy and M. Luck. Plagiarism in programming assignments. IEEFE Transac-
tions on Education, 42(2):129-133, 1999.

4. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
In Proceedings of SODA 90, 319-327. STAM, 1990.

5. L. Prechelt, G. Malpohl, and M. Phlippsen. JPlag: Finding plagiarisms among a
set of programs. Technical report, Fakultat for Informatik, Universitat Karlsruhe,
2000. http://page.mi.fu-berlin.de/ prechelt/Biblio/jplagIR.pdf.

6. S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local algorithms for
document fingerprinting. In Proceedings ¢f SIGMOD ’03, 76-85. ACM Press, 2003.

7. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249-260, 1995.

Publication [Mozgovoy06]
M. Mozgovoy. Desktop Tools for Offline Plagiarism Detection in Computer Programs.
Informaticsin Education, vol. 5(1), 2006, p. 97-112

Copyright © 2006 Institute of Mathematics and Informatics, Vilnius. Reprinted with

permission.

Informaticsin Education, 2006, Vol. 5, No. 1, 97-112 97
© 2006 Institute of Mathematics and | nfor matics, Vilnius

Desktop Tools for Offline Plagiarism Detection in
Computer Programs

Maxim MOZGOVOY

Department of Computer Science, University of Joensuu
Lansikatu 15, 80100 Joensuu, Finland
e-mail: maxim.mozgovoy@cs.joensuu.fi

Received: December 2005

Abstract. Plagiarism in universities has always been a difficult problem to overcome. Various tools
have been devel oped over the past few yearsto hel p teachers detect plagiarism in students’ work. By
being able to categorize the multitude of plagiarism detection toals, it is possible to estimate their
capabilities, advantages and disadvantages. In this article | consider modern plagiarism software
solutions, paying attention mostly to desktop systems intended for plagiarism detection in program
code. | also estimate the speed and reliability of different plagiarism detection systems that are
currently available.

Key wor ds: plagiarism detection, similarities detection, file comparison.

1. Introduction

According to investigations conducted at Duke University (Bliwise, 2001), the prevalance
of plagiarism is widespread. For example, about 40% of all students confessed to copy-
ing sentences without citing the original source, 11% reported amost verbatim copying
of material, 9% “utilized” another student’s computer program. Plagiarism is not only
found in student work; there are severa reports (Brumfiel, 2002; Collberg and Kobourov,
2003) about instances of plagiarism and so-called self-plagiarism (see below) in articles
submitted by researchers for scientific conferences and journals.

The rapid development of computing and Internet technologies has made plagia-
rism much easier to carry out. In the past, people had to spend considerable time to
find a relevant document, then copy its fragments by hand. With advances in comput-
ing technology it takes considerably less time to search for relevant documents and
literally seconds to cut and paste sections of an original document into one's own.
Moreover, there are numerous “ paper-mills’ (e.g., ht t p: / / www. exanpl eessays. com
http://ww. di rectessays. com wwv. di ssertati onsandassi gnnents. comn,
where students can buy recycled or custom made papers.

Much can be done to prevent plagiarism before it occurs. Plagiarism prevention tech-
niques include smart design of assignments, supervised tests, work process tracing and
so on (Wiedemeier, 2002; Zobel and Hamilton, 2002). Some teachers even use specia
plagiarism-preventing software tools, such as Anti-Plagiarism Editor (APE), which tracks

98 M. Mozgovoy

all potential cheats, such as the cutting and pasting of large text-blocks (Vamplew and
Dermoudy, 2005). The teacher can decrease the level of cheating just by notifying stu-
dents that their work will be checked for plagiarism with a software tool (Braumoeller
and Gaines, 2001). Sometimes the plagiarism can be of an unintentional nature. The stu-
dents are just not sufficiently educated to use the sources properly. Fortunately, there are
good style guidelines (see, e.g., Trivedi and Williams, 2002), which can be utilized by the
teachers.

Although priority should be given to plagiarism prevention, detecting plagiarism after
it occursis still a very important task. The last few years have brought about many so-
lutions for automatic plagiarism detection in essays and in program code. Some of them
are currently being widely used.

The world of plagiarism detection softwareis not uniform: different approaches exist,
each of which aims at detecting different kinds of plagiarism. In this review we will fo-
cus on “offling” (or “hermetic”) systems designed for program code similarity analysis.
Instead of making an ordinary survey of software tools, we provide a taxonomy for the
most popular approaches and examine their strengths and weaknesses. This work isin-
tended to provide a short overview of the detection tools currently available and to point
out several important topics for future discussion.

2. Definitions of Plagiarism

One issue that is important for every plagiarism detection tool is how plagiarism is de-
fined. Unfortunately, there are no formal, operational definitions of plagiarism. Usually
people cite the definition given by Webster’'s Encyclopedic Dictionary: “the unauthorized
use of thelanguage and thoughts of another author and the representation of them asone's
own” (Verco and Wise, 1997). Some definitions are more precise, but still informal. An
example is Manber's definition of plagiarism, which is implied in the following quote:
“Our goal isto identify files that came from the same source or contain parts that came
from the same source” (Manber, 1994).

It seems quite clear that the concept of plagiarism itself is so blurred that one cannot
expect someone to invent any fully adequate definition that is suitable for direct imple-
mentation as acomputer program. Much of the advice given to people who need to detect
plagiarism is based on common sense and/or deal with fuzzy, informal concepts (Clough,
2000). Concerning cheating techniques in general, it is necessary to take into account
issues like unauthorized collaboration between students, asking (or even paying) for help
from a skillful outsider, or self-plagiarism (i.e., recycling one’s own published text with-
out quoting). Furthermore, it is sensible to consider results obtained due to influence or
“creative understanding” of other people’s works. Software tools cannot handle all such
situations because of the limits of current technology. Because of the difficulties of creat-
ing an all-encompassing definition of plagiarism, when we refer to plagiarismin thisrest
of this article we generally refer to plagiarism that is detectable via software solutions,
unless otherwise stated.

Desktop Tools for Offfine Plagiarism Detection in Computer Programs 99

Basically, every tool implements its own definition of plagiarism, which usualy be-
comes clear from the progam’s documentation. The reliability of the software detector
greatly depends on the relationship of its definition of plagiarism to the amorphous def-
inition of plagiarismthat is used by human detectors. For example, the study by the au-
thors of the software package JPlag showsthat string matching-based file-file comparison
routines can reveal similarity, which is considered to be a good indication of plagiarism
by human detectors (Prechelt et al., 2002). Manber (1994) proposes an explicit criterion
for file similarity: “we say that two files are similar if they contain a significant number
of common substrings that are not too short”.

3. “Onlin€g’ Detection Systems

Online detection systems can check an article for fragments of text that can also be found
somewhere on the Net. No doubt, the Internet is the number one source for possible
borrowingsin the case of ordinary students essays'; therefore, the importance of online
detection systems should not be underestimated. Although a thorough analysis of online
detection systems is beyond the scope of this article, there are several issues related to
online detection that are worth mentioning.

Online detection systems are close relatives of ordinary Internet search engines.
Online detection systems concentrate on the speed and width of detection, at the
cost of the quality of detection. For example, the developers of the Turnitin system
(www. t ur ni tin. com) claim that their database consists of over 4.5 billion pages, which
is updated daily with 40 million pages. They also claim they maintain “a huge database
of books and journals, and a database of the millions of papers already submitted”.

It is not surprising that only a few different “online” plagiarism detection services
exist because many of such systems require enormous computational resources. Some of
them, like Turnitin, maintain their own databases, while others (e.g., EVE2 available at
www. canexus. com) utilize the power of existing search engines.

Although they are very important tools, online plagiarism detection services currently
cannot use the advanced, but time-consuming, document comparison routines used in
some offline systems. Also, their authors have to deal mostly with technical issuesthat are
not related to plagiarism detection directly (like organizing large-scale document banks).
Furthermore, “onling” systems are usually commercial, so their documentation primarily
contains advertisements and independent reviews are shallow in algorithmic details.

4. “Offline’ Detection Systems

Offline detection systems adopt a “hermetic” model of the textual world. All “borrow-
ings’ are assumed to be made from the documents inside a given collection. For exam-
ple, in the case of offline detection systems, the entire textual area in which the offline

1itisnot so, e.g., in case of plagiarized program code.

100 M. Mozgovoy

detection system searches for sources of plagiarism might be a collection of documents
provided by a teacher. (In contrast, the textual area of online systems is the entirety of
text on the Internet.)

In some cases, the “hermetic” model turns out to be inappropriate. For example, if
students are asked to write an essay about the economic situation of a certain country ina
certain historical period, it isunlikely to find cases of “hermetic”’ plagiarism since every-
body hastheir owntopic; thereis, basically, nothing to copy and paste. On the other hand,
laboratory work assignments in computer science tend to provoke “knowledge-sharing”
between students because each of the students' assignments probably share a high de-
gree of similarity?. Also it is hard to find a piece of code on the Net that will do exactly
what is called for. Knowledge-sharing isvery common: it is the most frequent plagiarism
technique according to (Sheard et al., 2002). Severa plagiarism detection systems are
specialy designed to analyze computer programs rather than natural language.

It isworthwhile to re-emphasize that theterm “onling” in this article refersto systems
that search the Net to revea plagiarism; “offling’ systems search collections of docu-
ments only. The form of user interaction with the system is not important for determining
if asystem is an offline system or an online sytem since an “offling’ system can be
implemented asaWeb service (JPlag) or an“online” system can be an install able desktop
application (EVE2).

We argue that the majority of offline plagiarism detection tools fall into one of three
categories: fingerprint-based, string matching-based, and tree-matching based systems. In
the rest of this article we give an overview of those categories. We end with a discussion
of issues related to speed and visuaization, authorship identification, and the principles
of evaluation.

4.1. The Fingerprint-Based Approach and LSA

The fingerprint-based approach was first used in attribute counting systems, which were
largely used for plagiarism detection in the past (Grier, 1981; Faidhi and Robinson, 1987).

The basic idea in the fingerprint-based approach is to create a kind of fingerprint
for every document in the collection. Each fingerprint may contain several numerica at-
tributes that somehow reflect the structure of the document. For example, the system can
store the average number of words per line, the number of lines, the number of passages,
the number of unique words, and so on. If two fingerprints are close to each other (ac-
cording to adistance function), the documents themsel ves can also be considered as being
similar.

Over the last several years, a couple of different metrics have been tested. It is gener-
aly believed nowadaysthat fingerprint-based approaches are quite weak since even dight
textual modifications can considerably affect the fingerprint of a document; newer sys-
tems, based on content comparison, almost forced out attribute counting systems (Verco
and Wise, 1997).

2Usually teachersjust slightly modify one “skeleton” assignment to obtain different task variants.

Desktop Tools for Offfine Plagiarism Detection in Computer Programs 101

A good example of a fingerprint-based system is Accuse (Grier, 1981). The finger-
printsin Accuse include seven parameters: the number of unique operators, the number
of unique operands, the total number of operators, the total number of operands, the
number of code lines, the amount of variables declared (and used), and the total number
of control statements. The correlation scheme computes an “increment” for each attribute
pair:

AL = attribute; count in the first file

A = attribute; count in the second file

increment; = inportance of attribute; - (A - Ad)

Then these increments, summed up, yield the final similarity ratio.

Several more-advanced approaches for creating fingerprints, showing reasonable lev-
elsof reliability, are currently in use. Thefingerprintsin modern systems are usually made
up of the values obtained by applying a mathematical function (a sort of hash function)
to specially selected substrings in the collection of files (Hoad and Zobel, 2003). Fin-
gerprints based on file content are used, for example, in the well-known MOSS system?®
(Schleimer et al., 2003).

Since file comparison in fingerprint-based systems is performed by means of com-
parison of small fingerprints, the speed of detection isusually high. If fingerprint sizeis
constant, the complexity of the work® is O(N), where N isthe number of documentsin
the collection (Hoad and Zobel, 2003). (Additional O(nN') —where n isthe average file
length —time is required to create fingerprints). To obtain similarity ratiosfor all possible
file pairs, the system should make O(~N?) comparisonsin total.

Itis possible for fingerprint-based systems to utilize a universal text retrieval method,
such as latent semantic analysis (LSA). LSA allows for the creation of a special finger-
print in the form of a numeric vector for every document, based on frequencies of words
found in the text. Unfortunately, LSA destroys the structure of the documents since it
treats every document as a bag of non-connected words. For speciaized tasks, like pla-
giarism detection in program code, L SA has been reported to have a 50% or even higher
similarity between independent programs since the programs usually share the same vo-
cabulary (Nakov, 2000). However, comprehensive evaluation of LSA methods applied to
the plagiarism detection problemis still missing.

4.2. The Content Comparison Techniques

If fingerprint comparison is not enough, the detector can compare the contents of do-
cuments. While the core idea is simple, none of the techniques of content comparison
is completely reliable. Since different systems use different algorithms; currently it is
not possible to determine which technique is the best — each has its own advantages
and disadvantages. Furthermore, the task of plagiarism detection in program code turns

3| consider MOSS to be primarily fingerprint-based system, though it aso utilizes string matching tech-
niques.
4| e., the complexity of the comparison of the query document against the collection.

102 M. Mozgovoy

out to be a problem that requires specialized solutions. There are several tools specialy
designed for software plagiarism detection.

Programming languages are formal and much simpler than any natural language. This
makesthe problem of detection easier since the techniques of possible plagiarism are lim-
ited in programming languages. It is possible to classify those techniques and explicitly
program proceduresthat areinsensitiveto all of them. For natural |anguagesthis approach
is obviously much harder to perform.

There have been attempts to list the possible techniques that a plagiarizer can do to
hide plagiarism (Joy and Luck, 1999; Jones, 2001). Some of these techniques are:

1. Changing comments (rewording, adding, changing comment syntax and omitting).

. Changing white space and layout.

. Renaming identifiers.

. Reordering code blocks.

. Reordering statements within code blocks.

. Changing the order of operands/operatorsin expressions.

. Changing data types.

. Adding redundant statements or variables.

. Replacing control structures with equivaent structures (while-loop by do-while
loop; nested if statements by a switch-case block and so on).

10. Replacing the functional call by the body of the function.

It is presumed that a plagiarizer does not have to understand the a gorithmic meaning
of the program. In fact, any of thetechniques|isted above can be performed automatically
by acompiler-level tool that can recognize the semantic meaning of individual statements
without recognizing the functionality of the whole program.

However, not al such changes are equally advanced (Joy and Luck, 1999). Some of
them, like changing formatting or identifier names (lexical changes), do not even require
the knowledge of the programming language used. Other ones (e.g., structural changes)
can be done only if the plagiarizer is familiar with language semantics.

We can usethelist of plagiarizer’stechniquesto also define plagiarism: a plagiarized
program is a program that can be obtained from the original one by means of one or
more of the actions listed above.

Next we discuss the algorithmic solutions that have been implemented in various sys-
tems.

