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Abstract—Concurrent and distributed programming is 

challenging to teach and learn. It requires the students to 

understand complex concepts like semaphores, nondeterminism, 

race condition, and more. In this paper, we present a 

supplementary learning environment in the form of a 2D puzzle 

game, based on an easy-to-understand railroad metaphor. The 

game environment is designed to be fun and engaging as well as 

capable of representing typical problems, found in the concurrent 

and distributed programming curriculum. Initial experiences with 

this work-in-progress system demonstrate the feasibility of the 

chosen approach. 
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I. INTRODUCTION 

According to the currently dominant constructivist theory of 
education, students learn by actively constructing knowledge in 
their minds rather than by merely absorbing it from learning 
materials [1]. Therefore, one of the challenges of teaching is to 
encourage forming adequate mental models of a problem 
domain, which form in a student’s mind during particular 
learning activities (such as exploring, visualizing, 
experimenting, etc. [2]). Within this paradigm, learning is 
considered an iterative process, resulting in gradual 
reconsiderations and refinements of existing mental models. 

Apparently, beginner computer science students lack such 
models [3]. While one does need to be knowledgeable in physics 
to throw a ball accurately or know any linguistics to be able to 
speak, achieving programming skills without an effective 
mental model of a computer is unlikely. Therefore, much effort 
is usually dedicated to form adequate models, for example, by 
discussing real-world metaphors and employing visualizations. 
This approach, however, also has flaws: inaccurate (albeit easy 
to understand) metaphors lead to various misconceptions. For 
instance, a commonly employed conceptualization of a variable 
as a “box” make some students believe that a value is “removed” 
from a variable when assigned to another variable or that a 
variable might contain two values simultaneously [3]. 

Nevertheless, interactive models and visualizations play an 
important role in basic computer science education, and systems 
like Scratch [4] and Jeliot [5] are commonly used in practice. 
Visualizations and simulations can be useful even at more 
advanced levels of study, where the students deal with more 
complex programming concepts. 

A considerable mental effort is needed to conceptualize 
concurrent and distributed computing, involving 
nondeterministic behavior [6], [7]. According to Sutter, “the 
vast majority of programmers today don’t grok concurrency”, 
which becomes a pressing issue in a world where CPU power 
growth is mostly achieved via parallelization [8]. These factors 
motivate the researchers to create specialized educational tools, 
targeted at teaching concurrent, parallel, and distributed 
programming. 

The present paper introduces our contribution to this effort. 
We strive to create an interactive game-like environment, able 
to represent most classic concepts and problems of concurrency, 
found in typical textbooks. Our motivation is to create an 
intuitively comprehensible, fun, and appealing game world. We 
attempt to match every visual element of the system with a 
certain theoretical concept, enabling easy transfer of knowledge 
obtained inside the game back into the real world. 

Being a work in progress, our system still lacks much of the 
intended functionality and requires a thorough evaluation, but at 
the present stage it is already able to represent many typical 
textbook problems and can demonstrate the benefits and 
tradeoffs of our approach. 

II. MOTIVATION AND RELATED WORKS 

A work by Zhu et al. [9] provides a good overview of games 
and game-like systems that can be used to teach concurrency. 
Although this list is not extensive, it illustrates well the range of 
commonly used approaches, and explains the shortcomings of 
specific systems that motivated the authors to create their own 
game environment. While all examined educational systems 
introduce certain aspects of concurrency, it seems that none of 
them was designed to “fully capture all the key parallel 
programming concepts” — the goal Zhu et al. [9] aim to 
achieve. 

Apparently, this somewhat unsatisfactory situation is 
explained by the different scopes of existing systems. For 
example, Parapple [10] does not provide tools for representing 
synchronization primitives like semaphores, but it implements a 
“real” text-based concurrent programming language and 
introduces the idea of a system scheduler. In The Deadlock 
Empire [11], the player takes control of the scheduler rather than 
designs concurrent programs. Thus, while there is no single 
definitive instrument for teaching concurrency, the teacher can 
rely on a variety of tools covering individual topics, or even 
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employ real computer games that happen to implement 
concurrent processes, such as OpenTTD [12]. 

Our own goals are consistent with the ones stated in Zhu et 
al. [9], which leads to significant similarities in design between 
our system and their game Parallel. We wanted to have a 
supplementary learning environment that can be used at a 
concurrent and distributed programming course in combination 
with regular lecture material. Thus, we needed the coverage of 
classic concepts like semaphores, nondeterminism, race 
condition, etc. as well as clear visual metaphors that can be 
easily matched with textbook concepts.  

