So You Want to Build a Farm: An Approach to Resource and Time Consuming Testing

of Mobile Applications

Evgeny Pyshkin and Maxim Mozgovoy
University of Aizu

Tsuruga, Ikki-Machi, Aizu-Wakamatsu, Fukushima, 965-8580, Japan
Email: {pyshe, mozgovoy}@u-aizu.ac.jp

Abstract—The focus of this research is on improving a process of
resource and time-consuming automated software testing. Parti-
cularly, we address the problem of testing mobile applications
with rich non-native or hand-drawn graphical user interface,
as well as resource-consuming dynamic applications, such as
mobile games. We introduce an approach to creating a mobile
testing farm, which is relatively easy to build with inexpensive
components and open source software. This approach can be
useful for supporting a product development cycle for a company
on lean budget. It is suitable for a wide range of mobile
applications with a high variety of human-computer interaction
mechanisms.

Keywords—Non-native GUI; mobile applications; testing frame-
work; human factors.

I. INTRODUCTION

Though there are many existing frameworks supporting
software development and testing automation, creating open
testing platforms and sharable pragmatic solutions remains one
of strategic parts of software quality assurance [1]. For the
specific case of mobile testing (including mobile user interface
(UI) testing automation), there is a gap between rapid evolution
of mobile software and availability of comprehensive auto-
mated solutions focusing peculiarities of mobile applications
development and testing [2]. One of such particular aspects of
mobile software testing is the problem of creating flexible tools
that would facilitate running automated tests of large-scale and
resource-intensive on mobile applications [3].

One of obvious requirements for automated UI tests is
that they should be able to access applications similarly as
users do. Particularly, testing graphical UI (GUI) provides a
nontrivial case of testing automation for both traditional and
mobile applications [4][5]. Existing tools for testing automa-
tion (such as Jemmy library [6], Microsoft Ul Automation [7],
or Android Ul Automator [8]) provide features for testing
GUI applications in regular cases. They allow accessing pro-
grammatically many GUI elements and performing different
operations such as pushing a button, scrolling a window,
hovering an area, and so on. However, there are specific
cases when testing process is time- and resource-consuming.
Unlike to traditional applications rewritten to be runnable on
mobile devices, applications developed primarily for mobile
devices have significant particularities such as connectivity de-
pendency, limitations in available computing resources, battery
discharging, specufic GUI based touch screen gestures, rapid
evolution and diversity of devices, as well as rapidly evolving
new operating systems [9]. Many of these factors are connected

and mutually dependent. For example, in mobile games, we
might have to run the relatively long-lasting process and collect
many screenshots necessary for reproducing the test cases and
for making further fine-grain analysis of possible application
failures. For arranging such time- and effort-consuming tests,
device emulators (being a widely used solution allowing to
decrease the testing costs) are often not enough. There are the
following reasons:

1) We have to be sure that a program works properly
on real devices (it is mentioned above that a wide
diversity of mobile devices is one of the significant
peculiarities of mobile applications).

2) An emulator could not help in testing applications
with intensive CPU and GPU load required for re-
vealing battery drain problems.

3) Test failures might be device-sensitive: a test might
successfully pass on one device, while (often unex-
pectedly) crashing on the another one.

4) Testing on emulators makes difficult to reveal low
performance problems.

5) It is hard to model connectivity-sensitive test cases.

In order to decrease testing complexity and save testing
time, the developers often use the restricted test suites known
as smoke tests, which are useful for some sanity checks: they
are aimed at checking whether the whole application works,
provides its basic functionality, and operates with user controls
properly. Smoke testing is an important element of software
deployment process, particularly in case of severe time and
cost pressure [10][11].

Simple test scripts can check whether a program works in
general, but also they can reveal many potential problems like
lack of interaction with a server backend, incorrect processing
of user requests, failures in user interactions with Ul (probably
containing non-standard hand-drawn elements), etc.