O© oo ~NOOUhWDN

4.3. Tokenization

Tokenization (Joy and Luck, 1999; Prechelt et al., 2002; Mozgovoy et al., 2005) is a
very popular technique used by most source code plagiarism detection systems. Its main
purpose is to render useless all kinds of renaming tricks. Tokenization algorithms basi-
cally substitute various elements of program code with single tokens. For example, any
identifier can be replaced by the token <IDT>, and every numerical value by the token
<VALUE>. Now, if aprogram containsaline

a=b+45;

Desktop Tools for Offfine Plagiarism Detection in Computer Programs 103

it will be replaced by the string

<IDT>=<IDT> + <VALUE>;

So trying to rename the variables will not help since every line of the form “identifier
= identifier + vaue;” istranslated into the same tokenized sequence.

There are methods of tokenization (or similar procedures) that perform more advanced
substitutions. For example, Baker's parameterized match agorithm® (Baker, 1995) will
treat two given code fragments asidentical if one of them is obtained from the other one
by a series of regular substitutions of identifiers.

Tokenization techniques can also utilize semantic information about the control struc-
tures of the programming language being used. For instance, any loops can be substituted
by the <BEGIN_LOOP>. . .<END_L OOP> structure.

There are two main drawbacks related to tokenization:

1. Any tokenizer is language-dependent. So a separate routine is needed for every
programming language®. Fortunately, there are free parsers availablefor all popular
languages nowadays.

2. The detector, dealing with tokenized files, becomes more “paranoiac’. Tokeniza
tion increases the degree of similarity between any two given programs.

Tokenization is usualy the first action performed by detectors. After the tokenization
of input files, a system-specific comparison routine is invoked.

4.4. Sring Matching-Based Algorithms

The scheme of the usual file content comparison system is shown in the following pseu-
docode:

FOR EACH col l ection file F
FOR EACH col l ection file G F # G
Calculate simlarity between F and G

The core function, which calculates similarity, may vary highly from one system to
another. The most widespread techniqueisto utilize astring matching procedure, treating
input files (tokenized files in case of software plagiarism) as strings. This gives a true
content-comparison system; though the semantic issues of afile (such as the meaning of
loops and functiona calls) till remain unanalyzed.

Early systems like YAP (Wise, 1992) used simple mechanisms, like the UNIX sdiff
tool, that perform line-by-line comparison of two files under Levenshtein distance. Dur-
ing the the last few years, significantly more advanced string matching methods have
been implemented in plagiarism detectors.

4.4.1. The Running-Karp-Rabin Greedy-String-Tiling (RKS-GST) Algorithm
The RKS-GST agorithm was used, e.g., in Michael Wise's YAP3 tool (Wise, 1996). The
basic aim of the RKS-GST agorithmisto find a“best tiling” for two giveninput files, i.e.,

SWhich is not atokenizer, but its purpose is similar in our context.
6JPlag, for example, explicitly allows to select the correct parser to apply to files of the given collection.

104 M. Mozgovoy

thejoint coverage of non-overlapping stringsthat includes as many tokens from both files
aspossible. The existenceof apolynomial agorithmthat providesan exact solutionis till
an open problem (Wise, 1996) so it is necessary to make severa heuristic assumptions
to develop a practically applicable procedure. The fact that longer tiles are more valuable
than shorter ones leads to greedy heuristics, which are actually implemented in the RKS-
GST algorithm.

The RKS-GST agorithm can be described (very superficialy) as follows. The rou-
tine begins by analyzing the matches of length initial-search-length and greater. These
matches are obtained by calling the Karp-Rabin procedure (Karp and Rabin, 1987). Then
the matches are analyzed (beginning from the longest one). If the current match does not
overlap with the existing tiling, it is added to the coverage as anew tile. After all matches
are processed, a new search occurswith the smaller match length. When the match length
reaches the minimum-match-length threshold value, the algorithm finishes its work.

The RKS-GST algorithm was shown to have O(n?®) complexity in the worst case
(where n is the sum of the lengths of the input strings), while the expected running time
(obtained empirically) is almost linear —just O(n!-12) (Wise, 1994). So the overall com-
plexity of the RKS-GST-based system, which produces similarity ratios for all file pairs,
should be O(N?2n!-12),

This method was used later in a well-known system — JPlag (Prechelt et al., 2002).
The tiling approach is now considered to be quite advanced and reliable; most widely-
used systems implement algorithms that can be treated as tiling variations. However, the
actual performance (in terms of speed and reliability) highly depends on the assumptions
that are used.

A version of the greedy string tiling has also been implemented in Sherlock project
(Joy and Luck, 1999).

4.4.2. Parameterized Matching Algorithms
The parameterized matching agorithms approach is mainly associated with Brenda
Baker's DUP tool (Baker, 1995). As was already mentioned, parameterized matching
allows the system to find identical sections of code as well as sections with systematic
substitutions of identifiers. In practice, the matching is done by replacing identifierswith
their offsets: the first occurrence is substituted by zero, while the next occurrences are
replaced by the number of tokens since their last use (Clough, 2000). This technique
can be considered as an ordinary text matching routine combined with an advanced (less
“paranoiac”) tokenizer.

DUP’s running time is estimated to be linear in input length’ (Baker, 1995), but
guadratic in the worst case.

4.5. Parse Trees Comparison Routines

Going one step further, it is reasonable to analyze parse trees® of the programs instead of
their listings. Probably, thisidea first was utilized in Sim utility (Gitchell and Tran, 1999).

For al-against-all detection itis O(N? + Nn) in our terms.
8parse tree (built by the parser) represents the syntactic structure of the program.

Desktop Tools for Offfine Plagiarism Detection in Computer Programs 105

Sim still uses an ordinary string matching routine to compare programs, but instead of
analyzing code blocks, it compares corresponding parse trees, which are converted to
strings. So Sim is a hybrid approach that lies somewhere between ordinary string match-
ing and tree comparison. The complexity of the algorithm used is O(s?), where s isthe
maximum size of the parsetrees (Gitchell and Tran, 1999). Since the size of the parse tree
of thefileis proportional to the filelength, the overall complexity of processfor obtaining
all necessary similaritiesis estimated as O(N?n?).

The pure tree comparison procedure was implemented in the Brass project (Belk-
houche et al., 2004). Since tree comparison is more complex and therefore slower than
string matching, Brass uses akind of string comparison routine to filter only “suspicious’
documents. Then a special “micro comparison” algorithm is applied to provide more
reliable results.

Though this approach seems to be the most advanced, little research in this area has
been made so far. For example, it is still unknown if it is worthwhile to perform such a
complex analysis of input files —i.e., it is unknown whether it is necessary to compare
parse trees to reveal instances of plagiarism or if usual string matching algorithms are
reliable enough. Furthermore, any fast enough tree comparison routine requires some
optimizations like greedy heuristics. For now, it is not clear how these techniques affect
reliability.

The complexity of the Brass algorithm has not yet been analyzed, but it is reasonable
to suppose it is not faster than YAP3/JPlag systems.

4.6. Speed and Visualization Issues

Developing a user-friendly interface for plagiarism detection is a separate issue. Cur-
rently severa systems, such as MOSS, JPlag and Sherlock, provide impressive interface
solutions, which can serve as decent templates for other projects.

There are no universal recommendations, but it is clear that every system should be
ableto:

1) show alist of al similar file pairs with the corresponding degrees of similarity; and
2) give adetailed report about any selected pair: plagiarized blocks should be high-
lighted, and it also should be clear which blocks were considered as similar.

PRAISE (Lancaster and Culwin, 2004) and Sherlock detectors provide quick visual-
ization of resultsin the form of a graph where each vertex represents a single document,
and each edge shows the degree of similarity between two documents. (If the value of
similarity is lower than a certain threshold, no edge is created). This mechanism is very
useful, especialy for small collections; therefore | can advise authorsto implement some-
thing similar in their detectors. Note that a good visualization module will not only help
to find a plagiarism case, but also to prove it quickly in a conflict situation (i.e., to show
the evidence of plagiarism in any particular case).

Speed issues have also been in the scope of interest during recent years. By following
the general scheme of pairwise file comparison, it is necessary to perform O(N?) file-file
comparisons for a collection, consisting of N files (which is usualy considered to be

106 M. Mozgovoy

a considerable amount of work). That is why the problem of inventing fast comparison
routines always has been crucial®. The usua approach is to develop a fast comparison
procedure, which can be used as afilter for “interesting” pairs. Such filter procedures can
be applied to the files themsel ves (Belkhouche et al., 2004) or to their fingerprints (which
are much faster, but generally lessreliable) (Manber, 1994).

Our recent project (Mozgovoy et al., 2005) tries to bring about a significant increase
in detection speed by means of agorithmic solutions. We combine all collection filesinto
asingle structure (which is a small modification of the well-known suffix array (Manber
and Myers, 1990)), and then compare separate documents against this collection at once.

Finally we obtain atotal complexity of O(nN~y + N2}, including the time to build
the suffix array index structure, where N is the total number of files, n is the average
file length and ~ is a finely-tunable constant, v = Q(lognN). Actually, v represents
the minimal length of matches, which our algorithm tries to find. A too small ~ value
will give many false matches, while a too large value can lead to skipping important
substrings. Normally we select some “typical” value for the length of the string that a
plagiarizer can copy & paste (e.g., 10-20 tokens).

Any plagiarism detection routine based on pairwise file comparisons will have acom-
plexity of O(f(n)N?) at least, where f(n) is the complexity of comparing two files of
length n.

5. Author ship Identification

The problem of authorship identification and stylometry is widely-known. Authorship
identification methods include many different techniques: Shallow parsing, Markov mo-
dels, Qsum algorithm, entropy and content analysis, etc. (Cook, 2003).

It seemsclear that these methods can be used to reveal possibleinstances of plagiarism
indirectly. It can be an indication of plagiarism if no essay chunks can befound either on
the Net or inside other students' submissions, but authorship analysis shows that two
different parts of this essay belong to two different authors. Although the authorship
identification problem has already been researched for years, only afew studies have been
made in plagiarism detection. Recent investigations report only limited success with this
approach (Hersee, 2000; Bonsall, 2004). It turnsout that authorship analysis methods can
produce reliable results for large text blocks only; possible deviations between different
paragraphs of the same text are too high in many cases. This makes known authorship
identification methods unreliable for plagiarism detection, but this direction needs more
research.

9This may be not the case for “offline”’ plagiarism detection on small data sets, but important for finding
similarities in the source code of a large software project.

Desktop Tools for Offfine Plagiarism Detection in Computer Programs 107

6. Principlesof Evaluation

It seems obvious that any plagiarism detection system should first of all be able to detect
plagiarism; all other issues canraiseinterest only if the detector itself isreliable. Unfortu-
nately, most projects still lack proper evaluation. Such testing can be difficult for “onling”
systems that have to maintain huge data collections; also, as we said before, the issues
of speed and coverage can have greater importance than quality. But even papers on “of -
fling” detection systems usually have very simple evaluation procedures, which show the
positive sides of new algorithms (Belkhouche et al., 2004; Gitchell and Tran, 1999; Joy
and Luck, 1999).

Geoffrey Whale (Whale, 1990) tried to adapt well-known metrics — recall and preci-
sion, which are used in information retrieval -, for the evaluation of plagiarism detection
systems. Whale's approach was used to eval uate several known systems (Verco and Wise,
1997). Though these metrics are valuable for describing the reliability of the system, they
are difficult to measure. Basically, it should be known beforehand which files from the
collection contain instances of plagiarism; however, only human experts can provide re-
liable sample results. Nonethel ess, manua evaluation suffers from other problems:

1. Even human markers in many cases have different opinions about particular sub-
missions;

2. itisnot feasible to manually check real-world collections that contain hundreds of
submissions.

Recent work by Hoad and Zobel (Hoad and Zobel, 2003) shows that the highest false
match (HFM, the highest percentage given to an incorrect result) and separation (the
difference between the lowest correct result and the HFM) can serve as better metrics for
plagiarism detection systems than recall and precision.

The authors mention the difference between text retrieval and plagiarism detection.
In text retrieval the measure of similarity between a user query and any document in
the collection is a* score” without any upper bounds. Theoretically, there should be no
“ideal” queries, which give a maximal possible score for an arbitrary document. In pla-
giarism detection the situation is different: The exact copy of the origina document is
the ideal match, so the upper limit of the similarity function for every given fileis known
beforehand.

A good system should try to minimize the HFM and maximize separation, though
these values are not independent, so only the ratio HFM/separation is really important. A
high separation value can compensate for high HFM and vice versa — low separation is
satisfactory if the HFM is not high.

In the recent paper (Mozgovoy et al., 2005) my co-authors and | tried to compare
different plagiarism detection systems using the “ conformism test”. The conformism test
determines how many submissions, considered as plagiarized by some certain system,
are found in a common “plagiarized files subset”, defined by severa other systems (“the
jury™) by processing the sametest collection.

Though different systems often differ in which file pairs originated from the same
source, they usually agree about the presence or absence of plagiarismin acertain file.

108 M. Mozgovoy

Ointly + 143
‘-\‘_‘___/

&

speed

TAP3, TPlag
(8] (1:[2111 12]

Brass
C(H2n)

or slower

Fig. 1. Comparison of different plagiarism detection systems.

quality

Our views on the current plagiarism detection systems are summarized in Fig. 1.

The asymptotic complexities of different systems are mostly taken from the corre-
sponding articlest®. Quality measures are based primarily on our own thoughts about
underlying approaches; we have neither strict proofs, nor reliable sources to substantiate
them.

7. Conclusions

Sincethe problem of plagiarism isalwaysrelevant, the software sol utions that hel p teach-
ersto detect plagiarism cases are being continually developed. Simple attribute counting
tools evolved into complex systems that use advanced string- and tree-matching mecha-
nisms in combination with impressive visualization modules. The structured, restricted
nature of programming languages makes plagiarism detection in software projects harder
for the people, but ssmpler for the computers. Therefore, a serious progress was achieved
in this direction. Probably, some systems already reached the limitations of the corre-
sponding category. For example, it is hard to believe that someone can develop a string
matching-based file-file comparing system that would be significantly better than JPlag.
On the other hand, the progress can be made in anew (like tree matching) or little-studied
(authorship attribution) direction.

10Brass complexity is not given in (Belkhouche et al., 2004), so we can only estimate a reasonable order.

Desktop Tools for Offfine Plagiarism Detection in Computer Programs 109

It is also clear that plagiarism detection software cannot substitute a well-planned
teaching process, aimed (in particular) at plagiarism prevention. The appropriate design
of the assignments and the proper organization of the educationa process can signifi-
cantly reduce cheating.

8. Still Open Questions

Despite the existence of numerous systems intended for plagiarism detection, there are
still many open questions and topics for future research:

1. How advanced should the technology used for plagiarism detection be? It is clear
now, that the metrics-based approach is insufficient, but the best alternative be-
tween string matching and tree matching is still unknown.

2. How should the proper user interface be designed? Which features should be im-
plemented in every plagiarism detector?

3. How can enormous complexity growth be avoided? Is it possible to create a fast
and reliable system? At least, isit possible to use a hybrid approach: a fast filter
plus ardiable file-file comparator?

