
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

Information Processing Letters 100 (2006) 91–96

www.elsevier.com/locate/ipl

Efficient parameterized string matching

Kimmo Fredriksson ∗,1, Maxim Mozgovoy

Department of Computer Science, University of Joensuu, P.O. Box 111, 80101 Joensuu, Finland

Received 13 February 2006; received in revised form 1 June 2006; accepted 22 June 2006

Available online 2 August 2006

Communicated by S.E. Hambrusch

Abstract

In parameterized string matching the pattern P matches a substring t of the text T if there exist a bijective mapping from the
symbols of P to the symbols of t . We give simple and practical algorithms for finding all such pattern occurrences in sublinear
time on average. The algorithms work for a single and multiple patterns.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Algorithms; Parameterized string matching; Bit-parallelism; Suffix automaton

1. Introduction

In traditional string matching problem one is inter-
ested in finding the occurrences of a pattern P from a
text T , where P and T are strings over some alpha-
bet Σ . Many variations of this basic problem setting
exist, such as searching multiple patterns simultane-
ously, and/or allowing some limited number of errors
in the matches, and indexed searching, where T can
be preprocessed to allow efficient queries of P . See,
e.g., [13,16,11] for an overview and references. Yet an-
other variation is parameterized matching [6]. In this
variant we have two disjoint alphabets, Σ for fixed sym-
bols, and Λ for parameter symbols. In this setting we
search parameterized occurrences of P , where the sym-
bols from Σ must match exactly, while the symbols
in Λ can be also renamed. This problem has important

* Corresponding author.
E-mail address: kfredrik@cs.joensuu.fi (K. Fredriksson).

1 Supported by the Academy of Finland, grant 202281.

applications, e.g., in software maintenance and plagia-
rism detection [6], where the symbols of the strings
can be, e.g., reserved words and identifier or parame-
ter names of some (possibly tokenized) programming
language source code. Hence one might be interested in
finding code snippets that are the same up to some sys-
tematical variable renaming.

A myriad of algorithms have been developed for the
classical problem, but only a few exist for parameter-
ized matching. In [5] exact on-line matching algorithm
for a single pattern was developed. This algorithm runs
in O(n log min(m, |Λ|)) worst case time. However, the
average case time was not analyzed. Another algorithm
was given in [2], that achieves the same time bound
both in average and worst cases. In the same paper it
was shown that this is optimal, and that in particular
the log factor cannot be avoided for general alphabets.
However, for fixed alphabets we can avoid it, as shown
in the present paper. In [14] it was shown that multiple
patterns can be searched in O(n log(|Σ | + |Λ|) + occ)
time, where occ is the number of occurrences of all the
patterns. Other algorithms exist for the off-line problem

0020-0190/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2006.06.009

Aut
ho

r's

pe
rs

on
al

co

py

92 K. Fredriksson, M. Mozgovoy / Information Processing Letters 100 (2006) 91–96

[6,9]. In this paper we develop algorithms that under
mild assumptions run in optimal time on average, are
simple to implement and perform well in practice. Our
algorithms are based on generalizing the well-known
Shift-Or [4] and Backward DAWG (Directed Acyclic
Word Graph) Matching algorithms [7,10]. Our algo-
rithms generalize for the multipattern matching as well.

2. Preliminaries

We use the following notation. The pattern is P [0 . . .

m − 1] and the text is T [0 . . . n − 1]. The symbols
of P and T are taken from two disjoint finite alpha-
bets Σ of size σ and Λ of size λ. The pattern P

matches the text substring T [j . . . j + m − 1], iff for
all i ∈ {0 . . .m − 1} it holds that Mj(P [i]) = T [j + i],
where Mj(·) is one-to-one mapping on Σ ∪ Λ. More-
over, the mapping must be identity on Σ , but on Λ

can be different for each text position j . For exam-
ple, assume that Σ = {A,B}, Λ = {X,Y,Z} and P =
AAZYZABXYZAX. Then P matches the text substring
AAZYZABXYZAX with identity mapping, and AAXYX-
ABZYXAZ with parameter mapping X �→ Z, Y �→ Y, and
Z �→ X. This mapping is simple with prev encoding [6].
For a string S, prev(S) maps all parameter symbols s in
S to a non-negative integer p, where p is the number
of symbols since the last occurrence of symbol s in S.
The first occurrence of the parameter is encoded as 0.
If s belongs to Σ , it is mapped to itself (s). For our ex-
ample pattern, prev(P) = AA002AB055A4. This is the
same as the encoding for the two example substrings,
i.e., prev(AAZYZABXYZAX) = prev(AAXYXABZYXAZ).
Hence the problem is reduced to exact string match-
ing, where we match prev(P) against prev(T [j . . . j +
m − 1]) for all j = 0 . . . n − m. The string prev(S) can
be easily computed in linear time for constant size al-
phabets. The only remaining problem then is how to
maintain prev(T [j . . . j + m − 1]) (and any algorithmic
parameters that depend on it) efficiently as j increases.
The key is the following lemma [6].