In the domain of mobile development including (with
respect to the scope of our particular interests) virtualized en-
vironments, mobile games, learning environments, etc., arrang-
ing smoke tests is far from being a trivial problem. Complex
testing scenarios might require the use of specialized smoke
testing frameworks. As it has been mentioned above, mobile
applications often do not have a platform-native GUI, but a
set of hand-drawn elements built without using standard GUI
libraries. One relevant project is the recently launched Unity-
based mobile game “World of Tennis: Roaring *20s” [12],
which is a good example illustrating the complexity of testing
gaming applications running primarily on mobile devices [13].

Apart from mobile games, there are more application types that
may be built with non-native Ul components. For example,
map-based travel applications often use GUI elements, which
are not ordinary user controls supported by standard testing
frameworks, but specially designed components integrated
with an electronic map [14]. Hand-drawn GUI is also widely
used in educational mobile applications, for example, in lan-
guage learning applications with non-standard UI elements for
representing language grammar structures [15].

The remaining paper is organized as follows. In Section II
we describe the application context for our approach and
briefly examine recent works in the domain of mobile software
testing automation. In Section III we introduce our approach
and discuss its current implementation, as well as the lessons
learned from using this approach in a mobile development
project. In Conclusion we summarize our current contribution
and briefly describe the planned future steps.

II. RELATED WORK

The standard approach to mobile application testing is to
connect mobile devices to a “test server” running some special
software, in order to execute test scripts on a remote machine
(as shown in Figure 1).

ZI—<B
== DD

Client
(runs tests)

Server
(operates mobile devices)

Figure 1. Client-server interaction in a mobile testing environment.

For the server-side software, one can rely on existing
solutions, such as Appium [16] and Calabash [17]: a test script
is usually a set of instructions containing such activities as
waiting, tapping screen location, asserting that an expected Ul
elements appears on the screen, pressing the button, tapping a
certain GUI element within some screen area, etc.

In such test scripts for native GUI applications, user
controls can be accessed programmatically: normally, this
capability is supported by an operating system. However, in
a case of applications that do not rely on the natively rendered
GUI components of an underlying operating system and do not
use standardized GUI libraries, this approach does not work.
Various sources [18][19], including our own works [5][20],
suggest to use pattern recognition methods to identify GUI
elements on the screen. In a sense, human intelligence (e. g.,
constructing smoke test scripts) meets the algorithms of ma-
chine intelligence (e. g., using image recognition to find GUI
elements on the screen).

This technique requires experimenting with the settings of
pattern matching and image transformation algorithms (pro-
vided, e. g., by OpenCV library), and in general, slows down
the testing process. It might be difficult to estimate “typical”
duration of a test, since simple smoke tests can reveal the
absence of crashes within seconds, while stress tests, designed
to check the stability of an application in a prolonged time
interval, can take hours. Furthermore, ideally every new build
should be tested on a variety of mobile devices.

A common way to run automated tests on a selection of
real mobile devices is to use cloud mobile farm providers (such
as Amazon Web Services, or Bitbar). Such cloud farms have
many advantages: they support many different mobile devices;
they can be easily set up; they do not require specific client
side equipment. However, there are significant drawbacks as
well: most providers still do not support an adequate variety
of devices or a selection of devices that can be particularly
interesting for the mobile software developers. The testing cost
can be quite high for a small team, freelance developer or
startup company.

III. OUR APPROACH AND CURRENT IMPLEMENTATION

A possible alternative to cloud mobile farms (which are
easy to deploy, but expensive and often insufficient) is to
build own farms that can be configured to fit exact developers’
requirements and specific purposes of the testing process.
The expected functionality of such farms includes support
for the follwing processes: 1) getting builds from a build
machine (such as TeamCity [21]); 2) running all tests on all
connected devices; 3) generating HTML reports containing the
application action logs and screenshots; 4) sending the reports
and related data to the subscribed users.

A. Prototype mobile farm

Figure 2 shows the organization of the current prototype
we use.

Build Server

Team City build server Server 1

Android
devices

Q)

IO

requests new builds runs tests

Client

runs tests
\ Mac mini
running
Appium
generates HTML reports; N D ios
* saves testing logs; \ D devices

0

* sends e-mails to
subscribed users

Figure 2. Mobile farm organization: major components.