4. Can authorship identification techniques be adapted for the task of plagiarism de-
tection?

5. Isit possible to invent a simple and reliable procedure for the evaluation of new
systems? How can we measure the degree of reliability? Which deviations from
human experts opinions are crucia and which are not?

Acknowledgements

| am grateful to Kimmo Fredriksson for guiding me in this research and to Justus Ran-
dolph for reviewing the paper.

References

Baker, B.S. (1995). On finding duplication and near-duplication in large software systems. In Proc. of Second
|EEE Working Conf. on Reverse Eng., pp. 86-95.

Braumoeller, B., and B. Gaines (2001). Actions do speak louder than words: deterring plagiarism with the use
of plagiarism-detection software. PS Political Science and Politics, 34(4), 835-839.

Bliwise, R. (2001). A matter of honor. Duke Magazine, May-June, 2—7.

Belkhouche, B., A. Nix and J. Hassell (2004). Plagiarism detection in software designs. In Proc. of the 42nd
Annual Southeast Regional Conference, pp. 207-211.

Bonsall, B. (2004). The Automatic Detection of Plagiarism. University of Sheffield.
http://ww. dcs. shef . ac. uk/i ntranet/teachi ng/ proj ects/ archi ve/ ug2004/ pdf
/ u7bb. pdf

Brumfiel, G. (2002). Physicist found guilty of misconduct. Nature, Sept., 419-421.

Collberg, C., and S. Kobourov (2003). Self-Plagiarismin Computer Science. Technical Report TR03-03, Uni-
versity of Arizona.

110 M. Mozgovoy

Clough, P. (2000). Plagiarism in Natural and Programming Languages: an Overview of Current Tools and
Technologies. Interna Report CS-00-05, University of Sheffied.

Faidhi, JA.W., and S.K. Robinson (1987). An empirical approach for detecting program similarity within a
university programming environment. Computers & Education, 11(1), 11-19.

Grier, S. (1981). A tool that detects plagiarism in pascal programs. ACM SIGCSE Bulletin, 13(1), 15-20.

Gitchell, D., and N. Tran (1999). Sim: a utility for detecting similarity in computer programs. In Proc. of the
30th S GCSE Technical Symposiumon Computer Science Education, New Orleans, Louisiana, pp. 266-270.

Hersee, M. (2000). Automatic Detection of Plagiarism: An Approach Using the Qsum Method. University of
Sheffield.
http://ww. dcs. shef. ac. uk/intranet/teachi ng/ proj ects/archive/ ug2001/ pdf
/u8nsh. pdf

Hoad, T.C., and J. Zobe (2003). Methods for identifying versioned and plagiarised documents. Journal of the
American Society for Information Science and Technology, 54(3), 203-215.

Joy, M., and M. Luck (1999). Plagiarism in programming assignments. | EEE Transactions on Education, 42(2),
129-133.

Jones, E.L. (2001). Metrics based plagiarism monitoring. The Journal of Computing in Small Colleges, 16(4),
253-261.

Karp, R.M., and R.M. Rabin (1987). Efficient randomized pattern-matching algorithms. IBM Journal of Re-
search and Development, 31(2), 249-260.

Lancaster, T., and F. Culwin (2004). Using freely available tools to produce a partially automated plagiarism
detection process. In Proc. of the 21st ASCILITE Conference, Perth, Australia, pp. 520-529.

Manber, U. (1994). Finding similar filesin alarge file system. In Proc. of USENI X, San Francisco, California,
pp. 1-10.

Cook, M. (2003). Experimenting to Produce a Software Tool for Authorship Attribution. University of Sheffield.
http://ww. dcs. shef. ac. uk/intranet/teachi ng/ proj ects/archive/ ug2003/ pdf
/uOnt2. pdf

Mozgovoy, M., K. Fredriksson, D. White, M. Joy and E. Sutinen (2005). Fast plagiarism detection system. In
SPIRE’ 05, November 2—4, Buenos Aires, Argentina, pp. 267-270.

Manber, U., and G. Myers (1990). Suffix arrays: a new method for on-line string searches. In SODA ' 90: Proc.
of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 319-327.

Nakov, P. (2000). Latent semantic analysis of textual data. In Proc. of the Conference on Computer Systems and
Technologies, Sofia, Bulgaria, pp. 5031-5035.

Prechelt, L., G. Malpohl and M. Philippsen (2002). Finding plagiarisms among a set of programs with JPlag.
Journal of Universal Computer Science, 8(11), 1016-1038.

Sheard, J., M. Dick, S. Markham, I. Macdonald and M. Walsh (2002). Cheating and plagiarism: perceptions
and practices of first year IT students. In Proc. of ITICSE' 02, June 24-26, Aarhus, Denmark, pp. 183-187.

Schleimer, S., D.S. Wilkerson and A. Aiken (2003). Winnowing: local algorithms for document fingerprinting.
In SIGMOD, San Diego, pp. 76-85.

Trivedi, L., and S. Williams (2002). Using Sources. Hamilton College.
http://ww. hani | t on. edu/ academ cs/ resource/ we/ usi ngsour ces. ht m

Verco, K.L., and M.J. Wise (1997). Plagiarism a la mode: a comparison of automated systems for detecting
suspected plagiarism. The Computer Journal, 39(9), 741-750.

The New Webster’ s Encyclopedic Dictionary of the English Language. Random House Value Publishing, Inc.

Whale, G. (1990). Identification of program similarity in large populations. The Computer Journal, 33(2), 140—
146.

Wiedemeier, PD. (2002). Preventing plagiarism in computer literacy courses. The Journal of Computing in
Small Colleges, 17(4), 154-163.

Wise, M.J. (1992). Detection of similarities in student programs: YAP ing may be preferable to plague’ing.
ACM SIGSCE Bulletin, 24(1), 268-271.

Wise, M.J. (1994). Running Rabin-Karp Matching and Greedy String Tiling. Basser Department of Computer
Science Technical Report, Sydney University.

Wise, M.J. (1996). YAP3: improved detection of similarities in computer program and other texts. In Proc. of
SIGCSE ' 96 Technical Symposium, Philadelphia, USA, pp. 130-134.

Zobel, J., and M. Hamilton (2002). Managing student plagiarism in large academic departments. Australian
Universities Review, 45(2), 23-30.

Publication [FMO6]

K. Fredriksson, M. Mozgovoy. Efficient Parameterized String Matching. Information
Processing Letters, vol. 100(3), 2006, p. 91-96

Copyright © 2006 Elsevier. Reprinted with permission.

Available online at www.sciencedirect.com

. ; Information
ScienceDirect Processing
Letters
ELSEVIER Information Processing Letters 100 (2006) 91-96
www.elsevier.com/locate/ipl
Efficient parameterized string matching
Kimmo Fredriksson *!, Maxim Mozgovoy
Department cf Computer Science, University cf Joensuu, P.O. Box 111, 80101 Joensuu, Finland
Received 13 February 2006; received in revised form 1 June 2006; accepted 22 June 2006
Available online 2 August 2006
Communicated by S.E. Hambrusch
Abstract

In parameterized string matching the pattern P matches a substring of the text T if there exist a bijective mapping from the
symbols of P to the symbols of t. We give simple and practical algorithms for finding all such pattern occurrences in sublinear
time on average. The algorithms work for a single and multiple patterns.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Algorithms; Parameterized string matching; Bit-parallelism; Suffix automaton

1. Introduction

In traditional string matching problem one is inter-
ested in finding the occurrences of a pattern P from a
text 7, where P and T are strings over some alpha-
bet X'. Many variations of this basic problem setting
exist, such as searching multiple patterns simultane-
ously, and/or allowing some limited number of errors
in the matches, and indexed searching, where T can
be preprocessed to allow efficient queries of P. See,
e.g., [13,16,11] for an overview and references. Yet an-
other variation is parameterized matching [6]. In this
variant we have two disjoint alphabets, X for fixed sym-
bols, and A for parameter symbols. In this setting we
search parameterized occurrences of P, where the sym-
bols from X must match exactly, while the symbols
in A can be also renamed. This problem has important

* Corresponding author.
E-mail address: kfredrik@cs_joensuu.fi (K. Fredriksson).
1 Supported by the Academy of Finland, grant 202281.

0020-0190/$ — see front matter © 2006 Elsevier B.V. All rights reserved.

doi:10.10164].ipl.2006.06.009

applications, e.g., in software maintenance and plagia-
rism detection [6], where the symbols of the strings
can be, e.g., reserved words and identifier or parame-
ter names of some (possibly tokenized) programming
language source code. Hence one might be interested in
finding code snippets that are the same up to some sys-
tematical variable renaming.

A myriad of algorithms have been developed for the
classical problem, but only a few exist for parameter-
ized matching. In [5] exact on-line matching algorithm
for a single pattern was developed. This algorithm runs
in O(nlogmin(m, | A|)) worst case time. However, the
average case time was not analyzed. Another algorithm
was given in [2], that achieves the same time bound
both in average and worst cases. In the same paper it
was shown that this is optimal, and that in particular
the log factor cannot be avoided for general alphabets.
However, for fixed alphabets we can avoid it, as shown
in the present paper. In [14] it was shown that multiple
patterns can be searched in O(n log(| X'| + |A]) + occ)
time, where occ is the number of occurrences of all the
patterns. Other algorithms exist for the off-line problem

92 K. Fredriksson, M. Mozgovoy / Iriformation Processing Letters 100 (2006) 91-96

[6,9]. In this paper we develop algorithms that under
mild assumptions run in optimal time on average, are
simple to implement and perform well in practice. Our
algorithms are based on generalizing the well-known
Shift-Or [4] and Backward DAWG (Directed Acyclic
Word Graph) Matching algorithms [7,10]. Our algo-
rithms generalize for the multipattern matching as well.

2. Preliminaries

We use the following notation. The patternis P[O...
m — 1] and the fext is T[0...n — 1]. The symbols
of P and T are taken from two disjoint finite alpha-
bets X of size o and A of size A. The pattern P
matches the text substring T[j...j + m — 1], iff for
alli €{0...m — 1} it holds that M;(P[i) =T[j + il
where M;(-) is one-to-one mapping on X' U A. More-
over, the mapping must be identity on X, but on A
can be different for each text position j. For exam-
ple, assume that ¥ = {A, B}, A ={X.,Y,Z}and P =
AAZYZABXYZAX. Then P matches the text substring
AAZYZABXYZAX with identity mapping, and AAXYX-
ABZYXAZ with parameter mapping X +— Z, Y — Y, and
Z +— X. This mapping is simple with prev encoding [6].
For a string S, prev(S) maps all parameter symbols s in
S to a non-negative integer p, where p is the number
of symbols since the last occurrence of symbol s in S.
The first occurrence of the parameter is encoded as 0.
If s belongs to X, it is mapped to itself (s). For our ex-
ample pattern, prev(P) = AAO02AB055A4. This is the
same as the encoding for the two example substrings,

Le., prev(AAZYZABXYZAX) = prev(AAXYXABZYXAZ).

Hence the problem is reduced to exact string match-
ing, where we match prev(P) against prev(T[j...j +
m — 1)) forall j =0...n —m. The string prev(S) can
be easily computed in linear time for constant size al-
phabets. The only remaining problem then is how to
maintain prev(T [... j +m — 1]) (and any algorithmic
parameters that depend on it) efficiently as j increases.
The key is the following lemma [6].

Lemma 1. Let S” = prev(S). Then for S” = prev(S[j ...
j+m—1)) for all i such that S[i] € A it holds that
S"li1=S"[i] yf S'[i] < m. Otherwise S"[i] = 0.

We are now ready to present our algorithms. For sim-
plicity we assume that X' and A are finite constant size
alphabets. For large alphabets all our time bounds hold
if we multiply them by O(log(m)).

3. Parameterized bit-parallel matching

In this section we present bit-parallel approach
for parameterized matching, based in Shift-Or algo-
rithm [4]. For the bit-parallel operations we adopt the
following notation. A machine word has w bits, num-
bered from the least significant bit to the most sig-
nificant bit. We use C-like notation for the bit-wise
operations of words; & is bit-wise and, | is or, " is
xor, ~ negates all bits, « is shift to left, and > shift
to right, both with zero padding. For brevity, we make
the assumption that m < w, unless explicitly stated oth-
erwise.

The standard Shift-Or automaton is constructed as
follows. The automaton has states 0,1,...,m. The
state O is the initial state, state m is the final (accept-
ing) state, and for i =0, ..., m — 1 there is a transition
from the state i to the state i + 1 for character P[i].
In addition, there is a transition for every ¢ € X from
the initial state to the initial state, which makes the au-
tomaton nondeterministic. The preprocessing algorithm
builds a table B, having one bit-mask entry for each
ce X For0<i<m— 1, the mask B[c] has /th bit set
to 0, iff P[i] = c¢. These correspond to the transitions
of the implicit automaton. That is, if the bit i in B[c]
is 0, then there is a transition from the state i to the state
i + 1 with character c¢. The bit-vector D encodes the
states of the automaton. The ith bit of the state vector
is set to 0, iff the state i is active, i.e., the pattern pre-
fix P[O...i] matches the current text position. Initially
each bit is set to 1. For each text symbol ¢ the vector
is updated by D < (D « 1) | B[c]. This simulates all
the possible transitions of the nondeterministic automa-
ton in a single step. If after the update the mth bit of d
is zero, then there is an occurrence of P. If m < w, then
the algorithm runs in time O(n).

In order to generalize Shift-Or for parameterized
matching, we must take care of three things:

(i) P must be encoded with prev;
(ii) prev(T[j...j + m — 1]) must be maintained in
O(1) time per text position;
(iii) the table B must be built so that all parameterized
pattern prefixes can be searched in parallel.

The items (i) and (ii) are trivial, while (iii) is a bit more
tricky. To compute prev(P) we just maintain an array
prv[c] that for each symbol ¢ € A stores the position
of its last occurrence. Then prev(P) can be computed
in O(m) time by a linear scan over P. To simplify in-
dexing in the array B, we assume that ¥ ={0...0 — 1},
and map the prev encoded parameter offsets into the

K. Fredriksson, M. Mozgovoy / Irformation Processing Letters 100 (2006) 91-96 93

1 P’ < Encode(P,m)

2 fori < 0too+m—1do B[i] <« ~0> (w—m)

3 fori <~ 0toA —1doprvfo +i] <« —o0

4 fori < O0tom —1do B[P'[i]] < B[P'[i]1&~(1 « i)
5 fori< ltom—1do Blo+il< Blo+il&(Blo1|(~0 < i)
6 D+« ~0,mm<«—1&Km-1)

7 fori < O0ton—1do

8 c < TI[i]

9 if c € A then

10 c«i—pr[Tlill+o

11 ifc>0+m—1thenc <o

12 prv[Tlil]l <i

13 D« (D < 1)|Blecl

14 if (D & mm) # mm then report match

Algorithm 1. P-Shift-Or(T, n, P, m).

range {o ...o +m — 1}. The text is encoded in the same
way, but the encoding is embedded into the search code.
The only difference is that we apply Lemma 1 to reset
offsets that are greater than m — 1 (i.e., offsets that are
for parameters that are outside of the current text win-
dow) to zero. Otherwise the search algorithm is exactly
the same as for normal Shift-Or.

