
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Designing Interactive Visualizations for Teaching

Concurrent Programming

Marina Purgina Maxim Mozgovoy

School of Computer Science and Engineering

The University of Aizu

Aizu-Wakamatsu, Japan

{mapurgina@gmail.com, mozgovoy@u-aizu.ac.jp}

Abstract—Concurrent and distributed programming is

challenging to teach and learn. It requires the students to

understand complex concepts like semaphores, nondeterminism,

race condition, and more. In this paper, we present a

supplementary learning environment in the form of a 2D puzzle

game, based on an easy-to-understand railroad metaphor. The

game environment is designed to be fun and engaging as well as

capable of representing typical problems, found in the concurrent

and distributed programming curriculum. Initial experiences with

this work-in-progress system demonstrate the feasibility of the

chosen approach.

Keywords—visualization, concurrent programming, parallel

programming, educational software, gamification

I. INTRODUCTION

According to the currently dominant constructivist theory of
education, students learn by actively constructing knowledge in
their minds rather than by merely absorbing it from learning
materials [1]. Therefore, one of the challenges of teaching is to
encourage forming adequate mental models of a problem
domain, which form in a student’s mind during particular
learning activities (such as exploring, visualizing,
experimenting, etc. [2]). Within this paradigm, learning is
considered an iterative process, resulting in gradual
reconsiderations and refinements of existing mental models.

Apparently, beginner computer science students lack such
models [3]. While one does need to be knowledgeable in physics
to throw a ball accurately or know any linguistics to be able to
speak, achieving programming skills without an effective
mental model of a computer is unlikely. Therefore, much effort
is usually dedicated to form adequate models, for example, by
discussing real-world metaphors and employing visualizations.
This approach, however, also has flaws: inaccurate (albeit easy
to understand) metaphors lead to various misconceptions. For
instance, a commonly employed conceptualization of a variable
as a “box” make some students believe that a value is “removed”
from a variable when assigned to another variable or that a
variable might contain two values simultaneously [3].

Nevertheless, interactive models and visualizations play an
important role in basic computer science education, and systems
like Scratch [4] and Jeliot [5] are commonly used in practice.
Visualizations and simulations can be useful even at more
advanced levels of study, where the students deal with more
complex programming concepts.

A considerable mental effort is needed to conceptualize
concurrent and distributed computing, involving
nondeterministic behavior [6], [7]. According to Sutter, “the
vast majority of programmers today don’t grok concurrency”,
which becomes a pressing issue in a world where CPU power
growth is mostly achieved via parallelization [8]. These factors
motivate the researchers to create specialized educational tools,
targeted at teaching concurrent, parallel, and distributed
programming.

The present paper introduces our contribution to this effort.
We strive to create an interactive game-like environment, able
to represent most classic concepts and problems of concurrency,
found in typical textbooks. Our motivation is to create an
intuitively comprehensible, fun, and appealing game world. We
attempt to match every visual element of the system with a
certain theoretical concept, enabling easy transfer of knowledge
obtained inside the game back into the real world.

Being a work in progress, our system still lacks much of the
intended functionality and requires a thorough evaluation, but at
the present stage it is already able to represent many typical
textbook problems and can demonstrate the benefits and
tradeoffs of our approach.

II. MOTIVATION AND RELATED WORKS

A work by Zhu et al. [9] provides a good overview of games
and game-like systems that can be used to teach concurrency.
Although this list is not extensive, it illustrates well the range of
commonly used approaches, and explains the shortcomings of
specific systems that motivated the authors to create their own
game environment. While all examined educational systems
introduce certain aspects of concurrency, it seems that none of
them was designed to “fully capture all the key parallel
programming concepts” — the goal Zhu et al. [9] aim to
achieve.

Apparently, this somewhat unsatisfactory situation is
explained by the different scopes of existing systems. For
example, Parapple [10] does not provide tools for representing
synchronization primitives like semaphores, but it implements a
“real” text-based concurrent programming language and
introduces the idea of a system scheduler. In The Deadlock
Empire [11], the player takes control of the scheduler rather than
designs concurrent programs. Thus, while there is no single
definitive instrument for teaching concurrency, the teacher can
rely on a variety of tools covering individual topics, or even

Supported by a University of Aizu research grant P-28.

employ real computer games that happen to implement
concurrent processes, such as OpenTTD [12].