In our implementation, Client testing server is a Windows-
based mini-PC, used to run Appium test scripts. There are
two servers supporting tests on connected devices: Server 1 is
a Windows-based mini-PC, running Appium server software
for Android devices mostly (but Windows devices can also be
connected to this server); Server 2 is a Mac mini computer,
running Appium server software for iOS devices mostly. The
second server is required, since it is not possible to run iOS
tests on the devices connected to non-macOS machines.

Testing devices (where the mobile software under testing is
running) are connected with the computers via Plugable USB
hubs that support simultaneous data transfer and charging with
charging rate up to 1.4A depending on the device. Figure 3
demonstrates a working mobile farm prototype with three
servers, a RAID array based storage and a variety of connected
mobile devices under tests.

Though the current implementation is a relatively simple
compact solution, it helped us to analyze many difficulties

e

(a) Servers and raid array (b) Devices under testing

Figure 3. A prototype mobile farm.

that a quality assurance engineer might face while building a
reliable and convenient infrastructure for automated testing of
mobile applications on real devices, including (but not limited
to) the following problems:

e How to support a representative variety of devices
with regards to their operating and eco-systems (e. g.,
solutions which are perfectly deployed for Android
devices might not be working for i0OS-based devices).

e How to find appropriate hardware for connecting a
reasonable number of devices (with respect to battery
draining, difference in charging/connection interfaces,
charging rate and time, capabilities to charge and
transfer data at the same time, etc.).

B. Case Study: Using Appium and Image Recognition for
Testing Non-Native GUI of Mobile Applications

Appium is a test automation framework designed to as-
sist functional testing of compiled native (iOS, Android or
Windows) and hybrid applications [22]. By accessing an
application from Appium scripts, we can simulate different
user interactions. Appium is responsible for the following ac-
tivities: 1) receiving connections from a client; 2) listening for
commands; 3) passing received commands to the application
under testing (the application is run on the same machine as
Appium or on a USB-connected mobile device); 4) sending
responses from the application back to the client.

Thus, Appium just provides a client-server layer that has
testing script on the client side and application on the server
side. All the work of test scheduling, interaction with Team-
City, storing and retrieving test logs and other things has to be
done in our own code, so there is much work for test engineers.

According to the above described process, remote clients
connect to Appium servers and run test scripts that send
commands for execution. Native application GUI elements
can be accessed using a specialized API. However, in order
to access non-native or hand-drawn GUI elements, one needs
to recognize them on the screen first. From one’s first look,
identifying objects of interest on the screen (such as non-
native GUI controls or game characters) can be reduced to the
task of perfect matching of a requested bitmap image inside a
screenshot. However, there is a reasonable number of factors
making such a naive approach insufficient for reliable GUI
element recognition and thus requiring approximate matching:

e Onscreen objects may be rendered differently (because
of GPUs or rendering quality settings.

e Screens vary in dimensions, thus, game scenes might
have to be rescaled before rendering. Such a transfor-
mation might cause significant distortions.

e Game designers might slightly change the Ul elements
(fonts, colors, background, etc.).

e Onscreen objects might interfere with complex back-
ground or with other objects.

e Many interactions are performed with non-GUI on-
screen game objects (such as game characters).

The idea of using OpenCV-supported approximate image
matching in Appium is discussed in several tutorials [23][24].
We rely on OpenCV function matchTemplate() called with the
parameter TM_CCOEFF_NORMED. This parameter defines
the pattern matching algorithm used by matchTemplate(). The
pattern matching function allows us to get image similarity co-
efficients and analyze testing results from the viewpoint of UI
elements recognition quality. Unfortunately, matchTemplate()
function is unable to match scaled patterns. Since a mobile
application may run on devices with different screen sizes, we
have to scale the screenshots to match the dimensions of the
original screen used to record graphical patterns.

Image processing functions (including operations with a
large number of screenshots) slows down the testing pro-
cedures significantly and makes the whole testing process
resource- and time-consuming.