The tricky part is the preprocessing phase. We de-
note the prev encoded pattern as P’. At first P’ is pre-
processed just as P in the normal Shift-Or algorithm.
This includes the parameter offsets, which are handled
as any other symbol. However, this is not enough. We
illustrate the problem by an example. Let P = XAXAX
and T = 7ZZAZAZAZ. In encoded forms these are P’ =
0A2A2 and T/ = 01A2A2A2, Clearly P has two (over-
lapping) parameterized matches in 7. However, P’ does
not match in 77 at all. The problem is that as the algo-
rithm searches all the m prefixes of the pattern in paral-
lel, then some non-zero encoded offset p (of some text
symbol) should be interpreted as zero in some cases.
These prefixes have lengths from 1 to m. To success-
fully apply Lemma 1 we should be able to apply it in
parallel to all m substrings. In other words, any non-
zero parameter offset p must be treated as zero for all
pattern prefixes whose length £ is less than p, since by
Lemma 1 the parameter with offset p is dropped out of
the window of length /. This problem can be solved as
follows. The bit-vector B[o + i] is the match vector for
offset i. If the j bit of this vector is zero, it means by
definition that P’[j] =i. If any of the i least significant
bits of B[o] are zero, we clear the corresponding bits of
Blo + i] as well. More precisely, we set

Blo +i] < Blo +i1& (Blo]]| (~0 < D).

This means that the offset / is treated as offset i for pre-
fixes whose length is greater than i, and as zero for the
shorter prefixes, satisfying the condition of Lemma 1.

Algorithm 1 gives the complete code. The algorithm
clearly runs in O(n[m/w]) worst case time. For long
patterns one can search just a length w prefix of the
pattern, and verify with the whole pattern whenever
the prefix matches, giving O(n) average time. However,
note that a long variable name (string) is just one symbol
(token) in typical applications, hence w bits is usually
plenty. Finally, note that for unbounded alphabets we
cannot use arrays for prv and B. We can use balanced
trees instead, but then the time bounds must be multi-
plied by O(log(m)).

Standard Shift-Or can be improved to run in opti-
mal O(nlog, (m)/m) average time [12]. The algorithm
takes a parameter g, and from the original pattern gen-
erates a set P of ¢ new patterns P = (PO, ..., qul},
each of length m’ = |m/q], where P/[i] = P[j + iq]
for i =0...|m/q] — 1. In other words, the algorithm
generates ¢ different alignments of the original pat-
tern P, each alignment containing only every gth char-
acter. The total length of the patterns in P is ¢ |m /g | <
m. For example, if P = ABCDEF and g = 3, then PO =
AD, P! =BE and P? = CF. Assume now that P occurs
at T[i..i +m — 1]. From the definition of P/ it directly
follows that P/[h] = T'[i 4 j + hq], where j =i mod ¢
and 1 =0...m’ — 1. This means that we can use the
set P as a filter for the pattern P, and that the filter needs
only to scan every gth character of 7. All the patterns
must be searched simultancously. Whenever an occur-
rence of P/ is found in the text, we must verify if P
also occurs, with the corresponding alignment.

This method clearly works for parameterized match-
ing as well. We generate the set of patterns P, and also
prev-encode them. In the search phase the text is also en-
coded on-line, encoding only every gth symbol, but as-
suming that they are consecutive. In other words, every
parameter offset is effectively divided by g to agree
with the encoding of the patterns. Finally, the verifica-

94 K. Fredriksson, M. Mozgovoy / Iriformation Processing Letters 100 (2006) 91-96

tion phase checks if prev(P) = prev(T[v...v+m —1]),
where v is the starting position of a potential match.

The search of the pattern set can be done using the
parameterized Shift-Or algorithm. This is possible by
concatenating and packing the set of patterns into a
single machine word [12,4]. Another alternative is to
use the parameterized version [14] of Aho—Corasick
algorithm [1]. Both lead to the same average case run-
ning time, but the latter does not require that m < w,
as it is not based on bit-parallelism. We denote the
Shift-Or based algorithm as PFSO. The filtering time
is O(n/q). The filter searches the exact matches of g
patterns, each of length |m/g|. We are not able to an-
alyze the exact effect of the parameter alphabet to the
probability that two randomly picked symbols match.
However, if we assume that a constant fraction & of the
pattern positions are randomly selected to have a ran-
domly selected symbol from X', then the probability that
P/ occurs in a given text position is O((1/o)Lm/2)y,
A brute force verification cost is in the worst case O(m)
(but only O(1) on average). To keep the total time at
most O(n/q) on average, we select ¢ so that n/q =
mn /o™ ie., g =O@m/log, (m)). The total average
time is therefore O(n log, (m)/m). This is optimal [17]
within a constant factor.

Finally, note that this method works for searching
r patterns simultaneously. The only difference is that
we search g pieces of all the » patterns simultaneously,
and verify the corresponding pattern whenever any of
the rg pieces match. Redoing the analysis we obtain
that the O(log(m)) factor is replaced with O(log(rm)).
In this case we prefer using the Aho—Corasick based al-
gorithm [14], since the number of patterns it can handle
does not depend on w.

4. Parameterized backward trie matching

We now present an algorithm based on Backward
DAWG Matching (BDM) [7,10]. BDM is optimal on
average, i.e., it runs in O(nlog, (m)/m) average time.
We call our parameterized version of BDM as Para-
meterized Backward Trie Matching, PBTM, for short.
In the preprocessing phase PBTM builds a trie for the
encoded suffixes of the reversed pattern. A trie is a
rooted tree, where each edge is labeled by a symbol.
The edges of the path from the root node to some
leaf node then spell out the string of symbols stored
into that leaf. The pattern in reverse is denoted by P’.
The set of its suffixes is {P"[i...m — 11| 0<i <m}
(note that this corresponds to the prefixes of the orig-
inal pattern). Each suffix is then encoded with prev,
and the encoded strings are inserted into a trie. For

example, if P = AZBZXBXY, then the set of stored
strings is {00620h2a, 0b20bh2a, b00bh2a, 00b2a, 0b2a,
b0a, Oa, a}, The trie allows efficient searching of any
pattern substring that occurs in P”. A brute force al-
gorithm for this takes O@m?) time, but can be im-
proved to O(m) by using efficient suffix tree cons-
truction algorithms for parameterized strings [9]. An
alternative to the trie is suffix array [15], i.e., the
trie can be replaced with sorted array of prev
encoded suffixes of the reverse pattern. For the abo-
ve example string, P =AZBZXBXY, we create an array
A ={00020b2a,00b2a, Oa, 0b20b2a, 0b2a, a, bOOb2a,
b0a}. Following an edge in the trie can then be sim-
ulated by a binary search in the array. We call the
resulting algorithm PBAM. The benefit is that the ar-
ray based method is easy to implement space efficiently
since only one pointer is needed for each suffix.

We now show how this can be used for efficient
search. Assume that we are scanning the text window
Tli...i +m — 1] backwards. The invariant is that all
occurrences that start before the position i are already
reported. The text window is prev-encoded (backwards
as well) as we go, and the read substring of this window
is matched against the trie. This is continued as long
as the substring can be extended without a mismatch,
or we reach the beginning of the window. If the whole
window can be matched against the trie, then the pattern
occurs in that window. Whether the pattern matches or
not, some of the occurrences may still overlap with the
current window. However, in this case one of the suf-
fixes stored into the trie must match, since the reverse
suffixes are also the prefixes of the original pattern. The
algorithm remembers the longest such suffix, that is not
the whole pattern, found from the window. The window
is then shifted so that its starting position will become
aligned with the last symbol of that suffix. This is the
position of the next possible pattern occurrence. If the
length of that longest suffix was ¢, the next window to
be searchedis T[i+m —£€...i +m — 14+ m — £]. The
shifting technique is exactly the same independent of
whether or not the pattern occurs in the current win-
dow This process is repeated until the whole text is
scanned.

Some care must be taken to be able to do the encod-
ing of the text window in O(1) time per read symbol.
To achieve constant time per symbol we must use an
auxiliary array prv (as before) to store the position of
the last occurrence for each symbol. We cannot afford
to initialize the whole array for each window, so before
shifting the window we rescan the symbols just read in
the current window, and reinitialize the array only for

K. Fredriksson, M. Mozgovoy / Irformation Processing Letters 100 (2006) 91-96

95

1 root < EncSTrie(P")

2 fori <~ 0toA —1doprvfo +i] <« —o0

3 i<«0

4 while i <p —m do

5 J < m; shift < m; u < root

6 while « £ null do

7 cTli+j-1]

8 if c € A then

9 c—m—j—pr[Tli+j—-1ll4+0o

10 ifc>0+m—1thenc <o

11 prlTli+j—1ll<m—j

12 j«—j—1

13 u < child(u, c)

14 if u # null AND issuffix(u) then

15 if j > O then shift < j else report match
16 fork <—i+ jtoi+m—1doif T[k] € A then prv[T[k]] < —o0
17 i <1+ shift

Algorithm 2. PBTM(T , n, P,).

T ™ Fs0 T T T T
PFS0O
PBTM *
PBAM (r=100)
1000 F PBAM (=100, amortized) ---o - E
b predicted time (r:lo:_))_a-_--_: 1 J o e
@ BT
2 e
é 100 b {)s S cie SRR e Mmoo W - - £
2 S - + ;
=l
©
=
X
10 f E
9 I L L I | L
4 8 12 16 20 24 28 32

m

tokens

a2 T T
avg shift (r=1)
avg shift (r=10)
avg shift (r=100) ---%--- e
avg tokens (r=1) i
avg tokens (r=10} <
avg tokens (r=100) &

28

24

m

Fig. 1. Left: the search speed in 106 tokens/second. Right: the average shift and average number of tokens inspected in each window of length m.

those symbols. This ensures O(1) total time for each
symbol read. Algorithm 2 gives the code.

The average case running time of this algorithm de-
pends on how many symbols x are examined in each
window. Again, if we make the simplifying assump-
tion that a constant fraction of the pattern positions
are randomly selected to have a randomly selected
symbol from X', then the original analysis of BDM
holds for PBTM as well, and the average case run-
ning time is O(n log,, (m)/m). For general alphabets and
for the PBAM version the time must be multiplied by
O(log(m)). Finally, this algorithm can be easily modi-
fied to search r patterns simultaneously. Basically, if all
the patterns are of the same length, this generalization
requires just storing all the suffixes of all the patterns
into the same trie. This results in O(n log,, (rm)/m) av-
erage time. With modest additional complexity patterns
of different lengths can be handled as well in the same
way as with regular BDM [11].

5. Comparison

For a single pattern our only competitor [5] is based
on (Turbo) Boyer—Moore [8,10] algorithm. However,
BM-type algorithms are known to be clearly worse
than the more simple bit-parallel and suffix-automaton
based approaches [16], an this becomes more and more
clear as the pattern length increases. Moreover, BM-
type algorithms have poor performance when general-
ized for multiple string matching [16]. As for the multi-
ple matching, our only competitor [14] is the algorithm
based on Aho—Corasick automaton, but as detailed in
Section 3, we can use exactly their algorithm (even the
same implementation) as a fast filter to obtain (near) op-
timal average case time. Their worst case time can be
also preserved. Hence, their algorithm cannot beat ours.
We note that all our algorithms can be improved to take
only O(n) (or O(nlog(rm)) for unbounded alphabets)
worst case time. PFSO can be combined with PSO (as

96 K. Fredriksson, M. Mozgovoy / Iriformation Processing Letters 100 (2006) 91-96

in [12]) and PBTM with the algorithm in [14]. See also
[3,10] for similar techniques.

Our goals in this paper are two-folded. First, to de-
velop algorithms that have optimal average case running
time for both single and multiple patterns. All the previ-
ous results only prove optimal worst case time. Second,
to be practical, i.e., to develop algorithms that are sim-
ple to implement and have good average case time in
practice. We now show that our algorithms behave like
predicated, with realistic real world data.

5.1. Experimental results

We have implemented the algorithms in C++, and
compiled them with Borland C++ Builder 6. We per-
formed the experiments on the AMD Sempron 2600+
(1.88 GHz) machine with 768 MB RAM, running Win-
dows XP. A tokenized string of concatenated Java
source files (taken from various open source projects,
such as jPOS, smppapi, and TM4J) was used as a text
to be searched. The tokenization procedure (based on
JavaCC? parser) converted an input file into a sequence
of two-byte codes, representing single characters, re-
served Java words and distinct identifiers. The initial
string had a size of 5.48 MB, and after encoding it con-
sisted of 1259799 tokens, including 51 reserved Java
words and 10213 unique identifiers. A set of 100 pat-
terns for each length reported was randomly extracted
from the input text. We report the average number of
tokens searched per second for each algorithm.

Fig. 1 summarizes the results. PSO denotes the ba-
sic parameterized shift-or algorithm, PFSO the fast pa-
rameterized shift-or, PBTM the parameterized back-
ward trie matching algorithm, and PBAM the suffix
array version of PBTM. For short patterns plain PSO
and PBTM give the best results. PSO is the fastest
for m < 8, and PBTM takes over until m = 16, and
PFSO dominates for longer patterns in case of opti-
mal g selection. For m € {8, 12, 16, 20, 24, 28, 32} we
used g =1{2,3,4,4,4,5, 6}, respectively. For long pat-
terns PBTM suffers from the large alphabet size. In our
implementation we used arrays to implement the trie
nodes and for long patterns the trie requires a lot of ini-
tialization time and memory, not fitting into the CPU
cache. PBAM does not have this flaw, but the binary
search step needed for each accessed text symbol makes
it comparatively slow. We also experimented with the
multipattern version of PBAM, searching » = 100 pat-
terns simultaneously. The plot shows that while the raw
speed is reduced, the amortized speed per pattern is

2 http://javacc.dev.java.net/.

clearly better than for any of the single pattern match-
ing algorithms. The time also coincides nicely with the
theoretical curve O(n log, (#rm) log,(rm)/m), support-
ing our analysis. This is also clear given the right plot,
showing the average number of tokens inspected in each
text window, and the average shift for r = 1, 10, 100.
These behave like in random texts supporting our as-
sumptions in the analysis.

We have shown how two well-known algorithms,
namely Shift-Or and BDM, can be generalized for para-
meterized matching. The algorithms are easy to imple-
ment, and work well in practice.

References

[1] A.V. Aho, M.J. Corasick, Efficient string matching: an aid to bib-
liographic search, Comm. ACM 18 (6) (1975) 333-340.

[2] A. Amir, M. Farach, S. Muthukrishnan, Alphabet dependence
in parameterized matching, Inform. Process. Lett. 49 (3) (1994)
111-115.

[3] R.A. Baeza-Yates, String searching algorithms revisited, in: Pro-
ceedings of WADS’89, in: Lecture Notes in Computer Science,
vol. 382, Springer, Berlin, 1989, pp. 75-96.

[4] R.A. Baeza-Yates, G.H. Gonnet, A new approach to text search-
ing, Comm. ACM 35 (10) (1992) 74-82.