 

Fig. 1. A level in Parallel game. 

The challenges of designing visual metaphors for a 
concurrent program are seen where our approaches diverge. In 
Parallel, each thread in a concurrent program is represented by 
a “track” (rendered as a multi-segment line), with an arrow-like 
“instruction pointer” (see Fig. 1). The rationale for this design is 
to represent parallel execution of the same piece of code: 
multiple arrows move along the same track without any 
interaction with one another. However, this decision forced the 
authors to adopt a very abstract visual language of buttons, 
arrows and polygons, because “abstract arrows represent 
computer threads better than real-world physical entities, like 
trains, because the latter create expectations (e.g., trains crash 
when colliding) that do not map to how threads behave” [9]. 

In our system, we opted for an alternative trade-off: tracks 
are not shareable, so collisions between “instruction pointers” 
are treated as errors. One obvious disadvantage of this design is 
the lack of scalability: while in Parallel one can run an arbitrary 
number of copies of the same thread, in our system it is 
necessary to create a copy of a track to run another thread. This 
metaphor is also less accurate, since concurrent execution of the 
same code fragment is allowed in “real” programming. 

On the positive side, it becomes possible to fully employ a 
railroad metaphor, with locomotives instead of arrows, railroad 
tracks instead of lines and other real-life structures instead of 
abstract polygons (see Fig. 2). 

III. CONCURRENT PROGRAMMING WITH RAILROADOBJECTS 

A (concurrent) program in our system1 is represented as a 
railroad network, where individual tracks correspond to possible 
code execution paths. A locomotive with linked freight cars 
represents an instruction pointer of a certain thread. As stated 

 
1 Code-named “SemaphoreGame” at the time of writing. 

above, train collisions are treated as resource access violation 
errors. 

 

Fig. 2. A level in SemaphoreGame. 

In the current setup, it is presumed that the student is given 
a certain “level” to solve. A level contains a predefined rail 
network with one or more locomotive starting locations. Each 
starting location is characterized with a locomotive color and a 
list of items forming the initial train freight. When the level is 
loaded, the system automatically creates a locomotive of the 
corresponding color in each starting location and links one car 
per freight item, thus forming trains. 

The objective of each level is to complete delivery of certain 
items to the predefined target locations (“warehouses”). While a 
train can be loaded from the very start, it may also pick up items 
on the go, and facilitate simple production chains, which may be 
necessary to solve a level. The present system presumes the 
student has to place control elements, such as semaphores, from 
the given level-specific set. However, possible activities will 
eventually be extended.  

 

Fig. 3. List of level elements. 

The complete list of currently supported level elements 
includes (see  Fig. 3): 

• Rail tiles (including junctions). 

• Starting points (1) (red/blue/yellow/green). Creates a 
train of the specified color with the given number of 
empty or freight-loaded cars. Freight items are specified 
in starting point settings. 



• Trains (2) (red/blue/yellow/green). Consist of a 
locomotive and a fixed amount of train cars. 

• Switches (3) (red/blue/yellow/green). Direct trains of the 
given color to a certain junction exit. 

• Acquire and Release semaphore buttons (4, 8). There 
are several built-in semaphore objects in the game, 
identifiable by their “suits” (Sun / Earth / Moon / Venus 
/ Europa). The user can create acquire and release buttons 
and mark them with any of these suits to connect them 
with the corresponding (invisible) semaphore object. By 
pressing the acquire button of an open semaphore, a 
locomotive closes boom barriers of this button and all 
other buttons of the same suit. Likewise, pressing any 
release button will open all boom barriers located next to 
the same-suited acquire buttons. 

• Factories (5). Each factory can be associated with up to 
four railroad platforms. A platform can be of a “In type” 
(will provide an item to a passing train) or of a “Out type” 
(will accept an item from a passing train). While a factory 
may contain a supply of several different items, each 
platform specializes in one item type only. In addition to 
its initial supply configuration, a factory may have an 
associated “production rule”, which shows how to obtain 
a certain item from a combination of other items. Once 
the necessary combination is available, the rule is 
applied. Each factory’s storage capacity is predefined; if 
it is exceeded, the user fails the level. 

• In and Out platforms (6, 7). Each In and Out platform 
can operate in “normal” and “strict” modes. An Out 
platform operating in a normal mode will ignore a 
passing train if it does not contain a desired item, while 
in a strict mode it will cause an error. A In platform in a 
normal mode will similarly ignore a passing train if no 
item can be offered; an In platform in a strict mode will 
suspend the train until an item is available. 