C. Assessment and Lessons Learned

Our current experience to use the suggested approach is
based on two prototype farm implementations for testing the
large scale software project, which is the above mentioned
Unity-based mobile game “World of Tennis: Roaring *20s”.
Our experiments taught us a number of interesting facts about
mobile farms.

Due to very intensive application usage in test runs, mobile
devices quickly discharge while testing. Unfortunately, it is not
enough to plug a device into a computer or a USB hub to keep
the level of battery at an acceptable level: typical USB charging
rates are inadequate. Our experiments demonstrated that even
powered USB hubs can be insufficient, hence, one might need a
hub supporting simultaneous charge and intensive data transfer.
However, we realized that even if one uses special powered
hubs, there are devices charging very slowly or refusing to
charge in such conditions.

Though Appium is a mature project with a significant user
base, there are still some unresolved issues that can lead to
unreliable test execution. However, we have to admit that there
is a visible progress in this project, since many problems (that
we faced in the past) have been already fixed.

A device may have its own oddities. While testing, unex-
pected behavior may be conditioned by a particular version of
the operating system or firmware, or even default onscreen key-
board. For example, we tested one device that was randomly
crashing until we installed CyanogenMod. Another device
reported the lack of available memory space after several

dozens of installation-uninstallation cycles of the application
under testing. The problem was resolved by installing an
alternative Android version.

IV. CONCLUSION

In this contribution, we demonstrated that building a mobile
testing farm is not a trivial task. We introduced an approach,
which includes a process, a working system, and a set of
sample applications using this testing infrastructure. Some
primary evaluation results of testing professional software
products proves the applicability of the suggested method to
the practical cases of mobile software testing.

Particularly, our contribution include a mobile testing in-
frastructure; a working prototype supporting testing of Win-
dows, Android, and iOS devices; Appium extensions (for
handling application distribution across a number of connected
devices, load balancing and supporting additional types of Ul
interaction, which were not included to the Appium imple-
mentation we used; and pattern matching-based technique for
recognition of non-native GUI elements in test scripts. All
above mentioned elements of our solution can be considered
as parts of continuous integration process.

We do not argue that creating a farm is always better than
renting through the alternatives. However, it is important to
note that our approach is not only about implementing smoke
tests for a particular case: it should be considered as a stage
of a continuous integration pipeline, similar to automated unit
testing and automated builds.

We believe that the proposed approach provides a prac-
tical solution for real world problems of software analysis
and verification automation. Our primary experiments show
feasibility of the suggested process for testing automation with
the combined use of several technologies including traditional
automated unit tests, functional testing frameworks, and image
recognition algorithms.

As a future work, we expect to create an open source
framework for small-scale mobile farms that would allow users
to use facilities of users’ own computers and connected devices
as a part of the whole testing framework. We expect that
such an approach will make smoke testing easier to set up,
encourage mobile software developers to extend their testing
automation practices, and, therefore, improve mobile software
quality. As a result of our efforts, paraphrasing on the the
famous Glenn Gould’s conceptual composition “So you want
to write a fugue” [25], we believe to be able to say: “So you
want to build a farm — so go ahead and build a farm”.

REFERENCES

[11 D. Amalfitano, A. R. Fasolino, P. Tramontana, and B. Robbins, “Testing
android mobile applications: Challenges, strategies, and approaches,” in
Advances in Computers. Elsevier, 2013, vol. 89, pp. 1-52.

[2] M. Linares-Vasquez, K. Moran, and D. Poshyvanyk, “Continuous,
evolutionary and large-scale: A new perspective for automated mobile
app testing,” in Software Maintenance and Evolution (ICSME), 2017
IEEE International Conference on. IEEE, 2017, pp. 399-410.

[3] T. Ki, A. Simeonov, C. M. Park, K. Dantu, S. Y. Ko, and L. Ziarek,
“Fully automated ui testing system for large-scale android apps using
multiple devices,” in Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, 2017, p.
185.

(4]

(5]

(6]

(7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

K. Moran, M. L. Vsquez, and D. Poshyvanyk, “Automated gui testing
of android apps: From research to practice,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-
C), May 2017, pp. 505-506.