[5] B.S. Baker, Parameterized pattern matching by Boyer—Moore-
type algorithms, in: Proceedings of the 6th ACM—-SIAM Annual
Symposium on Discrete Algorithms, San Francisco, CA, 1995,
pp- 541-550.

[6] B.S. Baker, Parameterized duplication in strings: algorithms and
an application to software maintenance, SIAM J. Comput. 26 (5)
(1997) 1343-1362.

[7]1 A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M.T. Chen,
J. Seiferas, The smallest automaton recognizing the subwords of
a text, Theoret. Comput. Sci. 40 (1) (1985) 31-55.

[8] R.S. Boyer, J.S. Moore, A fast string searching algorithm,
Comm. ACM 20 (10) (1977) 762-772.

91 R. Cole, R. Hariharan, Faster suffix tree construction with miss-
ing suffix links, in: Proceedings of ACM-STOC’00, Portland,
Oregon, 2000, pp. 407-415.

[10] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lec-
roq, W. Plandowski, W. Rytter, Speeding up two string matching
algorithms, Algorithmica 12 (4) (1994) 247-267.

[11] M. Crochemore, W. Rytter, Text Algorithms, Oxford University
Press, Oxford, 1994.

[12] K. Fredriksson, Sz. Grabowski, Practical and optimal string
matching, in: Proceedings of SPIRE’2005, in: Lecture Notes
in Computer Science, vol. 3772, Springer-Verlag, Berlin, 2005,
pp. 374-385.

[13] D. Gusfield, Algorithms on Strings, Trees and Sequences: Com-
puter Science and Computational Biology, Cambridge Univer-
sity Press, Cambridge, 1997.

[14] R-M. Idury, A.A. Schiffer, Multiple matching of parameterized
patterns, Theoret. Comput. Sci. 154 (2) (1996) 203-224.

[15] U. Manber, G. Myers, Suffix arrays: a new method for on-line
string searches, STAM J. Comput. 22 (5) (1993) 935-948.

[16] G. Navarro, M. Raffinot, Flexible Pattern Matching in Strings,
Cambridge University Press, Cambridge, 2002.

[17] A.C. Yao, The complexity of pattern matching for a random
string, STAM J. Comput. 8 (3) (1979) 368-387.

Publication [MTKO06]
M. Mozgovoy, V. Tusov, V.Klyuev. The Use of Machine Semantic Analysis in
Plagiarism Detection. Proc. of the 9" International Conference on Humans and

Computers, Japan, 2006, p. 72-77

Copyright © 2006 Three Dimension Forum. Reprinted with permission.

The Use of Machine Semantic Analysisin Plagiarism Detection

Maxim Mozgovoy Vitaly Tusov Vitaly Klyuev
University of Joensuu, S. Petersburg State University, University of Aizu,
Finland Russia Japan

mmozgo@cs.joensuu.fi

tusovvitalij@mail.ru

vkluev@u-aizu.ac.jp

Abstract

Plagiarism detection systems are known for yearsin
the university community. However, most of the
existing detectors for the natural language texts use
rather simple comparison methods that make the
instances of plagiarism easy to hide. The software,
designed for plagiarism detection in computer
programs, utilizes far more advanced techniques. We
propose a method, which adds functionalities similar
to tokenization and tree matching, to the natural
language texts-oriented detectors. This method
requires noticeable work to be applied in practice,
but also makes use of the existing software for
parsing and word sense disambiguation.

Keywords

machine semantic analysis, plagiarism detection,
string matching, plagiarism, computational
linguistics.

1. Introduction

Plagiarism in universities remains in the scope of
interest of researchers for years. Scientific
investigations cover various aspects of plagiarism: its
origins, pedagogica and ethical issues, plagiarism
prevention and detection, people's attitude, legal
affairs and honor codes, etc. From the point of view
of practical computer science, one of the most
interesting directions is plagiarism detection.

Numerous systems were developed in recent years
to detect plagiarism in natural language texts as well
as in computer programs. Here we propose a possible
technique that can help to improve existing natura
language-oriented plagiarism detection software.
This technique can be roughly treated as an analogue

* The corresponding author.

of a well-known tokenization procedure in program
code-oriented plagiarism detection systems.
Furthermore, we discuss a way of utilizing language
parsers to deal with the rephrasing of the sentences.

Our current studies are based on semantic
analyzer for the Russian language[1], but other
similar solutions can be used as well. The detection
system, which is described here, is just a part of our
research on natural language processing. We are aso
trying to use semantic analysis for information
retrieval tasks and for machine tranglation.

2. Related Works

Most existing plagiarism detectors are specially
designed to process either program source code or
natural language texts. In the first case the system
usually treats a submitted collection of documents as
hermetic and performs a parwise comparison
between single submissions only. Such projects
utilize advanced techniques to detect partial matches
(RKS-GST [2], matching in the repository [3]), and
regular changes of the code structure
(tokenization [4], p-matching[5]). The systems,
designed to find similarities in the natural language
texts, mainly search the Internet for the possible
matches. Generally, they do not use sophisticated
comparison methods, aiming mostly at processing
speed and wide coverage (e.g. the developers of
Turnitin [6] system clam they maintain “a huge
database of books and journals, and a database of the
millions of papers already submitted”).

“Hermetic” systems for plagiarism detection in the
natural language texts exist as well, though they are
little-known. We can mention, eg. CopyCatch
Gold[7], YAP3[8], and WCopyfind[9]. As a rule,
the detection software can find only partial exact
matches: rephrasing and rewording can conced the
evidence of plagiarism. CopyCatch Gold reduces the
effect of rewording by taking into account only

hapax legomena words (those that appear only once
in the text) during the comparison, but this technique
isnot very reliable.

3. Tokenization

Tokenization [4] is a well-known method that
makes useless al kinds of renaming tricks in
plagiarism in computer programs (such as variable
renaming and changing the type of loop structure).
Tokenization algorithms substitute the elements of
program code with single tokens. For example, any
identifier can be replaced by the token <IDT>, and
every numerical value by the token <VALUE>. Now,
if aprogram contains aline a=b + 45; this line will
be replaced by the string
<IDT>=<IDT>+<VALUE>; So trying to rename the
variables will not help since every line of the form
“identifier = identifier + valug)” is trandated to the
same tokenized sequence (the aforementioned
example istaken from [10]).

Tokenization can be treated as substitution of
single elements of some class by the name of the
classitself. E.g. 5, 11.5 and -32 are elements of the
class <VALUE>. In the natural language texts we
can use the same approach. For instance, the words
device and gadget are interchangeable in many
contexts. If we substitute these words by the name of
their class <MECHANISM>, such rewording will be
uselessfor the plagiarizer.

4. \Word Classes

The above described technique can be quite easily
implemented by having a dictionary that matches
every word of a natural language with the
corresponding class. Our current version of the
system (for Russian) includes more than 1600 classes
that form a hierarchy. The small extraction from this
treeisshown in Fig. 1.

For example, a class <PHY SICAL-OBJECT> has
a subclass <ALIVE>, having, in its turn, a subclass
<ANIMAL> that includes classes <ANIMAL-
WILD> and <ANIMAL-DOMESTIC>.
Undoubtedly, the problem of classification is very
nontrivial, and no “best classification” can be
invented. We created only one possible hierarchy
that (according to our studies) satisfactorily reflects
general knowledge about human environment. A

variation of a specialy created hierarchy might be
helpful in order to process documents, dedicated to
some narrow fields. For example, it is usualy
reasonable to consider gadget and device as direct
successors of the class <MECHANISM>, but for the
technical texts a more detailed classification of
mechanisms will produce better results.

The use of subclasses can help to tune the
tokenizer. For example, we might want to find more
plagiarisms by widening the generdizations, e.g. itis
possible to substitute the word fox with the more
general class <ANIMAL> instead of <ANIMAL-
WILD>.

Figure 1. A Fragment of Concept Classes Tree

sonet hi ng
—noun
—gener al - concepts
—event

-si tuation

——5Hysical-object

—al i ve

ani mal -wi | d

ani mal - donmesti c
—nmoney

banknot e
paynment s

The obvious difficulty concerns polysemantic
words and homonyms. For instance, the system
should select the correct class for the word table
from the two alternatives — <FURNITURE> and
<DRAWING/TABLE>. We may suggest to use any
tool for word sense disambiguation (WSD),
referenced in [11]. Our software relies on the results,
provided by the semantic analyzer that performs
WSD aswell.

5. Fast Plagiarism Detection Algorithm

To obtain working software, we took a system [3],
and substituted the tokenization module with the
natural language version. The corresponding author
is a member of the team that created the
af orementioned system.

The system is intended for hermetic, many-to-
many comparison of al files of the submitted
collection of documents that contain Java listings.
Most hermetic detection programs perform naive
pairwise file-to-file comparison, which results in
O(f(n)N?) complexity, where N is the number of files
in the collection and f(n) is the time to make the
comparison between one pair of files of length n. Our
software tries to decrease the agorithmic complexity
while preserving amost the same quality of
detection.

The system firstly creates a suffix array from the
tokenized collection of files. A suffix array is a
lexicographically sorted array of al suffixes of a
given string. It alows us to quickly find a file (or
files), containing any given substring. A binary
search is utilized to achieve this.

To find all collection files that are smilar to a
given query file, the system executes Alg. 1. It tries
to find the substrings of the tokenized query file,
Q[1..q], in the suffix array, where q is the number of
tokens. Matching substrings are recorded and each
match contributes to the smilarity score. The
algorithm takes contiguous non-overlapping token
substrings of length y from the query file and
searches al the matching substrings from the index.
These matches are recorded into a ‘repository’. This
phase aso includes a sanity check as overlapping
matches are not allowed.

Algorithm 1. Search a File in a Collection

/ the first token of Q
<g-vyv+1
dp...p + v - 1] fromthe suffix array
p...p + v - 1] was found
a

o

)
k=
o
@
-
o
=
<

FOR EVERY file F; in the collection
Simlarity(Q F;) = MatchedTokens(Fi)/q

In Alg. 2, the system encounters two types of
collisions. The first one appears when more than one
match is found in the same file. If severa matches
that are found correspond to the same indexed file,
these matches are extended to T tokens, I' > vy, such
that only one of the original matches survives for
each indexed file. Therefore, for each file in the
index, the algorithm finds all matching substrings

that are longer than other matching substrings and
whose lengths are at least y tokens.

Algorithm 2. Update the Repository

Let S be the set of matches of Qp...p+yv-1]
IF sone elems of S are found in the sane file
| eave only the | ongest one
FOR every string Mfromthe remaining list S
IF Mdoesn't intersect with repository el ens
insert Mto the repository
ELSE IF Mis longer than conflicting el ens
remove all conflicting repository elenments
insert Mto the repository

The second type of collison is the reverse of the
first problem: we should forbid the situation when
two different places in the input file correspond to
the same place in some collection file. To resolve
collisions we use ‘longest wins' heuristics. We sum
the lengths of all the previous matches that intersect
with the current one, and if the current match is
longer, we use it to replace the intersecting previous
matches.

The complexity of Algorithm 1 is highly
dependent on the value of the y parameter. Line 3 of
Algorithm 1 takes O(y + log n) average time, where
is n the total number of tokens in the collection
(assuming atomic token comparisons). If we make
the simplifying assumption that two randomly picked
tokens match each other (independently) with fixed
probability p, then on average we obtain np” matches
for substrings of length y. If Q was found, we cal
Algorithm 2. Its total complexity is, on average, at
most O((g/y - np")?). To keep the tota average
complexity of Algorithm 1 to at most O(q(y + log n)),
it is enough that v = Q(logy, n). This results in O(q
log n) total average time. Since we require that y =
Q(log n), and may adjust y to tune the quality of the
detection results, we state the time bound as O(qy).
Finally, the scores for each file can be computed in
O(N) time. To summarize, the total average
complexity of Algorithm 1 can be made O(q(y + log
n) + N) = O(qy + N). The O(y + log n) factors can be
easily reduced to O(1) (worst case) using suffix trees
with suffix links, instead of suffix arrays. This would
result in O(q + N) total time.

This analysis does not include tokenization, but it
is a linear process (both for Java files and for the
natural language texts), and the number of tokens
depends linearly on the file length.

6. Tree Matching

Any sentence of the given text can be
automatically represented in the form of the tree,
which reflects the structure of the sentence. The
principles of organization of such parse trees still
serve as the subject of wide discussions. Most
automatic English parsers use Chomsky-styled Penn
Treebank grammars[12], based on the traditiona
linguistic approach to the syntax analysis. For
example, the phrase the monkey ate the banana will
be parsed by such software as shown in Fig. 2.

Figure 2. Parsing the Sentence

SENTENCE:

SUBJECT LVERB OBJECT
ARTI CLE Late ARTI CLE
Lt he Lt he
NOUN NOUN
L_monkey L_banana

Our semantic analyzer also builds a parse tree for
any given sentence, but it is not based on Chomsky
grammars (they are not well-suitable for the Russian
language, because the order of the parts of a sentence
in Russian is not fixed). The semantic analyzer treats
the sentence as a control structure, having a
functional nature. More specificaly, it considers the
sentence as a superposition of words-functions that
depend on words-arguments.

The parse tree for the same phrase the monkey ate
the banana in this model will look like this:

at e

| |
t he_nonkey t he_banana

Here the word ate is considered as a computable
function of two arguments. the monkey and
the_banana.

Having ready-made parse trees (of any kind), we
can invoke atree matching procedure. This technique
is described in[13] for the case of plagiarism
detection in program code.

Initially the agorithm builds a flowchart-styled
parse tree for each file to be analyzed. Then for each
pair of files, the agorithm performs arough * abstract
comparison”, when only types of the parse tree
elements (like ASSIGNMENT, LOORP,

BRANCHING) are taken into account. This is done
recursively for the each level of tree nodes.

If the similarity percentage becomes lower than
some threshold a some step, the trees are
immediately treated as not similar.

If the abstract comparison indicates enough
similarity, a specia low-level “micro comparison”
procedure is invoked. At this point each node
represents an individual statement. Thus, each tree
node turns into a separate subtree that has to be
compared with the corresponding subtree taken from
another file.

Note that the “ abstract comparison” is a step when
tokenized sequences are compared, so for our
purposes (plagiarism detection over tokenized texts)
we can skip the next “micro comparison” procedure.
This technique seems to be the most advanced way of
comparing structured documents, but our results in
this direction are still very preliminary for any kind
of evaluation.

On the other hand, it is already clear that the tree
matching can help to reveal rewording. If we treat the
children of every tree node as an unordered
collection of nodes, e.g. the phrases the monkey ate
the banana and the banana was eaten by the monkey
will be very close after the tokenization.

7. Evaluation

The evaluation part is a very problematic issue for
any kind of plagiarism detection system. It is
especially hard for the software that searches the
Internet for the possible occurrences of plagiarism,
but even papers on “hermetic’ systems usually just
show the positive ddes of the proposed
approach [4, 13]. However, we can examine the
reports that are produced by different plagiarism
detection software when used on the same dataset.