IV. EXAMPLE PROBLEMS 

In this section, we will demonstrate the previously outlined 
principles using two simple problems: the critical section 
problem and the ordered execution problem. 

A critical section is a mechanism used to restrict concurrent 
access to a shared resource when it is undesirable for a certain 
reason. For example, concurrent writing to the same file might 
result in inconsistent file content. A critical section (typically 
implemented with a binary semaphore) ensures exclusive access 
to a resource. 

 In our case, a shared resource to be protected can be 
visualized as a rail segment where two locomotives may collide 
as shown in Fig. 4 (1). The task of a student is to ensure safe 
delivery of several items from the left In platform (2) to the left 
Out platform (3) and from the right In platform (4) to the right 
Out platform (5). Switches ensure that each train is moving in a 
circular pattern. Initially the level has no control elements, so a 
running program will eventually end in a crash. The student’s 
task is to place acquire and release buttons (of same “Sun” 
semaphore object) like shown in  Fig. 4 (6) to protect a shared 
road segment. 

 

Fig. 4. Level with a critical section. 

In ordered execution problem, the task of the user is to 
ensure that certain operations are performed only after certain 
other operations are complete. For example, in concurrent merge 
sort, two halves of an array are sorted concurrently first, and then 
are merged to form the resulting array. 

This scenario can be represented in our system as follows. A 
factory needs two different items (an apple and a bottle) 
delivered to the Out platforms 1 and 2 to produce a resulting 
item (a bottle of juice) at the In platform 3. This item needs to 
be delivered to the In platform in order to complete the level. 
The blue train thus has to wait until the resulting item is 
produced before proceeding to the final In platform. This can be 
achieved, for example, by employing two semaphore objects 
(see  Fig. 5). 

V. SIMULATION AND MODEL CHECKING 

One of key design questions for us was whether to pursue 
some variation of model checking capability. The purpose of a 
model checker is to prove that the given code satisfies certain 
desirable properties and does not exhibit undesirable behavior. 

For example, a model checker can ensure that the code never 
deadlocks (i.e., the processes never block each other, causing the 
program to halt) or that it always produces the same result, not 
being affected by race condition. Practical model checking 
instruments, such as SPIN [13], implement advanced inference 
engines, and usually require the use of specialized programming 
languages or visual formalisms. 

Parallel aims to provide basic model checking functionality, 
which identifies specific situations where student-submitted 
code fails. The ability of a model checker to find even unlikely 
failure scenarios makes it an attractive complimentary tool for 
teaching concurrency. 

However, our experience with SPIN makes us believe that it 
would be difficult to implement comparable functionality for 
our system. Conditions like non-progression or starvation are 
not easy to check without reliance on formal and explicit user-



specified properties, which might get more complicated as we 
implement new control elements and capabilities. 

 

Fig. 5. Level with an ordered execution problem. 

On the other hand, the example of SpaceChem [14] makes 
us believe that an error can be identified if we accept a solution 
only after performing a large (hundreds) number of tests. 
Therefore, the present version of the system implements testing 
by simulation: each locomotive proceeds from its starting point 
at a random speed, and if several directions are allowed at a 
junction, a random option is chosen. 

 

Fig. 6. Tile Palette with rail pieces. 

VI. DISCUSSION AND CONCLUSION 

Currently, our system is aimed at university students 
enrolled in Concurrent and Distributed Systems course. At the 
present stage of development, the system contains 12 levels, 
corresponding to realistic problems of concurrent programming. 
The levels can be authored with a customized Unity tile editor. 
Control objects are represented with prefabs, having fine-
tunable properties. This setup is acceptable for authoring levels, 
but more restricted student-oriented editing capabilities are 
necessary to specify the list of available items for each level. 

While the examples above demonstrate quite basic tasks, we 
are able to represent more complex scenarios, such as producer-
consumer problem with a fixed buffer size. In these exercises, it 
might also be necessary to require a certain degree of efficiency 
in student solutions, i.e., to make sure that the benefits of 
parallelism are properly exploited. This functionality is planned. 

Our early experiments show that the chosen approach is 
viable and worthy of further investigation. Its strong advantage 
lies in easy representation of concurrent program elements with 
real-life railroad objects, making exercises intuitively 
comprehensible. While the railroad metaphor has flaws, it is 
rooted in tradition that goes back to Dijkstra’s semaphores [15] 
and is actually employed at relevant courses [12], [16]. 
However, further classroom evaluation is needed to understand 
how well the game knowledge translates back to the real world. 
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