Lemma 1. Let S′ = prev(S). Then for S′′ = prev(S[j . . .

j + m − 1]) for all i such that S[i] ∈ Λ it holds that
S′′[i] = S′[i] iff S′[i] < m. Otherwise S′′[i] = 0.

We are now ready to present our algorithms. For sim-
plicity we assume that Σ and Λ are finite constant size
alphabets. For large alphabets all our time bounds hold
if we multiply them by O(log(m)).

3. Parameterized bit-parallel matching

In this section we present bit-parallel approach
for parameterized matching, based in Shift-Or algo-
rithm [4]. For the bit-parallel operations we adopt the
following notation. A machine word has w bits, num-
bered from the least significant bit to the most sig-
nificant bit. We use C-like notation for the bit-wise
operations of words; & is bit-wise and, | is or, ∧ is
xor, ∼ negates all bits,
 is shift to left, and � shift
to right, both with zero padding. For brevity, we make
the assumption that m � w, unless explicitly stated oth-
erwise.

The standard Shift-Or automaton is constructed as
follows. The automaton has states 0,1, . . . ,m. The
state 0 is the initial state, state m is the final (accept-
ing) state, and for i = 0, . . . ,m − 1 there is a transition
from the state i to the state i + 1 for character P [i].
In addition, there is a transition for every c ∈ Σ from
the initial state to the initial state, which makes the au-
tomaton nondeterministic. The preprocessing algorithm
builds a table B , having one bit-mask entry for each
c ∈ Σ . For 0 � i � m − 1, the mask B[c] has ith bit set
to 0, iff P [i] = c. These correspond to the transitions
of the implicit automaton. That is, if the bit i in B[c]
is 0, then there is a transition from the state i to the state
i + 1 with character c. The bit-vector D encodes the
states of the automaton. The ith bit of the state vector
is set to 0, iff the state i is active, i.e., the pattern pre-
fix P [0 . . . i] matches the current text position. Initially
each bit is set to 1. For each text symbol c the vector
is updated by D ← (D
 1) | B[c]. This simulates all
the possible transitions of the nondeterministic automa-
ton in a single step. If after the update the mth bit of d

is zero, then there is an occurrence of P . If m � w, then
the algorithm runs in time O(n).

In order to generalize Shift-Or for parameterized
matching, we must take care of three things:

(i) P must be encoded with prev;
(ii) prev(T [j . . . j + m − 1]) must be maintained in

O(1) time per text position;
(iii) the table B must be built so that all parameterized

pattern prefixes can be searched in parallel.

The items (i) and (ii) are trivial, while (iii) is a bit more
tricky. To compute prev(P) we just maintain an array
prv[c] that for each symbol c ∈ Λ stores the position
of its last occurrence. Then prev(P) can be computed
in O(m) time by a linear scan over P . To simplify in-
dexing in the array B , we assume that Σ = {0 . . . σ −1},
and map the prev encoded parameter offsets into the

Aut
ho

r's

pe
rs

on
al

co

py

K. Fredriksson, M. Mozgovoy / Information Processing Letters 100 (2006) 91–96 93

1 P ′ ← Encode(P,m)
2 for i ← 0 to σ + m − 1 do B[i] ← ∼0 � (w − m)

3 for i ← 0 to λ − 1 do prv[σ + i] ← −∞
4 for i ← 0 to m − 1 do B[P ′[i]] ← B[P ′[i]]&∼(1
 i)

5 for i ← 1 to m − 1 do B[σ + i] ← B[σ + i]& (B[σ] | (∼0
 i))

6 D ← ∼0; mm ← 1
 (m − 1)

7 for i ← 0 to n − 1 do
8 c ← T [i]
9 if c ∈ Λ then

10 c ← i − prv[T [i]] + σ

11 if c > σ + m − 1 then c ← σ

12 prv[T [i]] ← i

13 D ← (D
 1) | B[c]
14 if (D &mm) �= mm then report match

Algorithm 1. P-Shift-Or(T ,n,P,m).

range {σ . . . σ +m−1}. The text is encoded in the same
way, but the encoding is embedded into the search code.
The only difference is that we apply Lemma 1 to reset
offsets that are greater than m − 1 (i.e., offsets that are
for parameters that are outside of the current text win-
dow) to zero. Otherwise the search algorithm is exactly
the same as for normal Shift-Or.