The original system [3] was evaluated by using
such “jury” method. The programs utilized for the
analyss include MOSS[14], JPag[2] and
Sherlock [4]. Every system printed a report about the
same rea collection, congisting of 220 undergraduate
students' Java programs (varying in size from 2 KB
to 50 KB; the median length is 15 KB). Although the
‘opinions’ of all the tested systems are different for
many of the files, most files are either detected or

rgected by the mgority of systems. This simple
approach (to consider only detection or rejection)
allows usto organize a‘voting' experiment. Let S; be
the number of ‘jury’ systems (MOSS, JPlag and
Sherlock), which marked file i as suspicious. If S >
2, we should expect our system to mark this file as
wdl. If § < 2, the file should, in general, remain
unmarked. For the test set consisting of 155 files
marked by at least one program, our system agreed
with the ‘jury’ in 115 cases (and, correspondingly,
disagreed in 40 cases). This result is more conformist
than the results obtained when the same experiment
was run on the other 3 tested systems. Each system
was tested while the other three acted as jury.

For the evaluation of the new system we used a
collection of 350 documents taken from the
NEWSru.com news server. Each document had an
informative title and was assigned to one of the
following categories: In Russia, In the World,
Economics, Rdigion, Criminal, Sport, and Culture.
The size of the articles varies from 450 bytes to
19 KB with the median sze of about 2KB. The
typica article congsts of 8-12 small paragraphs that
are made of strict narrative sentences and quotations.

This selection was based on the assumption that
the newsreels often publish different documents on
the same topic (though we do not expect direct
plagiarism in this case), so the possibility to find
similar files is quite high. Since we do not know
about any other plagiarism detection systems that use
natural language processing techniques, the results
were analyzed manually.

The system found 20 relevant pairs of similar
documents (with at least 4% degree of similarity).
The typica examplesinclude:

- A pair of documents about the solar eclipse on
20" of March. The first tells about the countries
where this phenomenon is observed; the second is
dedicated purely to the observation of the eclipse
in Russia

- A pair of documents on the weather conditions in
Europe. The first is about floods in the EU; the
second contains some weather predictions for the
EU (including subsequent floods).

- A pair of documents on rumors about Russian
military assistance to the Iragi government in
March of 2003. The first outlines the position of

Moscow; the second states the reaction of
Washington.
After tokenization the similarity degrees of the same
file pairs increased (in most cases) by a factor of 1.5
or (in few cases) remained the same. Meanwhile,
four additional false pairs were detected (but with
very low similarity ratios that did not exceed 4-5%).

There are typical situations encountered in the
experiment that noticeably affected the detection
process after tokenization. They include:

- Changes to grammar cases in Russian. The
phrases in one of resorts and of one of resorts are
not matched at due to the changes of the endings
of the words. After tokenization they become
almost identical .

- The use of distinct words of the same classes in
the same contexts in different documents. The
phrases the residence in Greece and the residence
in Athens do not match, but do match after the
tokenization (Greece and Athens are trandated to
the same class <PLACE>).

The latter case is related to many mismatches as well.

For example, the phrases Vladimir Putin claimed and

George Bush claimed are treated as the same

sequence <NAME><NAME><SPEAK> after the

tokenization. It may be argued, though, that the
system of classes we used was not specialy designed

for plagiarism/similarity detection procedures. A

more advanced hierarchy may include a careful

taxonomy that minimizes such collisions.

It should be noted that in the simplest case the
tokenization can be considered as a variation of
stemming technique that is widey used in
information retrieval. Although, for some languages
(including Russian) stemming procedures are not
simple, since they have to dea with many non-trivia
grammatical issues.

The use of tokenization results in the immediate
increase of the number of matches. Tokenization of
level O (stemming), level 1 (with the terminal classes
in the hierarchy) and level 2 (with the direct
ancestors of the termina classes) makes sense, but
the use of tokenization of higher levels results in
many false matches, since the classes become too
general. For example, tokenization of level 3
substitutes the word cat with the class name
<ALIVE>. The same class corresponds to all alive
objects, such as worm, chairman or wife.

The system also did not detect several file pairs
that could be treated as similar under certain
conditions. For example, some documents can have
only a few common substrings, but most human
readers consider them as similar. The manual
analysis shows that the number of such pairs in our
collection is less than five, and the corresponding
files are not originated from the same source, i.e.
they do not contain instances of plagiarism.

8. Conclusion

Plagiarism detection for text in natura languages
is a challenge. Most natural language processing
tools, such as parsers and taggers remain unused by
the authors of plagiarism detection systems. Also
these tools are language dependent and designed for
English.

Our approach gives a possible solution to make a
language independent system to determine plagiarism
in collections of the texts. The key idea behind it is
the use of hierarchies of concepts and the functiona
style of representing the sentences. To implement the
system, we adopted agorithm|[3], applied the
tokenization technique and the tree matching
procedure. We utilized the concept hierarchy for the
Russian language. Our tests showed the promising
results which include intelligent tokenization and
high speed processing of the text data (O(q + N) is
required to test a query file of size q against a
collection of N files). The tree matching procedure is
still very experimental, but we believe that it can
significantly improve the quality of plagiarism
detection. Our solution is scalable (see[3]), so it is
suitable for large essays banks.

References

[1] V.A. Tusov, Computer Semantics of the Russian
Language (in Russian), S.-Petersburg University
Press, S.-Petersburg, 2004.

[2] L. Prechelt, G.Malpohl, and M. Philippsen,
JPlag: Finding Plagiarisms among a Set of

Programs, Technical report, Fakultit fiir Informatik,
Universitat Karlsruhe, Germany, 2000.

[3] M. Mozgovoy, K. Fredriksson, D. White, M. Joy,
and E. Sutinen, “Fast Plagiarism Detection System”,
Lecture Notes in Computer Science, vol. 3772, 2005,
pp. 267-270.

[4] M.S. Joy, M. Luck, “Plagiarism in Programming
Assignments’, IEEE Transactions on Education,
vol. 42(2), 1999, pp. 129-133.

[5] B.S. Baker, “Parameterized Duplication in
Strings: Algorithms and an Application to Software
Maintenance”, SAM Journal on Computing,
vol. 26(5), 1997, pp. 1343-1362.

[6] Turnitin: www.turnitin.com
[7] CopyCatch Gold: www.copycatchgold.com

[8] M.J. Wise, “YAP3: Improved Detection of
Similarities in Computer Program and Other Texts’,
Proceedings of SGCSE ' 96, 1996, pp. 130-134.

[9] WCopyfind: plagiarism.phys.virginia.edu
[10] M. Mozgovoy, “Desktop Tools for Offline
Plagiarism Detection in Computer Programs’,

Informatics in Education, vol. 5(1), 2006, pp. 97-
112.

[11] Ph. Edmonds, A. Kilgarriff (Eds.), Journal of
Natural Language Engineering (Special 1ssue Based
On Senseval-2), vol. 9(1), 2003.

[12] M.P. Marcus, B. Santorini,
M.A. Marcinkiewicz, “Bulding a large annotated
corpus of English: the Penn Treebank”,
Computational Linguistics, vol. 19, 1993, pp. 313-
330.

[13] B. Belkhouche, A.Nix, J.Hassdl, “Plagiarism
Detection in Software Designs’, Proceedings of the
42nd Annual Southeast Regional Conference, 2004,
pp. 207-211.

[14] S. Schieimer, D. S. Wilkerson, A. Aiken,
“Winnowing: Local Algorithms for Document
Fingerprinting”, Proceedings of the 2003 ACM
S GMOD International Conference on Management
of Data, 2003, pp. 76-85.

Publication [MKKO7]

M. Mozgovoy, S. Karakovskiy, V.Klyuev. Fast and Reliable Plagiarism Detection
System. Proc. of FIE 07 Conference, 2007.

Copyright © 2007 |IEEE. Reprinted with permission.

Session S4H

Fast and Reliable Plagiarism Detection System

Maxim Mozgovoy', Sergey Karakovskiy®, and Vitaly Klyuev’

Abstract — Plagiarism and similarity detection software is
well-known in universities for years. Despite the variety of
methods and approaches used in plagiarism detection, the
typical trade-off between the speed and the reliability of
the algorithm still remains. We introduce a new two-step
approach to plagiarism detection that combines high
algorithmic performance and the quality of pairwise file
comparison. Our system uses fast detection method to
select suspicious files only, and then invokes precise (and
slower) algorithms to get reliable results. We show that the
proposed method does not noticeably reduce the quality of
the pairwise comparison mechanism while providing
better speed characteristics.

Index Terms — Plagiarism detection, similarity detection, string
matching.

INTRODUCTION

A wide range of plagiarism and similarity detection systems
was developed in recent years. Basically their task is to find
similarities in files, which can indicate either plagiarism (in
case of students’ works) or code duplication (in case of a
software project analysis). The quality of the system is
primarily determined by the method of similarity calculation.
The same method usually has a high influence on the speed of
the detection. Typically, the faster is detection routine, the less
precise results it provides.

In our work we study the possibility of using the
combined approach: the faster (and less precise) algorithm
performs the initial selection of suspicious files, and then the
more reliable (and slower) routine calculates similarity ratios
for file pairs. It should be noted that we concentrate on a so-
called “offline” (or “hermetic”) plagiarism detection, which
deals with analysis of local file collections. “Online”
plagiarism detection (search for similar documents in the
Internet) is related more to information retrieval, so coverage
can turn out to be much more important than precision.

SIMILARITY DETECTION TECHNIQUES

A good example of speed-reliability trade-off is found in the
formerly popular attribute counting approach. Attribute
counting systems (such as [1] and [2]) create special
“fingerprints” for collection files, including metrics, such as
average line length, file size, average number of commas per
line, etc. The files with close fingerprints are treated as
similar. Clearly, small fingerprint records can be compared

! Maxim Mozgovoy, University of Joensuu, mmozgo@cs joensuu fi

rapidly, but this approach is now considered unreliable, and
rarely used nowadays [3].

Modern plagiarism detection systems usually implement
certain content-comparison techniques. The most popular
approaches include heuristic string tiling (finding the joint
coverage for a pair of files)[4,5], and parse trees
comparison [6, 7]. Usually these algorithms work for file
pairs, so the comparison routine should be called for each
possible file pair found in the input collection. It means that
O(fin)N?) time is required to perform the detection. Here N is
the number of files in the collection, and f(n) is the time
needed to compare two files of length n.

Fast Plagiarism Detection System (FPDS) [8] tries to
improve the algorithmic performance of plagiarism detection
by utilizing a special indexed data structure (suffix array) to
store input collection files. A special heuristic search routine is
used to compare any given file against the whole collection at
once. The complexity of the complete detection procedure is
O(nNy + N%), where N is the total number of files, n is the
average file length, and v is a special finely-tunable constant
(v = Q(log nN) should be used for the best performance). In
terms of quality, FPDS shows the results, which are close to
the ones, provided by other content-comparison systems.

TOKENIZATION

Tokenization [9] is a commonly-used technique that fights
against renaming variables and changing loop types in
computer programs. Simple tokenization algorithms substitute
the elements of program code with single tokens. For example,
all identifiers can be substituted with <IDT>, and all values
with <VALUE> tokens. So, a line a = b + 45; will be replaced
by <IDT>=<IDT>+<VALUE>;. Therefore, renaming
variables will not help the plagiarizer.

A more advanced example of tokenization is p-match
algorithm [10] that keeps track of usage of the variable names.
If another file has a variable appearing in the same context, it
Is treated as identical.

All modern plagiarism detection systems, aimed at
program code analysis, implement some tokenization-like
procedure.

PLAGGIE AND FPDS

Plaggie is a recent open source content comparison-based
plagiarism detection system [11]. It is based on a simplified
algorithm, implemented in better-known JPlag project [5]. In
its turn, JPlag develops further the idea of the Running-Karp-
Rabin Greedy-String-Tiling (RKR-GST) algorithm, used in

% Sergey Karakovskiy, St. Petersburg State University, sergey karakovskiy@gmail com

3 Vitaly Klyuev, University of Aizu, vkluev@u-aizu ac jp
1-4244-1084-3/07/8$25.00 ©2007 IEEE

October 10 — 13, 2007, Milwaukee, WI

37" ASEE/IEEE Frontiers in Education Conference
S4H-11

YAP3 tool [4]. Currently it is one of the most advanced and
reliable content comparison methods [12, 13].

Though the speed of detection may vary due to project-
specific heuristics, the (empirically obtained) expected
running time for the pure RKR-GST routine is O(N*n"'?),
where N is the number of files in the input collection, and n is
the average file size [14].

FPDS is a rapid content comparison-based plagiarism
detector, aimed at better performance at the cost of a slight
quality loss [8]. Our study showed that in most cases the
results, provided by FPDS is reliable enough to be used in
practice. On the other hand, the underlying algorithm itself
(heuristic search in the indexed data structure) brings some
features that are not always acceptable. Firstly, the search
routine can skip certain matches, easily detectible through
RKR-GST. Secondly, the algorithm is not optimized for
finding continuous matches, so the similar chunks can be
uniformly spread inside the files being analyzed. This makes
harder to examine the similarities visually. In contrast, Plaggie
(as well as JPlag) provide detailed HTML report of the results,
including similarity ratios and schemes of detected
overlappings for each suspicious file pair.

The algorithm used in FPDS has one special input
constant v, standing for “typical length of a match in tokens™.
Large y values lead to more mismatches, but make algorithm
work faster. Smaller y provide more precise results, but if y
becomes too small, the system will report a lot of false
matches (normally we assume that one or two-token match
should not be treated as plagiarism). For similarity detection in
computer programs, we consider ye [10, 30] to be
appropriate.

The relative speed of FPDS and Plaggie can be
understood from the fig. 1, demonstrating the time needed to
process a sample collection of 100, 200, 300, 400, and 500
files. We have used 500 distinct files taken from Apache
Tomceat project source code as our collection, then selected
random smaller subsets. The complete collection size is 4.58
MB; the median file size is 6.15 KB.

140

—e— Plaggie H H H

120 7= —a—FPO (y = 10) [~ e R R Sy
—&— FPD (y = 20) i i !

100 4----- ammllind o 1 i) S S SO oS

80 e —— — i R

Time, sec

T — S S — R ——
40 ~

20 1

100 200 300 400 500
Collection size

FIGURE 1
TIME REQUIRED FOR DETECTION: PLAGGIE VS. FPDS.

1-4244-1084-3/07/8$25.00 ©2007 IEEE

Session S4H

COMBINED APPROACH

High detection speed of FPDS with better reliability and result
reporting capabilities of Plaggie suggest the idea of a
combination of these two systems. Firstly, FPDS analyzes the
input collection and outputs a set of suspicious files using a
given similarity threshold. Then Plaggie is invoked for this set
to produce a detailed and reliable report.