M. Mozgovoy and E. Pyshkin, “Unity application testing automation
with appium and image recognition,” in Tools and Methods of Program

Analysis, V. Itsykson, A. Scedrov, and V. Zakharov, Eds. = Cham:
Springer International Publishing, 2018, pp. 139-150.

“Jemmy library,” retrieved: Aug 1, 2018. [Online]. Available:
https://jemmy.java.net/

“Ui automation,” retrieved: Aug 1, 2018. [Online].

Available: https://docs.microsoft.com/en-us/windows/desktop/WinAuto/
entry-uiauto-win32

“Automate user interface
[Online]. Available:
ui- testing/index.html

tests,” retrieved: Aug 1, 2018.
https://developer.android.com/training/testing/

H. Muccini, A. Di Francesco, and P. Esposito, “Software testing
of mobile applications: Challenges and future research directions,”
in Proceedings of the 7th International Workshop on Automation of
Software Test. IEEE Press, 2012, pp. 29-35.

J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation (Adobe
Reader). Pearson Education, 2010.

G. Mustafa, A. A. Shah, K. H. Asif, and A. Ali, “A strategy for testing
of web based software,” Information Technology Journal, vol. 6, no. 1,
2007, pp. 74-81.

“World of tennis: Roaring 20’s,” retrieved: Aug 1, 2018. [Online].
Available: http://worldoftennis.com/

K. Haller, “Mobile testing,” ACM SIGSOFT Software Engineering
Notes, vol. 38, no. 6, 2013, pp. 1-8.

E. Pyshkin and M. Pyshkin, “Towards better requirement definition for
multimedia travel guiding applications,” in Computational Intelligence
(SSCI), 2016 IEEE Symposium Series on. IEEE, 2016, pp. 1-7.

M. Purgina, M. Mozgovoy, and V. Klyuev, “Developing a mo-
bile system for natural language grammar acquisition,” in Depend-
able, Autonomic and Secure Computing, 14th Intl Conf on Per-
vasive Intelligence and Computing, 2nd Intl Conf on Big Data
Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech), 2016 IEEE 14th Intl
C. IEEE, 2016, pp. 322-325.

“Appium: Automation for apps,” retrieved: Aug 1, 2018. [Online].
Available: http://appium.io

“Calabash: Automated acceptance testing for mobile apps,” retrieved:
Aug 1, 2018. [Online]. Available: http://calaba.sh

T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: Using gui screenshots
for search and automation,” in Proceedings of the 22nd Annual ACM
Symposium on User Interface Software and Technology, ser. UIST ’09.
New York, NY, USA: ACM, 2009, pp. 183-192.

T.-H. Chang, T. Yeh, and R. C. Miller, “Gui testing using computer
vision,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’10. New York, NY, USA: ACM,
2010, pp. 1535-1544.

M. Mozgovoy and E. Pyshkin, “Using image recognition for testing
hand-drawn graphic user interfaces,” in 11th International Conference
on Mobile Ubiquitous Computing, Systems, Services and Technologies
(UBICOMM 2017), IARIA. IARIA, Nov 2017, pp. 25-28.

M. Mahalingam, Learning Continuous Integration with TeamCity.
Packt Publishing Ltd, 2014.

M. Hans, Appium Essentials.
Aug 1, 2018. [Online]. Available:
application-development/appium- essentials/

with image recog-
nition,” February 2016, retrieved: Aug 1,
2018. [Online]. Available: https://medium.com/@ SimonKaz/
appium-with-image-recognition- 17a92abaa23d\ #.0ez2f6hnh

PACKT, 2015, retrieved:
https://www.packtpub.com/

S. Kazmierczak, “Appium

V.-V. Helppi, “Using opencv and akaze for mobile app and game test-
ing,” January 2016, retrieved: Aug 1, 2018. [Online]. Available: http://
bitbar.com/using-opencv-and-akaze-for-mobile-app-and- game- testing

G. Gould, So you want to write a fugue? G. Schirmer, 1964.