The tricky part is the preprocessing phase. We de-
note the prev encoded pattern as P ′. At first P ′ is pre-
processed just as P in the normal Shift-Or algorithm.
This includes the parameter offsets, which are handled
as any other symbol. However, this is not enough. We
illustrate the problem by an example. Let P = XAXAX

and T = ZZAZAZAZ. In encoded forms these are P ′ =
0A2A2 and T ′ = 01A2A2A2. Clearly P has two (over-
lapping) parameterized matches in T . However, P ′ does
not match in T ′ at all. The problem is that as the algo-
rithm searches all the m prefixes of the pattern in paral-
lel, then some non-zero encoded offset p (of some text
symbol) should be interpreted as zero in some cases.
These prefixes have lengths from 1 to m. To success-
fully apply Lemma 1 we should be able to apply it in
parallel to all m substrings. In other words, any non-
zero parameter offset p must be treated as zero for all
pattern prefixes whose length h is less than p, since by
Lemma 1 the parameter with offset p is dropped out of
the window of length h. This problem can be solved as
follows. The bit-vector B[σ + i] is the match vector for
offset i. If the j bit of this vector is zero, it means by
definition that P ′[j] = i. If any of the i least significant
bits of B[σ] are zero, we clear the corresponding bits of
B[σ + i] as well. More precisely, we set

B[σ + i] ← B[σ + i]&
(
B[σ] | (∼ 0
 i)

)
.

This means that the offset i is treated as offset i for pre-
fixes whose length is greater than i, and as zero for the
shorter prefixes, satisfying the condition of Lemma 1.

Algorithm 1 gives the complete code. The algorithm
clearly runs in O(n�m/w�) worst case time. For long
patterns one can search just a length w prefix of the
pattern, and verify with the whole pattern whenever
the prefix matches, giving O(n) average time. However,
note that a long variable name (string) is just one symbol
(token) in typical applications, hence w bits is usually
plenty. Finally, note that for unbounded alphabets we
cannot use arrays for prv and B . We can use balanced
trees instead, but then the time bounds must be multi-
plied by O(log(m)).

Standard Shift-Or can be improved to run in opti-
mal O(n logσ (m)/m) average time [12]. The algorithm
takes a parameter q , and from the original pattern gen-
erates a set P of q new patterns P = {P 0, . . . ,P q−1},
each of length m′ = �m/q�, where P j [i] = P [j + iq]
for i = 0 . . . �m/q� − 1. In other words, the algorithm
generates q different alignments of the original pat-
tern P , each alignment containing only every qth char-
acter. The total length of the patterns in P is q�m/q� �
m. For example, if P = ABCDEF and q = 3, then P 0 =
AD, P 1 = BE and P 2 = CF. Assume now that P occurs
at T [i..i + m − 1]. From the definition of P j it directly
follows that P j [h] = T [i + j +hq], where j = i mod q

and h = 0 . . .m′ − 1. This means that we can use the
setP as a filter for the pattern P , and that the filter needs
only to scan every qth character of T . All the patterns
must be searched simultaneously. Whenever an occur-
rence of P j is found in the text, we must verify if P

also occurs, with the corresponding alignment.
This method clearly works for parameterized match-

ing as well. We generate the set of patterns P , and also
prev-encode them. In the search phase the text is also en-
coded on-line, encoding only every qth symbol, but as-
suming that they are consecutive. In other words, every
parameter offset is effectively divided by q to agree
with the encoding of the patterns. Finally, the verifica-

Aut
ho

r's

pe
rs

on
al

co

py

94 K. Fredriksson, M. Mozgovoy / Information Processing Letters 100 (2006) 91–96

tion phase checks if prev(P) = prev(T [v . . . v+m−1]),
where v is the starting position of a potential match.