Technically, FPDS outputs a list of file-file similarities
for every possible file pair:

file; file; sim(file;, filejy)

The subset of suspicious documents we generate for
further analysis by Plaggie includes every file F, for which

max (sim(F, G)) >= threshold

G

It should be noted that sim () function is not symmetrical.
If, for example, file r is small and file G is large, it can happen
that sim(F, &) =100% (if G contains F), while sim (G, F)
is always less than 100%.
A combination of plagiarism detection systems we
propose has to satisfy the following assumptions:
e The combined system should be noticeably faster than
Plaggie.
e FPDS and Plaggie should “agree” in most cases; in other
words, FPDS generally should not exclude files, treated as
plagiarized by Plaggie, from the input set.

The intuitive reason for the second assumption is a close
relationship between the algorithms used in both systems. Our
experiments show that both these assumptions are correct. Let
us consider the same five collections (100..500 files),
consisting of Java source files. Table demonstrates the
agreement between Plaggie and FPDS (with y = 20, y = 30).

The systems mark files according to similarity thresholds
ST1 and ST2. For Table I, ST1 = (0.4 for FPDS, 0.6 for
Plaggie), ST2 = (0.6 for FPDS, 0.8 for Plaggie). It should be
noted that since FPDS can skip matches, generally it provides
lower similarity ratios that Plaggie. Therefore, we have to set
higher similarity threshold for Plaggie in order to get closer
reports. The percentage in parentheses shows the fraction of
Plaggie-marked files, marked also by FPDS. Since these
figures are enough high (81.9% on average), we can make a
conclusion about reasonable agreement between the two
systems. Therefore, the use of FPDS as a filter does not
noticeably reduce the quality of plagiarism detection.

The speed of combined system is considerably higher
than Plaggie’s. The comparison of detection time graphs is
shown on the fig. 2.

There are many studies investigating the nature of
plagiarism but we can say nothing about the probability
distribution of suspicious files. Study [16] reported that 38%
of 53 students in one class plagiarized another student’s
assignment or allowed other students to plagiarize their
assignment. After including the teacher’s policy concerning
academic dishonesty into the course syllabus, the number of
students involved in plagiarism decreased dramatically: Only

October 10 — 13, 2007, Milwaukee, WI

37" ASEE/IEEE Frontiers in Education Conference
S4H-12

9% of 87 students were incriminated in such incidences. No
software was used to discover the aforementioned cases.
Another study [17] reported the results of a survey conducted
among the teachers of computing schools in Great Britain.
Approximately 50% of the aforementioned schools provided
the data. Responses to the question about the number of
students in the school caught plagiarizing in the last academic
year were ranging from a very small fraction (0.0014%) to
approximately 13%.

TABLE I
AGREEMENT IN PLAGGIE AND FPDS RESULTS

Collection 1 (100 files)

Files marked
Sim | Plaggie | FPDS20 | FPDS30 | Plaggie N FPDS20 | Plaggie » FPDS30
STI 23 32 19 18 (78.3%) 16 (69.6%)
ST2 14 21 11 13 (92.9%) 10 (71.4%)
Collection 2 (200 files)
Files marked
Sim | Plaggie | FPDS20 | FPDS30 | Plaggie N FPDS20 | Plaggie » FPDS30
STI 72 87 66 62 (86.1%) 56 (77.8%)
ST2 51 62 46 46 (90.2%) 41 (80.4%)
Collection 3 (300 files)
Files marked
Sim | Plaggie | FPDS20 | FPDS30 | Plaggie ~ FPDS20 | Plaggie ~ FPDS30
STI 92 119 89 78 (84.8%) 69 (75.0%)
ST2 | 63 82 60 56 (88.9%) 50 (79.4%)
Collection 4 (400 files)
Files marked
Sim | Plaggie | FPDS20 | FPDS30 | Plaggie N FPDS20 | Plaggie » FPDS30
ST1| 118 149 115 104 (88.1%) 93 (78.8%)
ST2 80 104 78 71 (88.8%) 64 (80.0%)
Collection 5 (500 files)
Files marked
Sim | Plaggie | FPDS20 | FPDS30 | Plaggie N FPDS20 | Plaggie » FPDS30
ST1| 138 184 141 118 (85.5%) 108 (78.3%)
ST2 92 124 91 80 (87.0%) 71 (77.2%)

We have to note, finding suspicious files using any
system is not a proof of plagiarism. They have to be
investigated carefully by human inspection. A technique of
this inspection is not trivial. For example, on large scale tests
of Plaggie for the introductory course on programming, the
number of suspicious files was large and teachers had to track
the students exercise by exercise using the following criteria:
Similarity reported by the system was 100%, the same student
pairs were under suspect, and suspicious-looking programs
consisted of more than 100 lines [11]. After this complicated
filtering, a number of students were asked for explanation.
80% of detected cases were confirmed.

1-4244-1084-3/07/8$25.00 ©2007 IEEE

Session S4H

140 4

120 1- : srrdern e b
—a— Plaggie i i i

—a— (FFD20, Plaggie), 5T2
100 11— (FPDAD0, Plaggie), ST1
—a— (FPD30, Plaggie), ST2

Time, sec

100 200 300 400 500
Collection size

FIGURE 2
TIME REQUIRED FOR DETECTION: PLAGGIE VS. COMBINED SYSTEM.

EVALUATION

Evaluation of the systems is not a easy task. Authors and
users published empirical evaluations [5, 8, 11]. Study [11]
reported that Plaggie and JPlag produced practically the same
results on a pool consisting of 65 student Java programs.
Authors of FPDS [8] compared their system with JPlag,
Sherlock and MOSS. These systems were acting as the “jury”.
They found: FPDS recognized 74% of suspicious files
detected by the “jury”. The test set consisted of 220 student
Java programs. As it was noticed earlier, this result is very
close to the comparison between FPDS and Plaggie: On
average 81.9% of files detected by Plaggie as suspicious were
detected by FPDS as well. We applied the nonparametric test
of Spearman’s rank correlation [15] to the data presented in
Table 1. It is used to test for an association between two
variables. According to the procedure, the null hypothesis is:
There is no correlation between two variables, the rank
correlation coefficient for the entire population is equal to
zero. The alternative hypothesis claims that there is a
correlation between two variables and the aforementioned
rank correlation coefficient is not equal to zero. According to
the results obtained, we can conclude that there is significant
correlation between the data we obtained using Plaggie and
FPDS (n =10, a = 0.01, rs = 0.997, critical value z = 0.794).
Here rs is the sample statistic; n is the number of pairs of
sample data (see columns 2 and 3, Table 1); o is the
significance level, and z is a critical interval. Because the
sample statistic exceeds the critical value, we made a
conclusion about significant correlation. The same strong
correlation is found between the data generated by Plaggie and
common fractions of files marked by both systems (columns 2
and 5, Table 1). From this outcome, we can expect the same
behavior of two systems when they analyze Java source code,
and FPDS is a quite accurate filter for Plaggie.

CONCLUSIONS

We have developed a new fast and reliable plagiarism
detection system by combining older Plaggie and FPDS
projects. We have showed that the use of FPDS as a filter does

October 10 — 13, 2007, Milwaukee, WI

37" ASEE/IEEE Frontiers in Education Conference
S4H-13

not noticeably reduce the reliability of Plaggie, but provides
much better algorithmic performance than naive file-file
comparison techniques. The results were tested on a large
enough set of Java source files.

As a main result, we can expect that the proposed system
will filer files very fast and quite accurate. It will discard
significantly the files that cannot mach criteria of plagiarism.
The FPDS part is responsible for this operation. The number
of files sent for a detailed investigation to the Plaggie part is
small enough.

ACKNOWLEDGMENT

The authors wish to thank Kimmo Fredriksson (University of
Joensuu) for reviewing the paper and providing valuable
comments.

REFERENCES

[1] Grier, S., “A tool that detects plagiarism in Pascal programs”, ACM
SIGCSE Bulletin, vol. 13(1), 1981, pp. 15-20.

[2] Faidhi, JA.W., Robinson, S.K., “An empirical approach for detecting
program similarity within a university programming environment”,
Comiputers & Education, vol. 11(1), pp. 11-19.

[3] Verco, K.L., Wise, M., “Plagiarism a la mode: a comparison of
automated systems for detecting suspected plagiarism”, The Comiputer
Journal, vol. 39(9), pp. 741-750.

[4] Wise, M.J., “YAP3: improved detection of similarities in computer
program and other texts”, Proc. ¢fSIGCSE 96 Technical Symposium,
1996, pp. 130-134.

[S] Prechelt, L., Malpohl G., Philippsen, M., “Finding plagiarisms among a

set of programs with JPlag”, Journal ¢ f Universal Computer Science,
vol. 8(11), pp. 1016-1038.

1-4244-1084-3/07/8$25.00 ©2007 IEEE

(6]

(7]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

Session S4H

Gitchell, D., Tran, N., “Sim: a utility for detecting similarity in computer
programs”, Proc. cfthe 30th SIGCSE Technical Symposium on
Comiputer Science Education, 1999, pp. 266-270.

Belkhouche, B., Nix, A., Hassell, J., “Plagiarism detection in software
designs”, Proc. cf the 42nd Annual Southeast Regional Cor ference,
2004, pp. 207-211.

Mozgovoy, M., Fredriksson, K., White, D., Joy, M., Sutinen, E., “Fast
plagiarism detection system”, Lecture Notes in Computer Science,
vol. 3772, 2005, pp. 267-270.

Joy, M., Luck, M., “Plagiarism in programming assignments”, IEEE
Transactions on Education, vol. 42(2), 1999, pp. 129-133.

Baker, B.S., “On finding duplication and near-duplication in large
software systems”, Proc. cfthe 2nd IEEE Working Cor ference on
Reverse Engineering, 1995, pp. 86-95.

Ahtiainen, A., Surakka, S., Rahikainen, M., “Plaggie: GNU-licensed
source code plagiarism detection engine for Java exercises”, Proc. cf the
6th Baltic Sea Cor ference on Computing Education Research, Uppsala,
Sweden.

Lancaster, T., Culwin, F., “Using freely available tools to produce a
partially automated plagiarism detection process”, Proc. cfthe 21st
ASCILITE Cor ference, 2004, pp. 520-529.

Mozgovoy, M., “Desktop tools for offline plagiarism detection in
computer programs”, Ix formatics in Education, vol. 5(1), 2006, pp. 97-
112.

Wise, MLJ., “Running Rabin-Karp matching and greedy string tiling”,
Basser Department c f Computer Science Technical Report, 1994.

Wessa, P., “Free statistics software”, C,fice for Research Develcpment
and Education, v. 1.1.17, URL http://www wessa.net

Wiedermeier, P.D., “Preventing plagiarism in computer literacy
courses”, Journal cf Computing Sciences in Colleges, vol. 17(4), 2002,
pp. 154-163.

Culwin, F., MacLeod, A., Lancaster, T., “Source code plagiarism in UK

HE computing schools, issues, attitudes and tools”, South Bank
University Technical Report, 2001.

October 10 — 13, 2007, Milwaukee, WI

37" ASEE/IEEE Frontiers in Education Conference
S4H-14

Publication [MKSO07]

M. Mozgovoy, T. Kakkonen, E. Sutinen. Using Natural Language Parsers in Plagiarism
Detection. Proc. of SLaTE 07 Workshop, 2007

Copyright © ISCA. Reprinted with permission.

Using Natural Language Parsersin Plagiarism Detection

Maxim Mozgovoy
mMmmozgo@cs.joensuu.fi

Tuomo Kakkonen
tkakkone@cs.joensuu.fi

Erkki Sutinen

sutinen@cs.joensuu.fi

University of Joensuu
Finland

Abstract

The problem of plagiarism detection system design is a subject of
numerous works of the last decades. Various advanced file-file
comparison techniques were developed. However, most existing
systems, aimed at natura language texts, do not perform any
significant preprocessing of the input documents. So in many
casesit is possible to hide the presence of plagiarism by utilizing
some simple techniques. In this work we show how a natural
language parser can be used to fight against basic plagiarism
hiding methods.

Index terms: plagiarism detection, natural language parsing,
string matching, natural language processing.

1. Introduction

Plagiarism in universities is an important problem, remaining
as atopic for scientific works for years. The studies of plagiarism
include the understanding of phenomenon itself, developing
methods of plagiarism prevention and techniques of plagiarism
detection. The later problem turns out to be a technical task in
many cases, since plagiarism detection can be effectively done
with the help of computer tools.

A plagiarizer, though, can make some efforts to hide
plagiarism. For example, in program code files it is possible to
rename variables and to change control structures, modifying the
initial lexical structure of the program. Several techniques,
including tokenization [1] and parameterized matching [2] were
developed to fight with such changes. However, similar methods
are harder to apply for natural language texts, so usualy it turns
out to be easier to hide plagiarismin this case.

In this work we show that NLP tools can be used as a rough
equivalent of tokenization for natural language texts, overcoming
simple plagiarism hiding techniques. Our previous work [3] was
dedicated to the problem of rewording sentences. The current
work shows how to fight with “ split match” problem.

2.“Split Match” Problem

Arguably, the most popular detection scheme in modern
plagiarism detection systems is file-file content comparison by
means of general string matching agorithms. Generally, the
systems try to find the best joint coverage of the two files, and
treat the size of this coverage as their similarity ratio. For
example, running Karp-Rabin greedy string tiling (RKR-
GST) [4] isused in YAP3 [5], JPlag [6], and Plaggie [7] systems.
Similar approach is utilized in Sherlock [1] and FPDS[8].

(c) SLaTE 2007

The task of finding optimal joint coverage appears to be NP-
complete [5], so heuristic assumptions are used in practical
algorithms. For example, nearly all systems use a variation of
greedy matching. Another widely used heuristics suggests
limiting the minimal length of substrings to be matched. The
need of this constraint is caused by the peculiarities of plagiarism
detection problem. By including short substrings into the joint
coverage, the program provides a lot of false matches that do not
indicate plagiarism. Typical copy & paste plagiarism results in
duplicating sequences of words, while the presence of the same
single words can be an indicator of vocabulary similarity only,
not of plagiarism.

Systems like Plaggie [7] and FPDS[8] include such “shortest
string length to match” fine-tunable parameters explicitly. Our
experiments show that the reasonable size of this parameter is
about 10-20 (tokens) in case of program code, and about 4-6
(words) in case of natural language texts.

Unfortunately, the use of this heuristics can cause plagiarism
mismatching if a plagiarizer swaps words (this is easy to do in
natural language texts, especially in languages such as German,
Finnish and Russian that allow freer word order than English).
For example, suppose that the origind document contains a
phrase “light bright sun”. A plagiarizer rewords it to “bright light
sun”. If asystem is tuned to match substrings of length 2 (words)
and longer only, the plagiarized phrase will not be matched.
Keeping in mind the fact that the usual value of “shortest string
length to match” constant can be 5-6 words, the intentional word
swapping can noticeably affect the detection results.