Our own goals are consistent with the ones stated in Zhu et
al. [9], which leads to significant similarities in design between
our system and their game Parallel. We wanted to have a
supplementary learning environment that can be used at a
concurrent and distributed programming course in combination
with regular lecture material. Thus, we needed the coverage of
classic concepts like semaphores, nondeterminism, race
condition, etc. as well as clear visual metaphors that can be
easily matched with textbook concepts.

Fig. 1. A level in Parallel game.

The challenges of designing visual metaphors for a
concurrent program are seen where our approaches diverge. In
Parallel, each thread in a concurrent program is represented by
a “track” (rendered as a multi-segment line), with an arrow-like
“instruction pointer” (see Fig. 1). The rationale for this design is
to represent parallel execution of the same piece of code:
multiple arrows move along the same track without any
interaction with one another. However, this decision forced the
authors to adopt a very abstract visual language of buttons,
arrows and polygons, because “abstract arrows represent
computer threads better than real-world physical entities, like
trains, because the latter create expectations (e.g., trains crash
when colliding) that do not map to how threads behave” [9].

In our system, we opted for an alternative trade-off: tracks
are not shareable, so collisions between “instruction pointers”
are treated as errors. One obvious disadvantage of this design is
the lack of scalability: while in Parallel one can run an arbitrary
number of copies of the same thread, in our system it is
necessary to create a copy of a track to run another thread. This
metaphor is also less accurate, since concurrent execution of the
same code fragment is allowed in “real” programming.

On the positive side, it becomes possible to fully employ a
railroad metaphor, with locomotives instead of arrows, railroad
tracks instead of lines and other real-life structures instead of
abstract polygons (see Fig. 2).

III. CONCURRENT PROGRAMMING WITH RAILROADOBJECTS

A (concurrent) program in our system1 is represented as a
railroad network, where individual tracks correspond to possible
code execution paths. A locomotive with linked freight cars
represents an instruction pointer of a certain thread. As stated

1 Code-named “SemaphoreGame” at the time of writing.

above, train collisions are treated as resource access violation
errors.

Fig. 2. A level in SemaphoreGame.

In the current setup, it is presumed that the student is given
a certain “level” to solve. A level contains a predefined rail
network with one or more locomotive starting locations. Each
starting location is characterized with a locomotive color and a
list of items forming the initial train freight. When the level is
loaded, the system automatically creates a locomotive of the
corresponding color in each starting location and links one car
per freight item, thus forming trains.

The objective of each level is to complete delivery of certain
items to the predefined target locations (“warehouses”). While a
train can be loaded from the very start, it may also pick up items
on the go, and facilitate simple production chains, which may be
necessary to solve a level. The present system presumes the
student has to place control elements, such as semaphores, from
the given level-specific set. However, possible activities will
eventually be extended.

Fig. 3. List of level elements.

The complete list of currently supported level elements
includes (see Fig. 3):

• Rail tiles (including junctions).

• Starting points (1) (red/blue/yellow/green). Creates a
train of the specified color with the given number of
empty or freight-loaded cars. Freight items are specified
in starting point settings.

• Trains (2) (red/blue/yellow/green). Consist of a
locomotive and a fixed amount of train cars.

• Switches (3) (red/blue/yellow/green). Direct trains of the
given color to a certain junction exit.

• Acquire and Release semaphore buttons (4, 8). There
are several built-in semaphore objects in the game,
identifiable by their “suits” (Sun / Earth / Moon / Venus
/ Europa). The user can create acquire and release buttons
and mark them with any of these suits to connect them
with the corresponding (invisible) semaphore object. By
pressing the acquire button of an open semaphore, a
locomotive closes boom barriers of this button and all
other buttons of the same suit. Likewise, pressing any
release button will open all boom barriers located next to
the same-suited acquire buttons.