The search of the pattern set can be done using the
parameterized Shift-Or algorithm. This is possible by
concatenating and packing the set of patterns into a
single machine word [12,4]. Another alternative is to
use the parameterized version [14] of Aho–Corasick
algorithm [1]. Both lead to the same average case run-
ning time, but the latter does not require that m � w,
as it is not based on bit-parallelism. We denote the
Shift-Or based algorithm as PFSO. The filtering time
is O(n/q). The filter searches the exact matches of q

patterns, each of length �m/q�. We are not able to an-
alyze the exact effect of the parameter alphabet to the
probability that two randomly picked symbols match.
However, if we assume that a constant fraction ε of the
pattern positions are randomly selected to have a ran-
domly selected symbol from Σ , then the probability that
P j occurs in a given text position is O((1/σ)�εm/q�).
A brute force verification cost is in the worst case O(m)

(but only O(1) on average). To keep the total time at
most O(n/q) on average, we select q so that n/q =
mn/σεm/q , i.e., q = O(m/ logσ (m)). The total average
time is therefore O(n logσ (m)/m). This is optimal [17]
within a constant factor.

Finally, note that this method works for searching
r patterns simultaneously. The only difference is that
we search q pieces of all the r patterns simultaneously,
and verify the corresponding pattern whenever any of
the rq pieces match. Redoing the analysis we obtain
that the O(log(m)) factor is replaced with O(log(rm)).
In this case we prefer using the Aho–Corasick based al-
gorithm [14], since the number of patterns it can handle
does not depend on w.

4. Parameterized backward trie matching

We now present an algorithm based on Backward
DAWG Matching (BDM) [7,10]. BDM is optimal on
average, i.e., it runs in O(n logσ (m)/m) average time.
We call our parameterized version of BDM as Para-
meterized Backward Trie Matching, PBTM, for short.
In the preprocessing phase PBTM builds a trie for the
encoded suffixes of the reversed pattern. A trie is a
rooted tree, where each edge is labeled by a symbol.
The edges of the path from the root node to some
leaf node then spell out the string of symbols stored
into that leaf. The pattern in reverse is denoted by P r .
The set of its suffixes is {P r [i . . .m − 1] | 0 � i < m}
(note that this corresponds to the prefixes of the orig-
inal pattern). Each suffix is then encoded with prev,
and the encoded strings are inserted into a trie. For

example, if P = AZBZXBXY, then the set of stored
strings is {00b20b2a,0b20b2a, b00b2a,00b2a,0b2a,

b0a,0a, a}, The trie allows efficient searching of any
pattern substring that occurs in P r . A brute force al-
gorithm for this takes O(m2) time, but can be im-
proved to O(m) by using efficient suffix tree cons-
truction algorithms for parameterized strings [9]. An
alternative to the trie is suffix array [15], i.e., the
trie can be replaced with sorted array of prev
encoded suffixes of the reverse pattern. For the abo-
ve example string, P =AZBZXBXY, we create an array
A = {00b20b2a,00b2a,0a,0b20b2a,0b2a, a, b00b2a,

b0a}. Following an edge in the trie can then be sim-
ulated by a binary search in the array. We call the
resulting algorithm PBAM. The benefit is that the ar-
ray based method is easy to implement space efficiently
since only one pointer is needed for each suffix.

We now show how this can be used for efficient
search. Assume that we are scanning the text window
T [i . . . i + m − 1] backwards. The invariant is that all
occurrences that start before the position i are already
reported. The text window is prev-encoded (backwards
as well) as we go, and the read substring of this window
is matched against the trie. This is continued as long
as the substring can be extended without a mismatch,
or we reach the beginning of the window. If the whole
window can be matched against the trie, then the pattern
occurs in that window. Whether the pattern matches or
not, some of the occurrences may still overlap with the
current window. However, in this case one of the suf-
fixes stored into the trie must match, since the reverse
suffixes are also the prefixes of the original pattern. The
algorithm remembers the longest such suffix, that is not
the whole pattern, found from the window. The window
is then shifted so that its starting position will become
aligned with the last symbol of that suffix. This is the
position of the next possible pattern occurrence. If the
length of that longest suffix was �, the next window to
be searched is T [i + m − � . . . i + m − 1 + m − �]. The
shifting technique is exactly the same independent of
whether or not the pattern occurs in the current win-
dow This process is repeated until the whole text is
scanned.