3. Text Parsing as a Solution

Like computer programs, natural language sentences have
syntactic and semantic structure. There are software tools
available that can be used to build parse trees for individual
sentences. Most automatic English parsers use Chomsky-styled
Penn Treebank grammars[9], based on the traditional linguistic
approach to the syntax analysis, producing phrase structure-styled
analyses. For example, the phrase the monkey ate the banana will
be represented as

——— SENTENCE———,
SUBJECT LVERB OBJECT
—ART| CLE Late —ART| CLE
L—t he L—t he
—NOUN —NOUN
L-monkey Lbanana

Natural language parsers can recognize noun phrases,
homogeneous parts of the sentence, etc. It is clear that word
Swapping can occur, in particular, in sentences with conjunctions,

such as“and”, “or”, “but”, etc. For example, the phrase “| ate the
pizza, the pasta and the donuts’ can be reworded as “I ate the
pasta, the donuts and the pizza’. Instead of comparing sentences
as word strings, we can first analyze them by a parser that
recognizes the syntactic structure. These syntactically tagged
structures normalize differences between sentences with the same
proposition expressed with different word order, thus revealing
potential plagiarism.

In contrast to most other parsers based on probabilistic
context-free grammars (PCFGs), Stanford Parser is based on an
unlexicalized model [10]. We used version 1.5.1 (30 May 2006)
of the system in our experiments. This parser uses a Cocke-
Younger-Kasami (CYK) [11, 12] search algorithm and can
output both dependency and phrase structure analyses [13]. Klein
and Manning [10] reported labeled precision and recall figures of
86.9 and 85.7 respectively for this parser. The authors claim that
the parser is able to analyze all the sentences in section 23 of the
Penn Treebank [9] in a machine with 1GB of memory.

We ran the experiments on the English PCFG grammar and
used the dependency output consisting of 48 dependency types.
An post-processor tool was implemented in Java that transforms
the outputs of Stanford Parser from dependency trees into a
format in which the word order has no effect. The format
represents the words in the sentence sorted according to their
grammatical relations (GR) that designate the type of the
dependency between the words. The words inside each GR group
are sorted in aphabetical order. Figure 1 gives an example of the
original Stanford Parser output and transformed format.

nsubj (ate-2, 1-1)

det (pi zza- 4, the-3)

dobj (ate-2, pizza-4)

det (pasta-7, the-6)

conj (pizza-4, pasta-7)
cc(pi zza-4, and-8)

det (donuts-10, the-9)
conj (pizza-4, donuts-10)

[ate, cc[and], conj[donuts, pasta,
pi zza], det[the, the, the],
dobj [pizza], nsubj[I]]

Figure 1. Stanford Parser (on the top) and out post-processor (on
the bottom) outputs for the sentence: “I ate the pizza, the pasta
and the donuts.”

4. Technical |ssues
The files generated by natural language parser, are ordinary
text documents, and can be used as an input for most general-
purpose plagiarism detection system. We have used system [8],
earlier developed at our university.

The detection is performed in two phases. First, the parser
processes input collection file by file, and generates a collection
of parsed files. Second, plagiarism detection system checks the
parsed files for similarity. Such flexible scheme alows us to
experiment with different parsers, tokenizers, and preprocessors,
but in current case has one noticeable drawback. The problem is
that the parser destroys theinitial word order in every sentence of
the input text. Therefore, the plagiarism detection system cannot
precisely highlight similar blocks of text in origind file pairs.

(c) SLaTE 2007

There are two obvious ways to overcome this problem: either the
system should be programmed to highlight the whole plagiarized
sentences instead of word chains, or the parser should generate
some metadata about the parsed files, helping to restore the links
between words in origina and parsed files. The later is
preferable, but requires serious modifications of the parser.

5. Evaluation

Reliable evaluation of a plagiarism detection system is a hard
task to perform. Many works use quite informal justifications of
the approach used [1, 14]. One of the possible scientific methods
includes the use of different plagiarism detection systems as
“jury” to evauate the examined system. Though the separate
“opinions” of other systems cannot work as reliable indicators of
quality of the system being evaluated, the collaborative “voting”
determines the subset of plagiarized files more reliably. This
method was used to evaluate the system [8].

Unfortunately, this approach is hard to follow with natural
language texts, since the only system we know that utilizes
natural language parsing is our recent project [3], that is based on
the same system[8], paired with a parser of the Russian
language. Therefore, the results were anayzed manually.

Our positive experience with [3] encouraged to use short
news messages as an input collection. Such a selection is based
on the fact that quite often different agencies provide information
about the same event. Furthermore, agencies often cite one
another, increasing the number of possible duplications
(sometimes reworded). We do not expect plagiarism in this case.

For the evaluation of the system, a collection of 128 messages
was obtained from the website of BBC NEWS
(http://news.bbc.co.uk). Each message falls into one of the
following categories: Business, Europe, Science/Nature, and
Technology. The median size of each message (after removing all
formatting) is about 2 KB.

We have also prepared several files with intentional
plagiarism, performed using copy & paste with subsequent
change of word and phrase order. It should be mentioned that
newsis hard to plagiarize with such a method, since the reels are
laconic, and do not contain enough adjectives or phrases to swap.
However, in free-form essays we used there are more possibilities
for such “swap-powered” plagiarism.

The system [8] without parser found 11 pairs of messages
containing vast quotations from each other, and 3 pairs of
messages informing about the same event. The similarity ratios of
later pairs are 5%-33%. The similarity ratios of plagiarized free-
form essays were estimated as 10%-30%. The inclusion of parser
increases similarity ratios for overlapping news messages by 7%-
13%. This observation indicates that the new system has an
overal tendency to assign higher similarity grades to the same
file pairs. As aresult, two more file pairs of similarity 5% and 7%
appeared in the resulting log, but they were not considered as
similar by human graders. In practice, it is possible to get rid of
incorrectly matched pairs by raising a similarity threshold for
final file par list. For the plagiarized free-form essays the
similarity ratios have increased significantly — to 50%-80%. The
results are al so noticeably affected by the value of “shortest string
length to match” consgtant. The smaller is constant, the less effect
has the use of the parser. Large constant values cause higher

probability to mismatch “swap-powered” plagiarism, detectable
by means of parser.

6. Discussion

Our experiments show that the use of natural language parser
to find swapped words and phrases can be effective for
intentiona plagiarism, but usually impractical for casually similar
documents. If two files use the same source or cite each other, the
probability of finding intentional swaps is low. On the contrary,
plagiarizers have strict motivation to hide copy & paste
plagiarism, so swaps are much more likely to occur.

Since the existence of swaps is a good indication of
plagiarism, one of the possibilities for future research can be
comparison of file pair similarity without and with parsing. The
high difference in numbers can indicate the presence of
intentiona word swaps, and, therefore, of plagiarism.

The use of smaller “shortest string length to match” constant
can effectively fight against swaps as well, but it aso
significantly increases the possbility of fase matches.
Furthermore, larger values of this constant make detection
algorithm work faster [8].

References
[1] M.S.Joy, M.Luck, “Plagiarism in Programming
Assignments’, |EEE Transactions on Education, vol. 42(2),
1999, pp. 129-133.
[2] B.S. Baker, “Parameterized Duplication in Strings:

Algorithms and an Application to Software Maintenance”, SAM
Journal on Computing, vol. 26(5), 1997, pp. 1343-1362.

[3] M. Mozgovoy, V. Tusov, V.Klyuev, “The Use of Machine
Semantic Analysis in Plagiarism Detection”, Proceedings of the
9th International Conference on Humans and Computers, Japan,
2006, p. 72-77.

[4] MJ. Wise, “Running Karp-Rabin Matching and Greedy
String Tiling”, Technical Report #463, Basser Department of
Computer Science, University of Sydney, 1993.

(c) SLaTE 2007

[5] M.J. Wise, “YAP3: Improved Detection of Similarities in
Computer Program and Other Texts’, Proceedings of
SIGCSE ' 96, 1996, pp. 130-134.

[6] L. Prechelt, G. Malpohl, and M. Philippsen, “JPlag: Finding
Plagiarisms among a Set of Programs’, Technical report,
Fakultat far Informatik, Universitiat Karlsruhe, Germany, 2000.

[7] A. Ahtiainen, S. Surakka, M. Rahikainen, “Plaggie: GNU-
Licensed Source Code Plagiarism Detection Engine for Java
Exercises’, Proceedings of the 6th Baltic Sea Conference on
Computing Education Research, 2006, pp. 141-142.

[8] M. Mozgovoy, K. Fredriksson, D.White, M. Joy, and
E. Sutinen, “Fast Plagiarism Detection System”, Lecture Notes in
Computer Science, vol. 3772, 2005, pp. 267-270.

[9] M.P. Marcus, B. Santorini, M.A. Marcinkiewicz, “Bulding a
Large Annotated Corpus of English: the Penn Treebank”,
Computational Linguistics, vol. 19, 1993, pp. 313-330.

[10] D. Klein, C. Manning, “Accurate Unlexicalized Parsing",
Proceedings of the 41st Meeting of the Association for
Computational Linguistics, 2003, pp. 423-430.

[11] T. Kasami, “An Efficient Recognition and Syntax-analysis
Algorithm for Context-free Languages’, Scientific Report
AFCRL-65-758, Air Force Cambridge Research Lab, Bedford,
Massachusetts, USA, 1965.

[12] D. Younger, “Recognition and Parsing of Context-free
Languages in Time n*, Information and Control, vol. 10(2),
1967, pp. 189-208.

[13] M-C. de Marneffe, B. MacCartney, C. Manning,
“Generating Typed Dependency Parses from Phrase Structure
Parses’, Proceedings of the 5th International Conference on
Language Resources and Evaluation, 2006.

[14] B. Belkhouche, A. Nix, J. Hassell, “Plagiarism Detection in
Software Designs”, Proceedings of the 42nd Annual Southeast
Regional Conference, 2004, pp. 207-211.

Errata

[Mozgovoy06] | Missing reference: (Vamplew and Dermoudy, 2005) P. Vamplew,
J. Dermoudy. An Anti-Plagiarism Editor for Software Development
Courses. Proc. of the 7th Australasian Conference on Computing
Education, vol. 42, 2005, p. 83-90.

[Mozgovoy06] | p. 99, paragraph 1: “progam’s” — “program’s”

[Mozgovoy06] | p.100, paragraph 3: “sytem” — “system”.

[Mozgovoy06] | Sec. 4.4, last paragraph: “the the” — “the”.

[Mozgovoy06] | Sec. 4.2. Note that the plagiarism hiding techniques can be used for

code optimization. However, if a certain program is an optimized

version of another student’s program, it is considered as plagiarism.

[FMO6]

Sec. 3, paragraph 2. “mth bit of d” — “mth bit of D”

Dissertations at the Department of Computer
Science and Statistics

Rask, Raimo. Automating Estimation of Software Size during the Regquirements
Specification Phase—Application of Albrecth’s Function Point Analysis Within
Structured Methods. Joensuun yliopiston luonnontieteellisia julkaisuja, 28: University
of Joensuu. Publications in Sciences, 28. 128 pp. Joensuu, 1992.

Ahonen, Jarmo. Modeling Physical Domains for Knowledge Based Systems. Joensuun
yliopiston luonnontieteellisid julkaisuja, 33:. University of Joensuu. Publications in
Sciences, 33. 127 pp. Joensuu, 1995.

Kopponen, Marja. CAl in CS. University of Joensuu, Computer Science, Dissertations
1. 97 pp. Joensuu, 1997.

Forsell, Martti. Implementation of Instruction-Level and Thread-Level Parallelism in
Computers. University of Joensuu, Computer Science, Dissertations 2. 121 pp. Joensuu,
1997.

Juvaste, Simo. Modeling Parallel Shared Memory Computations. University of
Joensuu, Computer Science, Dissertations 3. 190 pp. Joensuu, 1998.

Ageenko, Eugene. Context-based Compression of Binary Images. University of
Joensuu, Computer Science, Dissertations 4. 111 pp. Joensuu, 2000.

Tukiainen, Markku. Developing a New Model of Spreadsheet Calculations: A Goals
and Plans Approach. University of Joensuu, Computer Science, Dissertations 5. 151 pp.
Joensuu, 2001.

Eriksson-Bique, Stephen. An Algebraic Theory of Multidimensional Arrays.
University of Joensuu, Computer Science, Dissertations 6. 278 pp. Joensuu, 2002.

Kolesnikov, Alexander. Efficient Algorithms for Vectorization and Polygonal
Approximation. University of Joensuu, Computer Science, Dissertations 7. 204 pp.
Joensuu, 2003.

Kopylov, Pavel. Processing and Compression of Raster Map Images. University of
Joensuu, Computer Science, Dissertations 8. 132 pp. Joensuu, 2004.

Virmajoki, Olli. Pairwise Nearest Neighbor Method Revisited. University of Joensuu,
Computer Science, Dissertations 9. 164 pp. Joensuu, 2004.

Suhonen, Jarkko. A Formative Development Method for Digital Learning
Environments in Sparse Learning Communities, University of Joensuu, Computer
Science, Dissertations 10. 154 pp. Joensuu, 2005.

Xu, Mantao. K-means Based Clugstering and Context Quantization, University of
Joensuu, Computer Science, Dissertations 11. 162 pp. Joensuu, 2005.

Kinnunen, Tomi. Optimizing Spectral Feature Based Text-Independent Speaker
Recognition. University of Joensuu, Computer Science, Dissertations 12. 156 pp.
Joensuu, 2005.

Kirkkiiinen, Ismo. Methods for Fast and Reliable Clustering. University of Joensuu,
Computer Science, Dissertations 13. 108 pp. Joensuu, 2006.

Tedre, Matti. The Development of Computer Science: A Sociocultural Perspective.
University of Joensuu, Computer Science, Dissertations 14. 502 pp. Joensuu, 2006.

Akimov, Alexander. Compression of Digital Maps. University of Joensuu, Computer
Science, Dissertations 15. 116 pp. Joensuu, 2006.

Vessenaho, Mikko. Developing University-level Introductory ICT Education in
Tanzania: A Context Approach. University of Joensuu, Computer Science, Dissertations
16. 199 pp. Joensuu 2007.

Huang, Haibin. Lossless Audio Coding for MPEG-4. University of Joensuu, Computer
Science, Dissertations 17. 86 pp. Joensuu 2007.

Mozgovoy, Maxim. Enhancing Computer-Aided Plagiarism Detection. University of
Joensuu, Computer Science, Dissertations 18. 131 pp. Joensuu, 2007.

Julkaisija

Publisher

Vaihdot

Exchanges

Myynti

Joensuun yliopisto

Tietojenkasittely- jatilastotieteen laitos
University of Joensuu

Department of Computer Science and Statistics

Joensuun yliopiston kirjasto / Vaihdot

PL 107, 80101 Joensuu

Puh. 013-251 2677, fax 013-251 2691

e-mail: vaihdot@joensuul.fi

Joensuu University Library / Exchanges

P.O. Box 107, FI-80101 Joensuu, FINLAND
Tel. +358-13-251 2677, fax +358-13-251 2691
e-mail: vaihdot@joensuul.fi

Joensuun yliopiston kirjasto / Julkaisujen myynti
PL 107, 80101 Joensuu

Puh. 013-251 4509, fax 013-251 2691

e-mail: joepub@joensuu.fi

Joensuu University Library / Sales of Publications
P.O. Box 107, FI-80101 Joensuu, FINLAND

Tel. +358-13-251 4509, fax +358-13-251 2691
e-mail: joepub@joensuu.fi