• Factories (5). Each factory can be associated with up to
four railroad platforms. A platform can be of a “In type”
(will provide an item to a passing train) or of a “Out type”
(will accept an item from a passing train). While a factory
may contain a supply of several different items, each
platform specializes in one item type only. In addition to
its initial supply configuration, a factory may have an
associated “production rule”, which shows how to obtain
a certain item from a combination of other items. Once
the necessary combination is available, the rule is
applied. Each factory’s storage capacity is predefined; if
it is exceeded, the user fails the level.

• In and Out platforms (6, 7). Each In and Out platform
can operate in “normal” and “strict” modes. An Out
platform operating in a normal mode will ignore a
passing train if it does not contain a desired item, while
in a strict mode it will cause an error. A In platform in a
normal mode will similarly ignore a passing train if no
item can be offered; an In platform in a strict mode will
suspend the train until an item is available.

IV. EXAMPLE PROBLEMS

In this section, we will demonstrate the previously outlined
principles using two simple problems: the critical section
problem and the ordered execution problem.

A critical section is a mechanism used to restrict concurrent
access to a shared resource when it is undesirable for a certain
reason. For example, concurrent writing to the same file might
result in inconsistent file content. A critical section (typically
implemented with a binary semaphore) ensures exclusive access
to a resource.

 In our case, a shared resource to be protected can be
visualized as a rail segment where two locomotives may collide
as shown in Fig. 4 (1). The task of a student is to ensure safe
delivery of several items from the left In platform (2) to the left
Out platform (3) and from the right In platform (4) to the right
Out platform (5). Switches ensure that each train is moving in a
circular pattern. Initially the level has no control elements, so a
running program will eventually end in a crash. The student’s
task is to place acquire and release buttons (of same “Sun”
semaphore object) like shown in Fig. 4 (6) to protect a shared
road segment.

Fig. 4. Level with a critical section.

In ordered execution problem, the task of the user is to
ensure that certain operations are performed only after certain
other operations are complete. For example, in concurrent merge
sort, two halves of an array are sorted concurrently first, and then
are merged to form the resulting array.

This scenario can be represented in our system as follows. A
factory needs two different items (an apple and a bottle)
delivered to the Out platforms 1 and 2 to produce a resulting
item (a bottle of juice) at the In platform 3. This item needs to
be delivered to the In platform in order to complete the level.
The blue train thus has to wait until the resulting item is
produced before proceeding to the final In platform. This can be
achieved, for example, by employing two semaphore objects
(see Fig. 5).

V. SIMULATION AND MODEL CHECKING

One of key design questions for us was whether to pursue
some variation of model checking capability. The purpose of a
model checker is to prove that the given code satisfies certain
desirable properties and does not exhibit undesirable behavior.

For example, a model checker can ensure that the code never
deadlocks (i.e., the processes never block each other, causing the
program to halt) or that it always produces the same result, not
being affected by race condition. Practical model checking
instruments, such as SPIN [13], implement advanced inference
engines, and usually require the use of specialized programming
languages or visual formalisms.

Parallel aims to provide basic model checking functionality,
which identifies specific situations where student-submitted
code fails. The ability of a model checker to find even unlikely
failure scenarios makes it an attractive complimentary tool for
teaching concurrency.

However, our experience with SPIN makes us believe that it
would be difficult to implement comparable functionality for
our system. Conditions like non-progression or starvation are
not easy to check without reliance on formal and explicit user-

specified properties, which might get more complicated as we
implement new control elements and capabilities.

Fig. 5. Level with an ordered execution problem.

On the other hand, the example of SpaceChem [14] makes
us believe that an error can be identified if we accept a solution
only after performing a large (hundreds) number of tests.
Therefore, the present version of the system implements testing
by simulation: each locomotive proceeds from its starting point
at a random speed, and if several directions are allowed at a
junction, a random option is chosen.

Fig. 6. Tile Palette with rail pieces.