Some care must be taken to be able to do the encod-
ing of the text window in O(1) time per read symbol.
To achieve constant time per symbol we must use an
auxiliary array prv (as before) to store the position of
the last occurrence for each symbol. We cannot afford
to initialize the whole array for each window, so before
shifting the window we rescan the symbols just read in
the current window, and reinitialize the array only for

Aut
ho

r's

pe
rs

on
al

co

py

K. Fredriksson, M. Mozgovoy / Information Processing Letters 100 (2006) 91–96 95

1 root ← EncSTrie(P r)

2 for i ← 0 to λ − 1 do prv[σ + i] ← −∞
3 i ← 0
4 while i < n − m do
5 j ← m; shift ← m; u ← root
6 while u �= null do
7 c ← T [i + j − 1]
8 if c ∈ Λ then
9 c ← m − j − prv[T [i + j − 1]] + σ

10 if c > σ + m − 1 then c ← σ

11 prv[T [i + j − 1]] ← m − j

12 j ← j − 1
13 u ← child(u, c)

14 if u �= null AND issuffix(u) then
15 if j > 0 then shift ← j else report match
16 for k ← i + j to i + m − 1 do if T [k] ∈ Λ then prv[T [k]] ← −∞
17 i ← i + shift

Algorithm 2. PBTM(T ,n,P,m).

Fig. 1. Left: the search speed in 106 tokens/second. Right: the average shift and average number of tokens inspected in each window of length m.

those symbols. This ensures O(1) total time for each
symbol read. Algorithm 2 gives the code.

The average case running time of this algorithm de-
pends on how many symbols x are examined in each
window. Again, if we make the simplifying assump-
tion that a constant fraction of the pattern positions
are randomly selected to have a randomly selected
symbol from Σ , then the original analysis of BDM
holds for PBTM as well, and the average case run-
ning time is O(n logσ (m)/m). For general alphabets and
for the PBAM version the time must be multiplied by
O(log(m)). Finally, this algorithm can be easily modi-
fied to search r patterns simultaneously. Basically, if all
the patterns are of the same length, this generalization
requires just storing all the suffixes of all the patterns
into the same trie. This results in O(n logσ (rm)/m) av-
erage time. With modest additional complexity patterns
of different lengths can be handled as well in the same
way as with regular BDM [11].

5. Comparison

For a single pattern our only competitor [5] is based
on (Turbo) Boyer–Moore [8,10] algorithm. However,
BM-type algorithms are known to be clearly worse
than the more simple bit-parallel and suffix-automaton
based approaches [16], an this becomes more and more
clear as the pattern length increases. Moreover, BM-
type algorithms have poor performance when general-
ized for multiple string matching [16]. As for the multi-
ple matching, our only competitor [14] is the algorithm
based on Aho–Corasick automaton, but as detailed in
Section 3, we can use exactly their algorithm (even the
same implementation) as a fast filter to obtain (near) op-
timal average case time. Their worst case time can be
also preserved. Hence, their algorithm cannot beat ours.
We note that all our algorithms can be improved to take
only O(n) (or O(n log(rm)) for unbounded alphabets)
worst case time. PFSO can be combined with PSO (as

Aut
ho

r's

pe
rs

on
al

co

py

96 K. Fredriksson, M. Mozgovoy / Information Processing Letters 100 (2006) 91–96

in [12]) and PBTM with the algorithm in [14]. See also
[3,10] for similar techniques.

Our goals in this paper are two-folded. First, to de-
velop algorithms that have optimal average case running
time for both single and multiple patterns. All the previ-
ous results only prove optimal worst case time. Second,
to be practical, i.e., to develop algorithms that are sim-
ple to implement and have good average case time in
practice. We now show that our algorithms behave like
predicated, with realistic real world data.

5.1. Experimental results

We have implemented the algorithms in C++, and
compiled them with Borland C++ Builder 6. We per-
formed the experiments on the AMD Sempron 2600+
(1.88 GHz) machine with 768 MB RAM, running Win-
dows XP. A tokenized string of concatenated Java
source files (taken from various open source projects,
such as jPOS, smppapi, and TM4J) was used as a text
to be searched. The tokenization procedure (based on
JavaCC2 parser) converted an input file into a sequence
of two-byte codes, representing single characters, re-
served Java words and distinct identifiers. The initial
string had a size of 5.48 MB, and after encoding it con-
sisted of 1259799 tokens, including 51 reserved Java
words and 10213 unique identifiers. A set of 100 pat-
terns for each length reported was randomly extracted
from the input text. We report the average number of
tokens searched per second for each algorithm.

Fig. 1 summarizes the results. PSO denotes the ba-
sic parameterized shift-or algorithm, PFSO the fast pa-
rameterized shift-or, PBTM the parameterized back-
ward trie matching algorithm, and PBAM the suffix
array version of PBTM. For short patterns plain PSO
and PBTM give the best results. PSO is the fastest
for m < 8, and PBTM takes over until m = 16, and
PFSO dominates for longer patterns in case of opti-
mal q selection. For m ∈ {8,12,16,20,24,28,32} we
used q = {2,3,4,4,4,5,6}, respectively. For long pat-
terns PBTM suffers from the large alphabet size. In our
implementation we used arrays to implement the trie
nodes and for long patterns the trie requires a lot of ini-
tialization time and memory, not fitting into the CPU
cache. PBAM does not have this flaw, but the binary
search step needed for each accessed text symbol makes
it comparatively slow. We also experimented with the
multipattern version of PBAM, searching r = 100 pat-
terns simultaneously. The plot shows that while the raw
speed is reduced, the amortized speed per pattern is

2 http://javacc.dev.java.net/.

clearly better than for any of the single pattern match-
ing algorithms. The time also coincides nicely with the
theoretical curve O(n logσ (rm) log2(rm)/m), support-
ing our analysis. This is also clear given the right plot,
showing the average number of tokens inspected in each
text window, and the average shift for r = 1,10,100.
These behave like in random texts supporting our as-
sumptions in the analysis.

We have shown how two well-known algorithms,
namely Shift-Or and BDM, can be generalized for para-
meterized matching. The algorithms are easy to imple-
ment, and work well in practice.

References

[1] A.V. Aho, M.J. Corasick, Efficient string matching: an aid to bib-
liographic search, Comm. ACM 18 (6) (1975) 333–340.

[2] A. Amir, M. Farach, S. Muthukrishnan, Alphabet dependence
in parameterized matching, Inform. Process. Lett. 49 (3) (1994)
111–115.

[3] R.A. Baeza-Yates, String searching algorithms revisited, in: Pro-
ceedings of WADS’89, in: Lecture Notes in Computer Science,
vol. 382, Springer, Berlin, 1989, pp. 75–96.

[4] R.A. Baeza-Yates, G.H. Gonnet, A new approach to text search-
ing, Comm. ACM 35 (10) (1992) 74–82.

[5] B.S. Baker, Parameterized pattern matching by Boyer–Moore-
type algorithms, in: Proceedings of the 6th ACM–SIAM Annual
Symposium on Discrete Algorithms, San Francisco, CA, 1995,
pp. 541–550.

[6] B.S. Baker, Parameterized duplication in strings: algorithms and
an application to software maintenance, SIAM J. Comput. 26 (5)
(1997) 1343–1362.

[7] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M.T. Chen,
J. Seiferas, The smallest automaton recognizing the subwords of
a text, Theoret. Comput. Sci. 40 (1) (1985) 31–55.

[8] R.S. Boyer, J.S. Moore, A fast string searching algorithm,
Comm. ACM 20 (10) (1977) 762–772.

[9] R. Cole, R. Hariharan, Faster suffix tree construction with miss-
ing suffix links, in: Proceedings of ACM–STOC’00, Portland,
Oregon, 2000, pp. 407–415.

[10] M. Crochemore, A. Czumaj, L. Ga̧sieniec, S. Jarominek, T. Lec-
roq, W. Plandowski, W. Rytter, Speeding up two string matching
algorithms, Algorithmica 12 (4) (1994) 247–267.

[11] M. Crochemore, W. Rytter, Text Algorithms, Oxford University
Press, Oxford, 1994.

[12] K. Fredriksson, Sz. Grabowski, Practical and optimal string
matching, in: Proceedings of SPIRE’2005, in: Lecture Notes
in Computer Science, vol. 3772, Springer-Verlag, Berlin, 2005,
pp. 374–385.

[13] D. Gusfield, Algorithms on Strings, Trees and Sequences: Com-
puter Science and Computational Biology, Cambridge Univer-
sity Press, Cambridge, 1997.

[14] R.M. Idury, A.A. Schäffer, Multiple matching of parameterized
patterns, Theoret. Comput. Sci. 154 (2) (1996) 203–224.

[15] U. Manber, G. Myers, Suffix arrays: a new method for on-line
string searches, SIAM J. Comput. 22 (5) (1993) 935–948.

[16] G. Navarro, M. Raffinot, Flexible Pattern Matching in Strings,
Cambridge University Press, Cambridge, 2002.

[17] A.C. Yao, The complexity of pattern matching for a random
string, SIAM J. Comput. 8 (3) (1979) 368–387.