VI. DISCUSSION AND CONCLUSION

Currently, our system is aimed at university students
enrolled in Concurrent and Distributed Systems course. At the
present stage of development, the system contains 12 levels,
corresponding to realistic problems of concurrent programming.
The levels can be authored with a customized Unity tile editor.
Control objects are represented with prefabs, having fine-
tunable properties. This setup is acceptable for authoring levels,
but more restricted student-oriented editing capabilities are
necessary to specify the list of available items for each level.

While the examples above demonstrate quite basic tasks, we
are able to represent more complex scenarios, such as producer-
consumer problem with a fixed buffer size. In these exercises, it
might also be necessary to require a certain degree of efficiency
in student solutions, i.e., to make sure that the benefits of
parallelism are properly exploited. This functionality is planned.

Our early experiments show that the chosen approach is
viable and worthy of further investigation. Its strong advantage
lies in easy representation of concurrent program elements with
real-life railroad objects, making exercises intuitively
comprehensible. While the railroad metaphor has flaws, it is
rooted in tradition that goes back to Dijkstra’s semaphores [15]
and is actually employed at relevant courses [12], [16].
However, further classroom evaluation is needed to understand
how well the game knowledge translates back to the real world.

REFERENCES

[1] G. Hein, Constructivist learning theory. Institute for Inquiry, 1991.

[Online]. Available:

https://www.exploratorium.edu/education/ifi/constructivist-learning

[2] J. Hernandez-Serrano, I. Choi, and D. H. Jonassen, “Integrating

constructivism and learning technologies,” Integrated and holistic
perspectives on learning, instruction and technology: Understanding

complexity, pp. 103–128, 2000.

[3] M. Ben-Ari, “Constructivism in Computer Science Education,”
Journal of Computers in Mathematics and Science Teaching, vol. 20,

no. 1, pp. 45–73, 2001.

[4] M. Resnick et al., “Scratch: Programming for All,” Commun. ACM,
vol. 52, no. 11, pp. 60–67, 2009, doi: 10.1145/1592761.1592779.

[5] M. Ben-Ari et al., “A decade of research and development on program

animation: The Jeliot experience,” Journal of Visual Languages &
Computing, vol. 22, no. 5, pp. 375–384, 2011.

[6] Y. B.-D. Kolikant, “Learning concurrency as an entry point to the

community of computer science practitioners,” Journal of Computers
in Mathematics and Science Teaching, vol. 23, no. 1, pp. 21–46, 2004.

[7] M. Armoni and M. Ben-Ari, “The concept of nondeterminism: its

development and implications for teaching,” ACM SIGCSE Bulletin,
vol. 41, no. 2, pp. 141–160, 2009.

[8] H. Sutter, “The free lunch is over: A fundamental turn toward

concurrency in software,” Dr. Dobb’s journal, vol. 30, no. 3, pp. 202–
210, 2005.

[9] J. Zhu et al., “Programming in game space: how to represent parallel
programming concepts in an educational game,” in Proceedings of the

14th International Conference on the Foundations of Digital Games,

San Luis Obispo California USA: ACM, Aug. 2019, pp. 1–10. doi:
10.1145/3337722.3337749.

[10] E. Buzek and M. Kruliš, “An entertaining approach to parallel

programming education,” in 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), IEEE,

2018, pp. 340–346.

[11] P. Hudeček and M. Pokorný, “The Deadlock Empire: Slay dragons,
master concurrency.” https://deadlockempire.github.io

[12] R. Marmorstein, “Teaching semaphores using... semaphores,” Journal

of Computing Sciences in Colleges, vol. 30, no. 3, pp. 117–125, 2015.
[13] G. J. Holzmann, “The model checker SPIN,” IEEE Transactions on

software engineering, vol. 23, no. 5, pp. 279–295, 1997.

[14] M. Scott, “SpaceChem,” 2019.
[15] T. K. Astarte, “From Monitors to Monitors: A Primitive History,”

Minds & Machines, Apr. 2023, doi: 10.1007/s11023-023-09632-2.

[16] J. Lönnberg, “Understanding students’ errors in concurrent
programming,” Licentiate’s thesis, Helsinki University of Technology,

2009.

